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Abstract: Data uncertainties and model uncertainties in a predictive computational model of a
real system are defined. The concept of the nonparametric probabilistic approach for random
uncertainties due to model uncertainties and data uncertainties is introduced. A short overview
of the main theoretical results of this nonparametric probabilistic approach based on the use
of ensembles of random matrices constructed with the maximum entropy principle is given. The
methodologyof this nonparametric probabilistic approach is given. A numerical validation proving
the capability of the nonparametric probabilistic approach to take into accountmodel uncertainties
is presented. Then an experimental validation is given for the dynamics of a composite sandwich
panel. This nonparametric probabilistic modeling of random uncertainties has recently been
applied to insdustrial applications in computational dynamics for linear and nonlinear dynamical
systems, for complex structures and vibroacoustic systems.
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Introduction

The treatment of data uncertainties in structural mechanics has received a considerable at-
tention these last decades. Data uncertainties affect the parameters of the mathematical-
mechanical model such as the dimensions parameters, the parameters allowing the boundary
conditions to be described, the constitutive equations, etc. Data uncertainties can clearly
be taken into account by the parametric probabilistic approach. Such probabilistic analysis
of data uncertainties performed with random variables modeling for relatively simple me-
chanical system can be found in many papers such as Shinozuka & Astill (1972), Chen &
Soroka (1973), Prasthofer & Beadle (1975), Haug et al. (1986), Ibrahim (1987), Kotulski
ans Sobczyk (1987), Shinozuka (1987), Jensen & Iwan (1992), Iwan & Jensen (1993), Lee &
Singh (1994), Papadimitriou et al. (1995), Lin&Cai (1995),Micaletti et al. (1998), Schuëller
(1997), Mignolet et al. (1998). Such a parametric probabilistic approach has also been de-
veloped with random field theory for data uncertainties and randommedia modeling, leading
to the stochastic finite element method; see for instance Vanmarcke & Grigoriu (1983), Liu
et al. (1986), Shinozuka & Deodatis (1988), Spanos & Ghanem (1989), Ghanem & Spanos
(1991), Kleiber et al. (1992), Spanos and Zeldin (1994), Ditlevsen & Tarp-Johansen (1998).
More recently, the parametric probabilistic approach for data uncertainties and for random
media has been developed and applied to the computational mechanics of large and com-
plex mechanical systems; see for instance Hien & Kleiber (1997), Ghanem & Dham (1998),
Ghanem (1999), Székely & Schuëller (2001), Le Maı̂tre et al (2001) and (2002), Pradlwarter
et al. (2002), Schuëller et al. (2003), Schenk & Schuëller (2003).
This paper does not deal with the above parametric probabilistic approach for data uncer-
tainties or stochastic finite element method for randommedia, but rather with a nonparamet-
ric probabilistic approach of model uncertainties and data uncertainties for computational
stochastic dynamics. This approach has been introduced by Soize (1999) and developed in
the last five years. Themain objectif of this paper is to present newvalidations of this approach
and industrial applications in several fields for complexmechanical systems in computational
stochastic mechanics for linear and nonlinear dynamical systems, for structural dynamics and
vibroacoustic problems.
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Notation. In this paper, n(!),  S
n(!) and  +

n (!) are the set of all (n×n) real matrices, the
set of all symmetric (n×n) realmatrices, and the set of all positive-definite symmetric (n×n)
real matrices, respectively. We have  +

n (!) ⊂  S
n(!) ⊂  n(!). If [A ] belongs to  n(!),

‖[A ]‖F = (tr{[A ] [A ]T })1/2 is the Frobenius norm of matrix [A ], where tr is the trace of the
matrices, det is the determinant of the matrices and [A ]T is the transpose of matrix [A ]. The
operator norm of a matrix [A ] ∈  n(!) is defined as ‖A‖ = sup‖x‖≤1 ‖[A ] x‖ , x ∈ !n

and is such that ‖[A ] x‖ ≤ ‖A‖ ‖x‖ , ∀x ∈ !n. The indicatrix function "B(b) of any set B is
such that "B(b) is equal to 1 if b ∈ B and is equal to zero if b /∈ B. All random variables are
defined on a probability space (A, T ,P) and E is the mathematical expectation.

1. Uncertainties in a Predictive Model of Real System

In the context of engineering mechanics, the designed system is the mechanical system con-
ceived by the designers and analysts. A designed system is defined by geometrical parameters,
by the choice of materials, and by many other parameters. A designed system can be a very
simple mechanical system e.g. an elastic bar or a very complex one such as an aircraft.
A real system is a manufactured version of a system realized from the designed system.
Consequently, a real system is a man-made-physical system which is never exactly known
(for instance, the geometry does not exactly coincide with the geometry of the designed
system).
The objective of a predictive model is to predict the output vexp of a real system to a given
input fexp. Such predictive models are constructed by developing mathematical-mechanical
model of the designed system for a given input (see Fig. 1). Consequently, the mean model
has an input f modeling fexp, an output v modeling vexp and exhibits a parameter s for which
data has to be given (it should be noted that the parameter can be a real number, a real vector,
a real function, a field, a vector-valued function, etc.).

  system
Designed

Mean model

predictive model

of the real system

as the

s

f v

Real system

as the 
manufactured
system

Uncertain system

vf
exp exp

Mathematical−mechanical
modelling processprocess

Manufacturing

Figure 1. Designed system, real system and mean model as the predictive model of the real system.

(A)Errors: The errors are related to the construction of an approximationvn of the outputv of
the mean model for given input f and parameter sand have to be reduced and controled using
adapted methods developed in applied mathematics and in numerical analysis. In general,
these errors must not be considered as uncertainties (see below).

(B)Uncertainties: Below, the input f and the parameter s of the meanmodel will be hereafter
referred to as the data of the meanmodel. Themathematical-mechanicalmodeling process of
the designed system introduces two fundamental types of uncertainties: the data uncertainties
and the model uncertainties.

(B.1)Data uncertainties: The input f of the mean model does not exactly represent the input
fexp of the real system and there are also uncertainties on the parameter s of the mean model.
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Data uncertainties have to be taken into account for improving the predictability of the mean
model. The best approach to take into account data uncertainties is the parametric probabilistic
approach consisting in modeling the data of the mean model by random quantities.

(B.2) Model uncertainties: The mathematical-mechanical modeling process used for con-
structing the mean model induces model uncertainties with respect to the designed system.
This type of uncertainties is mainly due to the introduction of simplifications in order to
decrease the complexity of the mean model which is constructed. For instance, a slender
cylindrical elastic medium will be modeled by using the beam theory (such as an Euler or a
Timoshenko beam), a thick rectangular plate elastic mediumwill be modeled by a thick plate
theory (such as the Midlin plate theory), a complex joint constituted of an assemblage of sev-
eral plates attached together by lines of bolts will be modeled by an equivalent homogeneous
orthotropic plate, etc. It is clear that the introduction of such simplified models yields a mean
model whose variations of parameter s do not allow the model uncertainties to be reduced.
Model uncertainties have to be taken into account to improve the predictability of the mean
model. As explained above, the parametric probabilistic approach cannot be used. This is
the reason why a nonparametric probabilistic approach is proposed.

(C) Predictability of the mean model: The error between the prediction vn calculatedwith the
meanmodel and the response vexp of the real system can bemeasured by ‖vexp−vn‖. Clearly,
the mean model can be considered as a predictive model if this error is sufficiently small. In
general, due to data uncertainties and model uncertainties, this error is not sufficiently small
and has to be reduced by taking into account data uncertainties and model uncertainties.

2. Nonparametric Probabilistic Approach of Random Uncertainties

2.1. Concept of the Nonparametric Probabilistic Approach

The following example will be used to clarify the concepts of the nonparametric approach
that permits the consideration of model uncertainty. Let s 7→ A(s) be a linear mapping from a
spaceS into a spaceA of linear operators. The spaceS represents the set of all possible values
of the vector-valued parameter s of the boundary value problem (for instance, geometric
parameters, elastic properties, boundary conditions, etc). For s fixed in S, operator A(s)
represents one operator of the boundary value problem (for instance, the stiffness operator
which is assumed to be symmetric and positive, and in this case, any operator in A will be
symmetric and positive). Let Rpar ⊂ A be the range of the mapping s 7→ A(s), i.e. the
subset of A spanned by A(s) when s runs through S.

(A) The operator of the real system. It is assumed that the operator corresponding to the real
system is Aexp belonging to A.

(B) The mean model of the operator. If s = s is the nominal value, thenA = A(s) ∈ Rpar is
the operator of the mean model.

(C) Parametric probabilistic model of the operator. The parametric probabilistic approach
for the operator consists in modeling the parameter s by a vector valued random variable S
whose probability distribution PS(ds) has a support which is S. Then the operator A of the
mean model is replaced in the the BVP by the random operatorApar such that Apar = A(S).
The probability distribution PApar of the random operator Apar is PApar = A(PS) and its
support is the set Rpar ⊂ A (see Fig. 2). Clearly, the probability PApar on Rpar allows data
uncertainties to be taken into account, butAexpmay not be inRpar due to model uncertainties.
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Figure 2. Parametric and nonparametric probabilistic approaches of random uncertainties.

(D) Nonparametric probabilistic model of the operator. The nonparametric probabilistic
approach for the operator consists in replacing the operatorA of the mean model by a random
operator Anonpar whose probability distribution PAnonpar has a support Rnonpar = A. Since
Aexp belongs to A and since the support of PAnonpar is also A, model uncertainties can be
taken into account by the proposed nonparametric approach (see Fig. 2). Of course, PAnonpar

cannot be arbitrary chosenwith supportRnonpar, but has to be constructed using the available
information. Such a methodology has been developed (Soize 1999, 2000, 2001a and 2005b)
by using the maximum entropy principle (Shannon 1948) and (Jaynes 1957).

2.2. Evolution of the Concepts: Some History

The fundamentals of the nonparametric approach for random uncertainties and the develop-
ments of the first ensemble of random matrices adapted to modeling random uncertainties in
linear dynamical systems have been introduced by Soize (1999) and (2000). The algebraic
closure of this theory and its convergence analysis as the dimension goes to infinity have
studied by Soize (2001a) and (2001b) in the context of transient linear elastodynamics of
stochastic systems. Others ensembles of random matrices adapted to modeling random un-
certainties for coupled systems encountering vibroacoustics problems, have been introduced
by Soize (2005b).

The extension of the theory to non homogeneousuncertainties in complex dynamical systems
using substructuring techniques can be found, with experimental validations, in Chebli &
Soize (2004), Duchereau & Soize (2005).

The identification of the parameters of the nonparametric probabilistic model from experi-
ments is developed in Soize (2005a) and (2005b) and an experimental validation is given in
Chen et al. (2006).

The extension of the theory to linear dynamical systems in the medium frequency range was
achieved by Soize (2003b). The random eigenvalues for linear dynamical systems and the
non adaptation of the Gaussian Orthogonal Ensemble (GOE) for low- andmedium-frequency
dynamics are analyzed in Soize (2003a).

The application of this nonparametric probabilistic approach for model uncertainties in non-
linear dynamical systems and transient nonlinear dynamics of stochastic systems have been
studied in Soize (2001c), Desceliers et al. (2004).

Model uncertainties in dynamical systemswith cyclic symmetry and applications to mistuned
bladed disks have been developped in Capiez-Lernout & Soize (2004) and Capiez-Lernout
et al. (2005b).

Additional validations devoted to the capability of the nonparametric probabilistic approach
to take into account model uncertainties is given in Soize (2005a) and Capiez-Lernout et al.
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(2005b). The extension of the theory to vibroacoustic problems is presented in Durand et al.
(2005).

3. Methodology of the Nonparametric Probabilistic Approach

The methodology of the nonparametric probabilistic approach of uncertainties in dynamical
systems is as follows. (1) Developement of a mechanical-mathematicalmodel, generally a fi-
nite element model, of the designed system. Such a model will be call the meanmodel (or the
nominal model). (2) Construction of a reduced mean model from the mean model. (3) Con-
struction of a stochastic reducedmodel from the reducedmeanmodel using the nonparametric
concept and the maximum entropy principle. In this fashion, the probability distribution of
each random generalized matrix is constructed. (4) Construction and convergence analysis
of the stochastic solution.

3.1. Mean Finite Element Model of the Dynamical System

The following presentation is limited to the nonlinear structural dynamics of a linear structure
with localized nonlinearities but it can be extented to other more complex systems such as
vibroacoustic systems. We consider a nonlinear dynamic system constituted of a three-
dimensional, damped, fixed structure vibrating around a static equilibrium configuration
considered as a natural state without prestresses. The struvture is subjected to an external
load and does not display rigid body displacement. The basic finite element model of this
nonlinear dynamic system is called the “mean finite elementmodel” (the underlined quantities
refer to this “mean finite element model”) and leads to the following nonlinear differential
equation,

[ ] ÿ(t) + [! ] ẏ(t) + [" ] y(t) + fNL(y(t), ẏ(t)) = f(t) , (1)

in which y = (y
1
, . . . , y

m
) is the unknown time response vector of them degrees of freedom

(DOF) (displacements and/or rotations); ẏ and ÿ are the velocity and acceleration vectors

respectively; f(t) = (f1(t), . . . , fm(t)) is the known external load vector of the m inputs
(forces and/or moments); [ ], [! ] and [" ] are the mass, damping and stiffness matrices of
the linear part of the model, which are positive-definite symmetric (m×m) real matrices;
(y, z) 7→ fNL(y, z) is a nonlinear mapping from #m × #m into #m modeling additional
nonlinear damping and restoring forces such that fNL(0, 0) = 0. The linear case can be
derived from Eq. (1) by taking fNL = 0.

3.2. Reduced Mean Model

Let { 
1
, . . . , 

m
} be an algebraic basis of #m. The reduced mean model of the dynamic

system with mean finite element model given by Eq. (1) is obtained by projection of Eq. (1)
on the subspace Vn of #m spanned by { 

1
, . . . , 

n
} with n≪ m.

The construction of such an algebraic basis can be performed as follows.

(1) By using elastic modes of the underlying linear dynamical system. This choice is war-
ranted for linear dynamical systems or for nonlinear dynamical systems with localized non-
linearities, when their responses are in the low-frequency range.

(2) By using eigenvectors of the mechanical energy operator. This solution is appropriate for
a linear dynamical system in the medium-frequency range (Soize 1998a,1998b,1999,2003b),
(Soize & Mziou 2003), (Ghanem & Sarkar 2003).

(3) By using adapted "nonlinear modes" for nonlinear dynamical systems with distributed
nonlinearities.
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Let [ Φn] be the (m × n) real matrix whose columns are the vectors { 
1
, . . . , 

n
}. The

generalized forceFn(t) is the n-vectorFn(t) = [ Φn]T f(t). The generalizedmass,damping
and stiffness matrices [Mn], [Dn] and [Kn] are the positive-definite symmetric (n×n) real
matrices [Mn] = [ Φn]T [! ][ Φn], [Dn] = [ Φn]T [" ][ Φn], and [Kn] = [ Φn]T [# ][ Φn]
which, in general, are full matrices. Consequently, the reduced mean model of the nonlinear
dynamic system, written as the projection yn of y onVn, can bewritten as yn(t) = [ Φn] qn(t)

in which the vector qn(t) ∈  n of the generalized coordinates satisfies the mean nonlinear
differential equation,

[Mn] q̈
n(t) + [Dn] q̇

n(t) + [Kn] qn(t) + Fn
NL(q

n(t), q̇n(t)) = Fn(t) , ∀t ≥ 0 , (2)

where, for all q and p in  n, Fn
NL(q, p) = [ Φn]T fNL([ Φn] q, [ Φn] p).

3.3. Stochastic Response of the Nonlinear Dynamical System

The principle of construction of the nonparametric model of random uncertainties for the
dynamical systemwhosemean finite elementmodel is defined byEq. (1),consists inmodeling
the generalizedmass, damping and stiffness matrices of the reducedmeanmodel (see Eq. (2))
by random matrices [Mn], [Dn] and [Kn]. If the nonlinear forces are uncertain, a usual
parametricmodel can be used for these nonlinear forces. In this case, a mixed nonparametric-
parametric formulation can easily be constructed. The stochastic transient response of the
nonlinear dynamic system with a nonparametric probabilisticmodel of random uncertainties,
with reduced mean model defined by Eq. (2), is the stochastic processYn(t), indexed by  +,
with values in  m, such that

Yn(t) = [ Φn] Qn(t) . (3)

In this equation, the stochastic process Qn(t), indexed by  +, with values in  n, is such that

[Mn] Q̈n(t) + [Dn] Q̇n(t) + [Kn] Qn(t) + Fn
NL(Q

n(t), Q̇n(t)) = Fn(t) , ∀t ≥ 0 , (4)

with the initial conditions, Qn(0) = 0 and Q̇n(0) = 0.

3.4. Construction of the Probability Model of the Random Matrices [Mn], [Dn], [Kn]

The construction of the probabilitymodel of randommatrices [Mn], [Dn] and [Kn] consists in
taking these randommatrices in ensemble SE+ (Soize, 1999,2000,2001a,2001c)whose con-
struction is recalled hereafter. (1) The random matrices [Mn], [Dn] and [Kn] are defined on
the probability space (A, T ,P), with values in!+

n ( ). (2) The mean values of these random
matrices areE{[Mn]} = [Mn],E{[Dn]} = [Dn] andE{[Kn]} = [Kn]. (3) These random
matrices verify the following inequalities ensuring that Eq. (4) has a second-order stochastic
solution,E

{
‖[Mn]−1‖2

F

}
< +∞ , E

{
‖[Dn]−1‖2

F

}
< +∞ and E

{
‖[Kn]−1‖2

F

}
< +∞.

(4) The randommatrices [Mn], [Dn] and [Kn] are independent (because no available informa-
tion is given concerning the correlation between these random matrices). (5) These random
matrices can be normalized with respect to their mean values as follows:

[Mn]=[LMn
]T [GMn

][LMn
] , [Dn]=[LDn

]T [GDn
][LDn

] , [Kn]=[LKn
]T [GKn

][LKn
] (5)

in which [LMn
], [LDn

] and [LKn
] are the upper triangular real matrices in !n( ) such that

[Mn] = [LMn
]T [LMn

], [Dn] = [LDn
]T [LDn

] and [Kn] = [LKn
]T [LKn

]. The random

matrices [GMn
], [GDn

] and [GKn
] are in the ensemble SG+ which is defined in Section 3.5.

(6) The of ensemble SG+ of random matrices is defined as follows.
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3.5. Ensemble SG+ of Random Matrices

(A) Definition of ensemble SG+. This ensemble is defined and constructed (Soize 1999,
2000, 2001a) as the set of randommatrices [Gn], defined on the probability space (A, T , P ),
with values in  +

n (!), whose probability distribution is constructed by using the entropy
optimization principle (Shannon 1948), (Jaynes 1957), under the constraints (available in-
formation): (1) Any matrix [Gn] is symmetric positive-definite real random matrix, i.e.
[Gn] ∈  +

n (!) a.s. (2)Anymatrix [Gn] is a second-order randomvariable,E{‖[Gn]‖
2} ≤

E{‖[Gn]‖2
F } < +∞ and its mean value [Gn] is the (n×n) identity matrix [In],E{[Gn]} =

[Gn] = [In] ∈  +
n (!). (3) Any random matrix [Gn] is such that E{ln(det[Gn])} =

v with |v| < +∞. Constraint (3) implies the following fundamental property for ran-

dom matrices in ensemble SG+: E
{
‖[Gn]−1‖2

F

}
< +∞.

(B) Dispersion parameter of a random matrix in ensemble SG+. Let δ be the real disper-
sion parameter defined by δ = {E{‖ [Gn] − [Gn] ‖2

F }/‖ [Gn] ‖2
F}

1/2 = {n−1E{‖ [Gn] −

[In] ‖2
F}}

1/2. It controls the dispersion of the probability model of random matrix [Gn]

provided that δ is independent of n and such that 0 < δ <
√

(n+ 1)(n+ 5)−1.

(C)Probability distribution of a randommatrix in ensembleSG+. The probability distribution
P[Gn] of randommatrix [Gn] is defined by a probability density function [Gn] 7→ p[Gn]([Gn])

from  +
n (!) into !+ = [0 ,+∞[, with respect to the measure (volume element) d̃Gn =

2n(n−1)/4 Π1≤i≤j≤n d[Gn]ij on the set  S
n(!). We then have P[Gn] = p[Gn]([Gn]) d̃Gn,

with the normalization condition
∫ +

n (!)
p[Gn]([Gn]) d̃Gn = 1. The probability density

function p[Gn]([Gn]) is then written as

p[Gn]([Gn]) = " +
n (!)([Gn])×CGn

×
(
det [Gn]

)(n+1)
(1−δ2)

2δ2 exp

{
−

(n+ 1)

2δ2
tr [Gn]

}
(6)

in which " +
n (!)([Gn]) is equal to 1 if [Gn] ∈  +

n (!) and is equal to zero if [Gn] /∈  +
n (!).

Further, the positive constant CGn
is such that

CGn
=

(2π)−n(n−1)/4
(

n+1
2δ2

)n(n+1)(2δ2)−1

{
Πn

j=1Γ
(

n+1
2δ2 + 1−j

2

)} , (7)

where Γ(z) is the gamma function defined for z > 0 by Γ(z) =
∫ +∞

0
tz−1 e−t dt. Equation

(6) shows that {[Gn]jk, 1 ≤ j ≤ k ≤ n} are dependent random variables.

(D) Algebraic representation of a random matrix in ensemble SG+. The following algebraic
representation of a random matrix [Gn] of SG+ allows the formulation of a procedure for
the Monte Carlo numerical simulation of random matrix [Gn]. With this procedure, the
numerical cost induced by the simulation is a constant that depends on dimension n but that
is independent of the dispersion parameter δ. Any random matrix [Gn] can be written as

[Gn] = [Ln]T [Ln] , (8)

in which [Ln] is an upper triangular random matrix with values in  n(!) such that:

(1) The random variables {[Ln]jj′ , j ≤ j′} are independent.

(2) For j < j′, real-valued random variable [Ln]jj′ can be written as [Ln]jj′ = σnUjj′ in

which σn = δ(n + 1)−1/2 and Ujj′ is a real-valued Gaussian random variable with zero
mean and unit variance.
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(3) For j = j′, the positive-valued random variable [Ln]jj can be written as [Ln]jj =

σn

√
2Vj in which σn is defined above and Vj is a positive-valued gamma random variable

with probability density function pVj
(v) with respect to dv

pVj
(v) =   +(v)

1

Γ
(

n+1
2δ2 + 1−j

2

) v
n+1

2δ2 − 1+j

2 e−v . (8)

(E) Convergence property of a random matrix in ensemble SG+ when dimension goes to
infinity. It can be shown that ∀n ≥ 2 , E{‖[Gn]−1‖2} ≤ Cδ < +∞ in which Cδ is a
positive finite constant that is independent of n but that depends on δ. This equation implies
that n 7→ E{‖[Gn]−1‖2} is a bounded function from {n ≥ 2} into !+.

3.6. Other Ensembles of Random Matrices

Five ensembles of random matrices have been developped which are useful for modeling
data and model uncertainties in computational mechanics . These ensembles differ from the
known ensemble of random matrices, e.g. found in Mehta (1991).

(1) The first ensemble, SG+, of random matrices has been presented in Section 4.5 and is
called the the normalized positive-definite ensemble. Then, a random matrix belonging to
SG+ is positive definite almost surely and its mean value is the identitymatrix. This ensemble
constitutes the main ensemble used for constructing the four other ensembles introduced
below. Ensemble SG+ differs from the GOE and from the other known ensembles of random
matrix theory (Soize 2003a).

(2) The second ensemble, SE+, of random matrices, herein called the positive-definite en-
semble, has been constructed simultaneously with SG+ and is used in Section 4.4. A random
matrix belonging to SE+ is positive definite almost surely and its mean value is a given
positive-definite matrix. For instance, this ensemble is used for constructing probability
model of positive operators such as the mass, damping or stiffness operators of a dynamical
system.

(3) The construction of the third ensemble, SE+0, has been introduced in Soize (1999) and is
similar to the construction of ensemble SE+. A random matrix belonging to this ensemble
is semipositive definite almost surely instead of being positive definite almost surely. For
instance, such an ensemble is useful for modeling uncertainties of the stiffness operator of
dynamical systems for which there are rigid body displacement fields.

(4) The fourth ensemble of random matrices is the subset SE+
lf of SE+ introduced in Soize

(2005b), constituted of random matrices in SE+ for which a linear form on SE+ is given.
A particular case is the ensemble SE+

tr for which the trace of the random matrix is given.
For instance, such an ensemble is useful for modeling uncertainties of the mass operator of a
dynamical system for which the spatial distibution of the mass is uncertain but for which the
total mass is known.

(5) The fifth ensemble, SEinv , of random matrices, herein called the the pseudo-inverse
ensemble, is a new ensemble introduced in Soize (2005b), constituted of rectangular random
matrices having a mean-square pseudo-inverse. For instance, such an ensemble is useful for
modeling uncertainties in the coupling operator between an elastic solid and an acoustic fluid
(structural-acoustic system) and is used in the application presented in Section 7.4.

3.7. Construction and Convergence of the Stochastic Solution

(A) Stochastic solution as a second-order stochastic process. For any T > 0, it is proved
in Soize (2001a,2001c) that, for all t in [0 , T ], we have E{‖Yn(t)‖2} ≤ C1 < +∞ and
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E{‖Ẏn(t)‖2}≤C2< +∞ under reasonable assumptions concerning the nonlinear damping

and restoring forces and if
∫ T

0
‖f(t)‖2dt < +∞. Further, C1 and C2 are positive constants

that are independent of n and t.

(B) Construction of the stochastic solution. The stochastic solution of Eq. (4) is constructed
using the Monte Carlo numerical simulation with ns realizations. For each realization, an
implicit step-by-step integration method (Newmark method) is used for solving Eq. (4). The
realizations of the random matrix [An], in which [An] represents [Mn], [Dn] or [Kn], are
constructed using Section 3.5(D). It should be noted that the numerical cost is low with such
a method because Eq. (4) corresponds to a stochastic reduced model with n≪ m.

(C) Convergence analysis. Using the usual estimation of the mathematical expectation op-
erator E, the convergence with respect to dimension n of the stochastic reduced model and
to the number ns of realizations used in the Monte Carlo numerical method, is studied by

constructing the function (ns, n) 7→ Conv(ns, n) = { 1
ns

∑ns

k=1

∫ T

0 ‖Qn(t, θk)‖2 dt}1/2, in

which Qn(t, θ1), . . . ,Q
n(t, θns

) are ns realizations of Qn(t).

4. Numerical Validation: Capability of the Proposed Approach

(A)Designed system. The designed system is a slender cylindrical elasticmediumΩdefined in
a cartesian co-ordinate system (Oxyz). The cylinder has a rectangular section and dimensions
h1 = 10m, h2 = 1m and h3 = 1.5m. The elastic medium is made of a composite material.
This structure is simply supported on the lower edges. The other parts of the boundary ∂Ω
of domain Ω are free.
(B) Real system. The real system corresponds to the designed system. There are uncertainties
on the geometry due tomanufacturing tolerances. The domain of the real system isΩRSwhich
differs from Ω. The simply supported conditions are not exactly realized and the composite
material does not exactly correspond to the given specifications of the designed system. This
real system is excited by a frequency-dependent pressure field pexp(ω) which is constant in
space on the part ΓRS of the boundary ∂ΩRS. We are interested in the dynamics of the real
system in the frequency bandB =]0, 1000]Hz subjected to a pressure field excitationwhich
is constant in space over ΓRS and constant in frequency band B. The details of data can be
found in (Soize, 2005a).
(C) Mean model. The mean model, as a predictive model of the real system, is constructed
from the designed system. This mean model is constituted of a damped homogeneous Euler
elastic beam with length h1, simply supported at x = 0 and x = h1. The mean model input
is the point force located at x0 = 4.25m with an intensity g(ω) = − B(ω). The composite
material of the designed system is modeled by a homogeneous isotropic elastic material
whose nominal parameters are E = 1010N/m2 (Young’s modulus), ρ = 1700Kg/m3

(mass density) and ξ = 0.01 (damping rates). The computed eigenfrequencies of the mean
system are ν1 = 11, ν2 = 44, ν3 = 99, ν4 = 176, ν5 = 275, ν6 = 396, ν7 = 539, ν8 =
704, ν9 = 891, ν10 = 1100, . . . , ν80 = 70385Hz. For ω in B, this external force induces
flexural vibrations in the plane (Oxy).
(D)Numerical experiment of the real system. A ”numerical experimental” response of the real
system is obtained by (1) constructing a 3D elastic model of the real system, (2) discretizing
the real system by the finite element method, and (3) solving the equation by modal analysis.
The material is taken as homogeneous and isotropic with a Young modulus of 1010N/m2, a
Poisson coefficient of 0.15, a mass density equal to 1700Kg/m3. The modal damping ratios
are the realizations of a uniform random variable on [0.009 , 0.011] of mean value 0.01. The
finite element mesh is constituted of 80 × 8 × 12 = 7680 three-dimensional 8-nodes solid
elements. There are 9477 nodes and a total of 28275 degrees of freedom (due to the bound-
ary conditions, the displacement is zero for 2 × 26 nodes). A point force (0,− B(ω), 0) is
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applied to the node of co-ordinates (4.25, 0.5, 0.75). The finite element approximation of
the displacement field (uexp, vexp, wexp) is computed on frequency band B by using modal
analysis with the first 150 elastic modes. There are 101 eigenfrequencies in band B and 49
eigenfrequencies in frequency band [1000, 1197]Hz. The fundamental eigenfrequency is
νexp1 = 16Hz. There are 14 eigenfrequencies in frequency band [0, 230]Hz. The eigen-
frequencies of the first 5 flexural modes corresponding to the first 5 elastic modes of the
mean model (Euler beam) and having respectively 2 to 6 nodes (zero Oy-displacement) on
the neutral fiber are νexpj1

= 16, νexpj2
= 40, νexpj3

= 91, νexpj4
= 153, νexpj5

= 220, Hz with
j1 = 1, j2 = 3, j3 = 7, j4 = 10, j5 = 14.
(E) Estimation of the dispersion parameters for random uncertainties modeling. Using the
"numerical experiment" of the real system, an estimation of the dispersion parameters δM ,
δD and δK of the random generalized mass, damping and stiffness matrices is performed
by using the method presented in Soize (2003a). Such an estimation yields δM = 0.29,
δD = 0.30 and δK = 0.68.
(F)Predictionwith randomuncertainties and "experimental" comparisons. In this section,we
present (1) predictionwith the nonparametric probabilisticmodel of randomuncertainties and
(2) comparisons with the mean model prediction and with the ”experimental” response of the
real system. The convergence with respect to n and ns (dimension of the stochastic reduced
model and number of realizations used in the Monte Carlo numerical simulation method) is
first studied in Section 3.7. Figure 3 displays the graph of function ns 7→ Conv(ns, n) defined
in Section 3.7 (C) for different values of n. This figure shows that a reasonable convergence
is reached for n ≥ 80 and ns ≥ 1500.

0 500 1000 1500
−11.5

−11

−10.5

−10

Figure 3. Statistical convergence: graphs of the function ns 7→ log10{Conv(ns, n)} for n = 20,

n = 30 and 60 (three lower thin solid lines, for n = 80, n = 120 and n = 160 (three upper lines:

n = 80 (thin solid line), n = 120 (mid solid line) and n = 160 (thick solid line). Horizontal axis ns.

Let O1 and O2 be the observation points on the line (x, 0, 0), x ∈]0, h1[ (neutral fiber) and
located at x1 = 5.000m and x2 = 6.375m respectively. The confidence region of the
modulus of the frequency response function at each observation pointO1 orO2 is calculated
by using the method presented in Section 3. The confidence region for frequency response at
a given observation point is carried out with a probability levelPc = 0.98 and for n = 80 and
ns = 3000. For observation points O1 and O2, Figs. 4-a and 4-b, respectively, display the
comparisons between the mean model response predictions, the ”experimental” responses of
the real system and the confidence region predictions of the stochastic system resulting from
the use of the nonparametric probabilistic approach for random uncertainties.
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Figure 4. Confidence region prediction of the stochastic system with nonparametric approach at obser-

vation point O1 (Fig. (a) left) and O2 (Fig. (b) right) (grey region). Mean model response (thin solid

line). "Numerical experiment" of the real system (thick solid line).
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Figure 5. Confidence region prediction of the stochastic systemwith parametric approach at observation

point O1 (Fig. (a) left) and O2 (Fig. (b) right)(grey region). Mean model response (thin solid line).

"Numerical experiment" of the real system (thick solid line).

(G) Lack of capability of the parametric probabilistic approach to take into account model
uncertainties. In this section, we presents the results obtained from the usual parametric
probabilistic approach (data uncertainties). For such an approach, the randomvariables are the
mass densityρ, the geometric parametersh1,h2 andh3, theYoungmodulusE and the damping
ratio ξ. These 6 random variables are assumed to be mutually independent. Positive-valued
randomvariablesh1, h2 andh3 are uniformely distributedwith knownmean valuesh1, h2 and
h3 and coefficients of variation δh1 , δh2 and δh3 to be identified (see below) (the coefficient
of variation is the standard deviation divided by the mean value). In addition, it is assumed
that δh1 = δh2 = δh3 . Positive-valued random variables ρ, E and ξ are Gamma random
variables with knownmean values ρ, E and ξ and for coefficients of variation δρ, δE and δξ to

be identified (see below). Let Λ
par
1 and Λ

nonpar
1 be the lowest random eigenfrequencies of the

stochastic systems constructed with the parametric and nonparametric approach respectively.
Let δ

Λ
par
1

and δ
Λ
nonpar
1

be the coefficients of variation of random variables Λpar
1 and Λnonpar

1 .

In order to compare comparable things, the coefficients of variation δh1 = δh2 = δh3 , δρ
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and δE of random variables h1, h2, h3, ρ and E for the parametric probabilistic approach,
were calculated to yield min{(δ

Λ
par
1

− δ
Λ
nonpar
1

)2} in which δ
Λ
nonpar
1

= 0.076918 is known.

A solution is δh1 = δh2 = δh3 = 0.024, δρ = 0.03, δE = 0.1 corresponding to δ
Λ
par
1

=

0.076492. The coefficient of variation δξ is calculated by the equation δξ = δD which yields
δξ = 0.3. For observation points O1 and O2, Figs. 5-a and 5-b display respectively the
comparisons between the mean model response predictions, the ”experimental” responses of
the real system and the confidence region predictions of the stochastic system resulting from
the use of the parametric probabilistic approach of random uncertainties.
(H) Conclusion. The comparaisons of Fig. 4-a with 5-a and 4-b with 5-b show that the
two approaches yield similar results in the low-frequency range [0 , 100] Hz (this band is
relatively robust with respect to model uncertainties) are very different in the frequency
band [100, 1000] Hz. The parametric probabilistic approach allows data uncertainties to be
taken into account but cannot address model uncertainties which become more significant
for frequency increases. On the contrary, the nonparametric probabilistic approach allows
model uncertainties to be taken into account.

5. Experimental Validation: Dynamics of a Composite Sandwich Panel

Two experimental validations of the proposed theory have been published by Chebli & Soize
(2004) and Duchereau & Soize (2005) in the context of heterogeneous model uncertainties
in vibration and transient dynamics of structures. In this section, we present an experimental
validation in another context, i.e. the vibration of multilayer composites. In addition the
experimental identification of the dispersion parameters controlling model uncertainties is
presented. The details of the results summarized in this section can be found in Chen et al.
(2006).
(A) Designed panel. The designed panel is a sandwich panel constituted of five layers
four of which are thin carbon-resin unidirectional plies and one is a high stiffness closed-
cell foam core (see Fig. 6). This panel is defined with respect to a Cartesian coordinate
systemOxyz and is 0.40m long(Ox axis), 0.30mwide (Oy axis) and 0.01068m thick (Oz
axis). The middle plane of the sandwich panel is Oxy and the origine O is located in one
corner. Each carbon layer is made of a thin carbon-resin ply with a thickness of 0.00017m,
a mass density ρ = 1600Kg/m3 and whose elasticity constants are: Ex = 101GPa,
Ey = 6.2GPa, νxy = 0.32, Gxy = Gxz = Gyz = 2.4GPa. The first two layers are
two carbon-resin unidirectional plies in a [-60/60] layup. The third layer is the closed-cell
foam core with a thickness of 0.01m, a mass density of 80Kg/m3 and elasticity constants:
Ex = Ey = 60MPa, νxy = 0, Gxy = Gxz = Gyz = 30MPa. The fourth and fifth layers
are two carbon-resin unidirectional plies in a [60/-60] layup.

0.40 m

0.30 m

0.00017 m

0.01 m

0.00017 m

0.00017 m
0.00017 m [ 60 / 60 ]

[ 60 / 60 ]

Output
(Displacement)

Input
(Force)

Figure 6. Composite sandwich panel.
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(B) Manufactured panels. Eight sandwich panels were manufactured from the designed
panel using the same process and the same materials. All sandwich panels were baked in
the same batch to suppress the influence of variations in the baking conditions, e.g. time and
temperature.

(C) Experimental frequency response functions. The dynamical testing of the eight sandwich
panels was realized in the free-free condition. The middle plane of the sandwich panel was
vertical and the panel was suspended with a very low eigenfrequency. The measurements
were performed on the frequency band B = [10 , 4500]Hz. The input z-force was a point
load applied to point N0 of coordinates (0.187, 0.103, 0)m. An electrodynamic shaker
delivered a broad band signal. The output z-accelerations were measured at 25 points by
accelerometers. For the sake of brevity, the presentation is limited to thepointwith coordinates
(0.337, 0.216, 0)m. The experimental cross-frequency response functionswere identified on
frequency band B using the usual spectral analysis methods and signal processing.

(D) Experimental modal analysis. An experimentalmodal analysis was performed in the fre-
quency band [10 , 1550]Hz using the identified experimental frequency response functions.
For each sandwich panel r = 1, . . . , 8, eleven elastic modes were identified in this frequency
band. For sandwich panel r, the following usual modal parameters of each experimental elas-
tic mode α were identified: (1) the eigenfrequency ωexp

α (θr), (2) the damping ratio ξ
exp
α (θr),

(3) the elastic mode shape ψ
exp
α (θr) and the corresponding generalized mass µ

exp
α (θr). Let

ωexp
α = (1/8)

∑8
r=1 ω

exp
α (θr) be the average experimental eigenfrequency α. Introducing

f exp
α

= ωexp
α /(2 π), the results are f exp

1
= 191.0Hz, f exp

2
= 329.5Hz, f exp

3
= 532.0Hz and

f exp
4

= 635.1Hz. For α = 1, . . . , 11, let ξexp
α

= (1/8)
∑8

r=1 ξ
exp
α (θr) be the average experi-

mental damping ratio α and let ξexp = (1/11)
∑11

α=1 ξ
exp

α
be the global average experimental

damping ratio. The result is ξexp = 0.01.
(E)Mean model and its updating. The designed panel is modeled as a laminated composite
thin plate for which each layer is an orthotropic elastic material in plane stress. Since we
are only interested in the z-displacement of the middle plane of the sandwich panel in the
bending mode and since the panel is a free structure, there are 3 rigid body modes. We are
interested in the construction of the responses in the frequency domain over the frequency
band of analysis B. The designed panel is modeled by using a regular finite element mesh
constituted of 128× 64 four-nodes finite elements for laminated plate bending. The number
of DOF is 25 155. The damping of the structure is introduced by an arbitrary usual model
controlled by the modal damping ratios deduced from the measurements. The mean model
has been updated in average using the first 4 experimental eigenfrequencies for each panel (8
panels).

(F)Reducedmeanmodel. The reducedmeanmodelwas constructed byusing thefirstn= 200
elastic modes of the updated mean model including the 3 rigid body modes. Convergence
was found to be reached for this number of modes.

(G)FRF calculationwith the reducedmeanmodel and experimental comparisons. The cross-
frequency response function corresponding to the observation point is calcultated with the
reduced mean model. Figure 7 displays, in log scale, the graphs of the modulus of the exper-
imental and numerical cross-frequency response functions for which the input is the driven
point and the output is the z-acceleration at the observation point. Note that there are 9 curves
in the figure: 8 curves correspond to the experimental cross-frequency response functions of
the 8 sandwich panels and 1 curve corresponds to the numerical cross-frequency response
function computed with the reduced mean model. The comparison of the experimental
cross-frequency response functions with the one constructed with the reducedmean model is
reasonably good in the frequency band [0, 1500]Hz and relatively poor in [1500 , 4500]Hz.
In the frequency band [1500, 4500]Hz, the lack of predictability is increasing with the fre-
quency and is mainly due to model uncertainties (modeling the sandwich panel by using the
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laminated composite thin plate theory) and to a lesser degree to data uncertainties (mechanical
parameters).
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Figure 7. Graphs of the cross-FRF between driven point and observation point. Horizontal axis:

frequency in Hertz. Vertical axis: log10 of the modulus of the acceleration in m/s2. Experimental
cross-FRF corresponding to the 8 panels (8 thin solid lines). Numerical cross-FRF calulated with the

reduced mean model (thick solid line)

(H) Experimental identification of the dispersion parameters of the nonparametric model.
Let δM , δD and δK be the dispersion parameters of the random generalized mass, damping
and stiffness matrices. They were estimated by using the experimental generalized matrices
corresponding to the 8 experimental sandwich panels, and for a dimension ν < n. The
dispersion parameters δM , δD and δK were estimated by (Chen et al. 2006) using the method
presented in Soize (2003a and 2005b) and yields δM = 0.23, δD = 0.43 and δK = 0.25 for
random matrices [Mn], [Dn] and [Kn] (these values are independent of dimension n of the
stochastic reduced model).
(I)Confidence region prediction for theFRFand experimental comparisons. Figure 8 displays
the confidence region prediction for the random cross-frequency response functions between
the driven point and the observation point, computed with ns = 2000 realizations for the
Monte Carlo numerical simulation and n = 200 (mean-square convergence is reached for
these values).
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Figure 8. Confidence region prediction for the random cross-FRF. Horizontal axis: frequency in

Hertz. Vertical axis: log10 of the modulus of the acceleration in m/s2. Experimental cross-FRF

corresponding to the 8 panels (8 thin solid lines). Numerical cross-FRF calculated with the reduced
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mean model (thick solid line). Mean value of the random cross-FRF calculated with the nonparametric

probabilistic model (thin dashed line). Confidence region of the random cross-FRF calculated with the

nonparametric probabilistic model (grey region).

(J) Conclusions. Experimental results obtained for a set of 8 light sandwich panels show
the sensitivity of the dynamical response of the panels in the medium-frequency range. The
use of the classical laminated composite thin plate theory to construct the predictive mean
model introduces significant model uncertainties in the medium-frequency range. Since
such dynamical systems are very sensitive to uncertainties, the introduction of a probabilistic
model of both data and model uncertainties is necessary to improve the predictability of the
mean model. The prediction from the nonparametric model compared with the experiments
is good.

6. Industrial Applications

The nonparametric probabilisticmodeling of randomuncertainties have recently be developed
for industrial applications in computational dynamics for linear and nonlinear dynamical
systems, for complex structures and vibroacoustic systems:
(1) The linear dynamics of a bladed disk mistuned due to manufacturing tolerances uncer-
tainties (Capiez-Lernout et al. 2005a).
(2) The identification and quantification of the design margins in the nonlinear dynamics of
a reactor coolant system (Desceliers et al. (2004).
(3) The robustness of the numerical simulation model with respect to model and data uncer-
tainties in dynamics of a spatial structure (Capiez-Lernout et al. 2005b).
(4) The robustness of the numerical vibroacoustic FRF of cars with respect to model and data
uncertainties (Durand et al. 2004 and 2005).

7. Conclusions

A nonparametric probabilistic approach has been proposed to take into account model uncer-
tainties and data uncertainties in computational dynamics. It is shown with a simple example
that the usual parametric probabilistic approach allows data uncertainties to be analyzed but
does not allow model uncertainties to be taken into account. An additional experimental
validation of the approach proposed is given. Such a therory has been applied to industrial
applications.
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