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Data uncertainties and model uncertainties in a predictive computational model of a real system are defined. The concept of the nonparametric probabilistic approach for random uncertainties due to model uncertainties and data uncertainties is introduced. A short overview of the main theoretical results of this nonparametric probabilistic approach based on the use of ensembles of random matrices constructed with the maximum entropy principle is given. The methodology of this nonparametric probabilistic approach is given. A numerical validation proving the capability of the nonparametric probabilistic approach to take into account model uncertainties is presented. Then an experimental validation is given for the dynamics of a composite sandwich panel. This nonparametric probabilistic modeling of random uncertainties has recently been applied to insdustrial applications in computational dynamics for linear and nonlinear dynamical systems, for complex structures and vibroacoustic systems.

Introduction

The treatment of data uncertainties in structural mechanics has received a considerable attention these last decades. Data uncertainties affect the parameters of the mathematicalmechanical model such as the dimensions parameters, the parameters allowing the boundary conditions to be described, the constitutive equations, etc. Data uncertainties can clearly be taken into account by the parametric probabilistic approach. Such probabilistic analysis of data uncertainties performed with random variables modeling for relatively simple mechanical system can be found in many papers such as [START_REF] Shinozuka | Random eigenvalue problems in structural analysis[END_REF], [START_REF] Chen | Multi-degree dynamic response of a system with statistical properties[END_REF], [START_REF] Prasthofer | Dynamic response of structures with statistical uncertainties in their stiffness[END_REF], [START_REF] Haug | Design Sensitivity Analysis of Structural Systems[END_REF], [START_REF] Ibrahim | Structural dynamics with parameter uncertainties[END_REF], Kotulski ans Sobczyk (1987), [START_REF] Shinozuka | Structural response variability[END_REF], [START_REF] Jensen | Response of systems with uncertain parameters to stochastic excitation[END_REF], [START_REF] Iwan | On the dynamical response of continuous systems including model uncertainty[END_REF], [START_REF] Lee | Analysis of discrete vibratory systems with parameter uncertainties. Part II: Impulse response[END_REF], [START_REF] Papadimitriou | Approximate analysis of response variability of uncertain linear systems[END_REF], [START_REF] Lin | Probabilistic Structural Dynamics[END_REF], [START_REF] Micaletti | A solution method for linear and geometrically nonlinear MDOF systems with random properties subject to random excitation[END_REF], [START_REF] Schuëller | A state-of-the-art report on computational stochastic mechanics[END_REF], [START_REF] Mignolet | Direct prediction of the effects of mistuning on the forced response of bladed disks[END_REF]. Such a parametric probabilistic approach has also been developed with random field theory for data uncertainties and random media modeling, leading to the stochastic finite element method; see for instance [START_REF] Vanmarcke | Stochastic finite element analysis of simple beams[END_REF], [START_REF] Liu | Random field finite elements[END_REF], [START_REF] Shinozuka | Response variability of stochastic finite element systems[END_REF], [START_REF] Spanos | Stochastic finite element expansion for random media[END_REF], [START_REF] Ghanem | Stochastic Finite Elements: A Spectral Approach[END_REF], [START_REF] Kleiber | The Stochastic Finite Element Method[END_REF], [START_REF] Spanos | Galerkin sampling method for stochastic mechanics problems[END_REF], [START_REF] Ditlevsen | Choice of input fields in stochastic finite elements[END_REF]. More recently, the parametric probabilistic approach for data uncertainties and for random media has been developed and applied to the computational mechanics of large and complex mechanical systems; see for instance [START_REF] Hien | Stochastic finite element modeling in linear transient heat transfer[END_REF], [START_REF] Ghanem | Stochastic finite element analysis for multiphase flow in heterogeneous porous media[END_REF], [START_REF] Ghanem | Ingredients for a general purpose stochastic finite elements formulation[END_REF], [START_REF] Székely | Computational procedure for a fast calculation of eigenvectors and eigenvalues of structures with random properties[END_REF], Le [START_REF] Le Maître | A stochastic projection method for fluid flow. I. Basic formulation[END_REF](2002), [START_REF] Pradlwarter | Random eigenvalue problems for large systems[END_REF], [START_REF] Schuëller | Nonstationary response of large linear fe-models under stochastic loading[END_REF], Schenk & Schuëller (2003). This paper does not deal with the above parametric probabilistic approach for data uncertainties or stochastic finite element method for random media, but rather with a nonparametric probabilistic approach of model uncertainties and data uncertainties for computational stochastic dynamics. This approach has been introduced by Soize (1999) and developed in the last five years. The main objectif of this paper is to present new validations of this approach and industrial applications in several fields for complex mechanical systems in computational stochastic mechanics for linear and nonlinear dynamical systems, for structural dynamics and vibroacoustic problems.

Uncertainties in a Predictive Model of Real System

In the context of engineering mechanics, the designed system is the mechanical system conceived by the designers and analysts. A designed system is defined by geometrical parameters, by the choice of materials, and by many other parameters. A designed system can be a very simple mechanical system e.g. an elastic bar or a very complex one such as an aircraft. A real system is a manufactured version of a system realized from the designed system. Consequently, a real system is a man-made-physical system which is never exactly known (for instance, the geometry does not exactly coincide with the geometry of the designed system). The objective of a predictive model is to predict the output v exp of a real system to a given input f exp . Such predictive models are constructed by developing mathematical-mechanical model of the designed system for a given input (see Fig. 1). Consequently, the mean model has an input f modeling f exp , an output v modeling v exp and exhibits a parameter s for which data has to be given (it should be noted that the parameter can be a real number, a real vector, a real function, a field, a vector-valued function, etc.). (A) Errors: The errors are related to the construction of an approximation v n of the output v of the mean model for given input f and parameter sand have to be reduced and controled using adapted methods developed in applied mathematics and in numerical analysis. In general, these errors must not be considered as uncertainties (see below).

(B) Uncertainties: Below, the input f and the parameter s of the mean model will be hereafter referred to as the data of the mean model. The mathematical-mechanical modeling process of the designed system introduces two fundamental types of uncertainties: the data uncertainties and the model uncertainties. (B.1) Data uncertainties: The input f of the mean model does not exactly represent the input f exp of the real system and there are also uncertainties on the parameter s of the mean model.

Data uncertainties have to be taken into account for improving the predictability of the mean model. The best approach to take into account data uncertainties is the parametric probabilistic approach consisting in modeling the data of the mean model by random quantities.

(B.2) Model uncertainties: The mathematical-mechanical modeling process used for constructing the mean model induces model uncertainties with respect to the designed system. This type of uncertainties is mainly due to the introduction of simplifications in order to decrease the complexity of the mean model which is constructed. For instance, a slender cylindrical elastic medium will be modeled by using the beam theory (such as an Euler or a Timoshenko beam), a thick rectangular plate elastic medium will be modeled by a thick plate theory (such as the Midlin plate theory), a complex joint constituted of an assemblage of several plates attached together by lines of bolts will be modeled by an equivalent homogeneous orthotropic plate, etc. It is clear that the introduction of such simplified models yields a mean model whose variations of parameter s do not allow the model uncertainties to be reduced. Model uncertainties have to be taken into account to improve the predictability of the mean model. As explained above, the parametric probabilistic approach cannot be used. This is the reason why a nonparametric probabilistic approach is proposed.

(C) Predictability of the mean model: The error between the prediction v n calculated with the mean model and the response v exp of the real system can be measured by v exp -v n . Clearly, the mean model can be considered as a predictive model if this error is sufficiently small. In general, due to data uncertainties and model uncertainties, this error is not sufficiently small and has to be reduced by taking into account data uncertainties and model uncertainties.

Nonparametric Probabilistic Approach of Random Uncertainties

Concept of the Nonparametric Probabilistic Approach

The following example will be used to clarify the concepts of the nonparametric approach that permits the consideration of model uncertainty. Let s → A(s) be a linear mapping from a space S into a space A of linear operators. The space S represents the set of all possible values of the vector-valued parameter s of the boundary value problem (for instance, geometric parameters, elastic properties, boundary conditions, etc). For s fixed in S, operator A(s) represents one operator of the boundary value problem (for instance, the stiffness operator which is assumed to be symmetric and positive, and in this case, any operator in A will be symmetric and positive). Let R par ⊂ A be the range of the mapping s → A(s), i.e. the subset of A spanned by A(s) when s runs through S.

(A) The operator of the real system. It is assumed that the operator corresponding to the real system is A exp belonging to A.

(B) The mean model of the operator. If s = s is the nominal value, then A = A(s) ∈ R par is the operator of the mean model.

(C) Parametric probabilistic model of the operator. The parametric probabilistic approach for the operator consists in modeling the parameter s by a vector valued random variable S whose probability distribution P S (ds) has a support which is S. Then the operator A of the mean model is replaced in the the BVP by the random operator A par such that A par = A(S). The probability distribution P Apar of the random operator A par is P Apar = A(P S ) and its support is the set R par ⊂ A (see Fig. 2). Clearly, the probability P Apar on R par allows data uncertainties to be taken into account, but A exp may not be in R par due to model uncertainties. (D) Nonparametric probabilistic model of the operator. The nonparametric probabilistic approach for the operator consists in replacing the operator A of the mean model by a random operator A nonpar whose probability distribution P Anonpar has a support R nonpar = A. Since A exp belongs to A and since the support of P Anonpar is also A, model uncertainties can be taken into account by the proposed nonparametric approach (see Fig. 2). Of course, P Anonpar cannot be arbitrary chosen with support R nonpar , but has to be constructed using the available information. Such a methodology has been developed (Soize 1999[START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF](Soize , 2001a[START_REF] Capiez-Lernout | Data and model uncertainties in complex aerospace engineering systems[END_REF] by using the maximum entropy principle [START_REF] Shannon | A mathematical theory of communication[END_REF]) and (Jaynes 1957).

Evolution of the Concepts: Some History

The fundamentals of the nonparametric approach for random uncertainties and the developments of the first ensemble of random matrices adapted to modeling random uncertainties in linear dynamical systems have been introduced by Soize (1999) and[START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF]. The algebraic closure of this theory and its convergence analysis as the dimension goes to infinity have studied by Soize (2001a) and(2001b) in the context of transient linear elastodynamics of stochastic systems. Others ensembles of random matrices adapted to modeling random uncertainties for coupled systems encountering vibroacoustics problems, have been introduced by [START_REF] Capiez-Lernout | Data and model uncertainties in complex aerospace engineering systems[END_REF]. The extension of the theory to non homogeneous uncertainties in complex dynamical systems using substructuring techniques can be found, with experimental validations, in [START_REF] Chebli | Experimental validation of a nonparametric probabilistic model of non homogeneous uncertainties for dynamical systems[END_REF], [START_REF] Duchereau | Transient dynamics in structures with nonhomogeneous uncertainties induced by complex joints[END_REF]. The identification of the parameters of the nonparametric probabilistic model from experiments is developed in Soize (2005a) and[START_REF] Capiez-Lernout | Data and model uncertainties in complex aerospace engineering systems[END_REF] and an experimental validation is given in [START_REF] Chen | Experimental identification and validation of a probability model addressing model uncertainties in structural dynamics: case of composite sandwich panels[END_REF]. The extension of the theory to linear dynamical systems in the medium frequency range was achieved by Soize (2003b). The random eigenvalues for linear dynamical systems and the non adaptation of the Gaussian Orthogonal Ensemble (GOE) for low-and medium-frequency dynamics are analyzed in Soize (2003a). The application of this nonparametric probabilistic approach for model uncertainties in nonlinear dynamical systems and transient nonlinear dynamics of stochastic systems have been studied in Soize (2001c), [START_REF] Desceliers | Non-parametric-parametric model for random uncertainties in nonlinear structural dynamics -Application to earthquake engineering[END_REF]. Model uncertainties in dynamical systems with cyclic symmetry and applications to mistuned bladed disks have been developped in Capiez-Lernout & [START_REF] Soize | Random-field model for the elasticity tensor of anisotropic random media[END_REF] and [START_REF] Capiez-Lernout | Data and model uncertainties in complex aerospace engineering systems[END_REF]. Additional validations devoted to the capability of the nonparametric probabilistic approach to take into account model uncertainties is given in Soize (2005a) and [START_REF] Capiez-Lernout | Data and model uncertainties in complex aerospace engineering systems[END_REF]. The extension of the theory to vibroacoustic problems is presented in [START_REF] Durand | Nonparametric modeling of the variability of vehicle vibroacoustic behavior[END_REF].

Methodology of the Nonparametric Probabilistic Approach

The methodology of the nonparametric probabilistic approach of uncertainties in dynamical systems is as follows. (1) Developement of a mechanical-mathematical model, generally a finite element model, of the designed system. Such a model will be call the mean model (or the nominal model). ( 2) Construction of a reduced mean model from the mean model. (3) Construction of a stochastic reduced model from the reduced mean model using the nonparametric concept and the maximum entropy principle. In this fashion, the probability distribution of each random generalized matrix is constructed. (4) Construction and convergence analysis of the stochastic solution.

Mean Finite Element Model of the Dynamical System

The following presentation is limited to the nonlinear structural dynamics of a linear structure with localized nonlinearities but it can be extented to other more complex systems such as vibroacoustic systems. We consider a nonlinear dynamic system constituted of a threedimensional, damped, fixed structure vibrating around a static equilibrium configuration considered as a natural state without prestresses. The struvture is subjected to an external load and does not display rigid body displacement. The basic finite element model of this nonlinear dynamic system is called the "mean finite element model" (the underlined quantities refer to this "mean finite element model") and leads to the following nonlinear differential equation,

[ Å ] ÿ(t) + [ ] ẏ(t) + [ Ã ] y(t) + f NL (y(t), ẏ(t)) = f(t) , (1) 
in which y = (y 1 , . . . , y m ) is the unknown time response vector of the m degrees of freedom (DOF) (displacements and/or rotations); ẏ and ÿ are the velocity and acceleration vectors respectively; (y, z) → f NL (y, z) is a nonlinear mapping from Ê m × Ê m into Ê m modeling additional nonlinear damping and restoring forces such that f NL (0, 0) = 0. The linear case can be derived from Eq. ( 1) by taking f NL = 0.

f(t) = (f 1 (t), . . . , f m (t))

Reduced Mean Model

Let { 1 , . . . , m } be an algebraic basis of Ê m . The reduced mean model of the dynamic system with mean finite element model given by Eq. ( 1) is obtained by projection of Eq. ( 1)

on the subspace V n of Ê m spanned by { 1 , . . . , n } with n ≪ m.
The construction of such an algebraic basis can be performed as follows.

(1) By using elastic modes of the underlying linear dynamical system. This choice is warranted for linear dynamical systems or for nonlinear dynamical systems with localized nonlinearities, when their responses are in the low-frequency range.

(2) By using eigenvectors of the mechanical energy operator. This solution is appropriate for a linear dynamical system in the medium-frequency range (Soize 1998a(Soize ,1998b(Soize ,1999(Soize ,2003b)), [START_REF] Soize | Dynamic substructuring in the medium-frequency range[END_REF], [START_REF] Ghanem | Reduced models for the medium-frequency dynamics of stochastic systems[END_REF].

(3) By using adapted "nonlinear modes" for nonlinear dynamical systems with distributed nonlinearities.

Let [ Φ n ] be the (m × n) real matrix whose columns are the vectors { 1 , . . . , n }. The

generalized force F n (t) is the Ê n -vector F n (t) = [ Φ n ] T f(t).
The generalized mass, damping and stiffness matrices

[ M n ], [ D n ] and [ K n ] are the positive-definite symmetric (n× n) real matrices [ M n ] = [ Φ n ] T [ Å ][ Φ n ], [ D n ] = [ Φ n ] T [ ][ Φ n ], and [ K n ] = [ Φ n ] T [ Ã ][ Φ n ]
which, in general, are full matrices. Consequently, the reduced mean model of the nonlinear dynamic system, written as the projection y n of y on V n , can be written as

y n (t) = [ Φ n ] q n (t)
in which the vector q n (t) ∈ Ê n of the generalized coordinates satisfies the mean nonlinear differential equation,

[ M n ] qn (t) + [ D n ] qn (t) + [ K n ] q n (t) + F n NL (q n (t), qn (t)) = F n (t) , ∀t ≥ 0 , (2) 
where, for all q and p in Ê n , F n

NL (q, p) = [ Φ n ] T f NL ([ Φ n ] q, [ Φ n ] p).

Stochastic Response of the Nonlinear Dynamical System

The principle of construction of the nonparametric model of random uncertainties for the dynamical system whose mean finite element model is defined by Eq. ( 1),consists in modeling the generalized mass, damping and stiffness matrices of the reduced mean model (see Eq. ( 2)) by random matrices

[M n ], [D n ] and [K n ].
If the nonlinear forces are uncertain, a usual parametric model can be used for these nonlinear forces. In this case, a mixed nonparametricparametric formulation can easily be constructed. The stochastic transient response of the nonlinear dynamic system with a nonparametric probabilistic model of random uncertainties, with reduced mean model defined by Eq. ( 2), is the stochastic process Y n (t), indexed by Ê + , with values in Ê m , such that

Y n (t) = [ Φ n ] Q n (t) . (3) 
In this equation, the stochastic process Q n (t), indexed by Ê + , with values in Ê n , is such that

[M n ] Qn (t) + [D n ] Qn (t) + [K n ] Q n (t) + F n NL (Q n (t), Qn (t)) = F n (t) , ∀t ≥ 0 , (4) 
with the initial conditions, Q n (0) = 0 and Qn (0) = 0.

Construction of the Probability Model of the Random Matrices

[M n ], [D n ], [K n ]
The construction of the probability model of random matrices [M n ], [D n ] and [K n ] consists in taking these random matrices in ensemble SE + (Soize, 1999[START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF](Soize, ,2001a(Soize, ,2001c) ) 

[M n ]} = [ M n ], E{[D n ]} = [ D n ] and E{[K n ]} = [ K n ].
(3) These random matrices verify the following inequalities ensuring that Eq. ( 4) has a second-order stochastic solution,

E [M n ] -1 2 F < +∞ , E [D n ] -1 2 F < +∞ and E [K n ] -1 2 F < +∞. (4) The random matrices [M n ], [D n ] and [K n ]
are independent (because no available information is given concerning the correlation between these random matrices). ( 5) These random matrices can be normalized with respect to their mean values as follows:

[M n ] = [L Mn ] T [G Mn ][L Mn ] , [D n ] = [L Dn ] T [G Dn ][L Dn ] , [K n ] = [L Kn ] T [G Kn ][L Kn ] (5) in which [L Mn ], [L Dn ] and [L Kn ] are the upper triangular real matrices in Å n (Ê) such that [M n ] = [L Mn ] T [L Mn ], [D n ] = [L Dn ] T [L Dn ] and [K n ] = [L Kn ] T [L Kn ]. The random matrices [G Mn ], [G Dn ] and [G Kn ]
are in the ensemble SG + which is defined in Section 3.5. (6) The of ensemble SG + of random matrices is defined as follows.

Ensemble SG + of Random Matrices

(A) Definition of ensemble SG + . This ensemble is defined and constructed (Soize 1999[START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF](Soize , 2001a) ) as the set of random matrices [G n ], defined on the probability space (A, T , P ), with values in Å + n (Ê), whose probability distribution is constructed by using the entropy optimization principle [START_REF] Shannon | A mathematical theory of communication[END_REF]), [START_REF] Jaynes | Information theory and statistical mechanics[END_REF], under the constraints (available information): (1) Any matrix [G n ] is symmetric positive-definite real random matrix, i.e. 3) implies the following fundamental property for random matrices in ensemble SG

[G n ] ∈ Å + n (Ê) a.s. (2) Any matrix [G n ] is a second-order random variable, E{ [G n ] 2 } ≤ E{ [G n ] 2 F } < +∞ and its mean value [G n ] is the (n × n) identity matrix [I n ], E{[G n ]} = [G n ] = [I n ] ∈ Å + n (Ê). (3) Any random matrix [G n ] is such that E{ln(det[G n ])} = v with |v| < +∞. Constraint (
+ : E [G n ] -1 2 F < +∞. (B)
Dispersion parameter of a random matrix in ensemble SG + . Let δ be the real dispersion parameter defined by

δ = {E{ [G n ] -[G n ] 2 F }/ [G n ] 2 F } 1/2 = {n -1 E{ [G n ] - [I n ] 2
F }} 1/2 . It controls the dispersion of the probability model of random matrix [G n ] provided that δ is independent of n and such that 0 < δ < (n + 1)(n + 5) -1 .

(C) Probability distribution of a random matrix in ensemble SG + . The probability distribution

P [Gn] of random matrix [G n ] is defined by a probability density function [G n ] → p [Gn] ([G n ]) from Å + n (Ê) into Ê + = [0 , +∞[, with respect to the measure (volume element) dG n = 2 n(n-1)/4 Π 1≤i≤j≤n d[G n ] ij on the set Å S n (Ê). We then have P [Gn] = p [Gn] ([G n ]) dG n , with the normalization condition Å + n (Ê) p [Gn] ([G n ]) dG n = 1. The probability density function p [Gn] ([G n ]) is then written as p [Gn] ([G n ]) = ½ Å + n (Ê) ([G n ])×C Gn × det [G n ] (n+1) (1-δ 2 ) 2δ 2 exp - (n + 1) 2δ 2 tr [G n ] (6) in which ½ Å + n (Ê) ([G n ]) is equal to 1 if [G n ] ∈ Å + n (Ê) and is equal to zero if [G n ] / ∈ Å + n (Ê). Further, the positive constant C Gn is such that C Gn = (2π) -n(n-1)/4 n+1 2δ 2 n(n+1)(2δ 2 ) -1 Π n j=1 Γ n+1 2δ 2 + 1-j 2 , ( 7 
)
where Γ(z) is the gamma function defined for z > 0 by Γ(z) = +∞ 0 t z-1 e -t dt. Equation (6) shows that {[G n ] jk , 1 ≤ j ≤ k ≤ n} are dependent random variables.

(D) Algebraic representation of a random matrix in ensemble SG + . The following algebraic representation of a random matrix [G n ] of SG + allows the formulation of a procedure for the Monte Carlo numerical simulation of random matrix [G n ]. With this procedure, the numerical cost induced by the simulation is a constant that depends on dimension n but that is independent of the dispersion parameter δ. Any random matrix [G n ] can be written as

[G n ] = [L n ] T [L n ] , (8) 
in which [L n ] is an upper triangular random matrix with values in Å n (Ê) such that:

(1) The random variables

{[L n ] jj ′ , j ≤ j ′ } are independent. ( 2 
) For j < j ′ , real-valued random variable [L n ] jj ′ can be written as [L n ] jj ′ = σ n U jj ′ in which σ n = δ(n + 1) -1/2
and U jj ′ is a real-valued Gaussian random variable with zero mean and unit variance.

(3) For j = j ′ , the positive-valued random variable [L n ] jj can be written as [L n ] jj = σ n 2V j in which σ n is defined above and V j is a positive-valued gamma random variable with probability density function p Vj (v) with respect to dv

p Vj (v) = ½ Ê + (v) 1 Γ n+1 2δ 2 + 1-j 2 v n+1 2δ 2 -1+j 2 e -v . (8) 
(E) Convergence property of a random matrix in ensemble SG + when dimension goes to infinity. It can be shown that ∀n ≥ 2 , E{ [G n ] -1 2 } ≤ C δ < +∞ in which C δ is a positive finite constant that is independent of n but that depends on δ. This equation implies

that n → E{ [G n ] -1 2 } is a bounded function from {n ≥ 2} into Ê + .

Other Ensembles of Random Matrices

Five ensembles of random matrices have been developped which are useful for modeling data and model uncertainties in computational mechanics . These ensembles differ from the known ensemble of random matrices, e.g. found in [START_REF] Mehta | Random Matrices. Revised and Enlarged Second Edition[END_REF].

(1) The first ensemble, SG + , of random matrices has been presented in Section 4.5 and is called the the normalized positive-definite ensemble. Then, a random matrix belonging to SG + is positive definite almost surely and its mean value is the identity matrix. This ensemble constitutes the main ensemble used for constructing the four other ensembles introduced below. Ensemble SG + differs from the GOE and from the other known ensembles of random matrix theory (Soize 2003a).

(2) The second ensemble, SE + , of random matrices, herein called the positive-definite ensemble, has been constructed simultaneously with SG + and is used in Section 4.4. A random matrix belonging to SE + is positive definite almost surely and its mean value is a given positive-definite matrix. For instance, this ensemble is used for constructing probability model of positive operators such as the mass, damping or stiffness operators of a dynamical system.

(3) The construction of the third ensemble, SE +0 , has been introduced in Soize (1999) and is similar to the construction of ensemble SE + . A random matrix belonging to this ensemble is semipositive definite almost surely instead of being positive definite almost surely. For instance, such an ensemble is useful for modeling uncertainties of the stiffness operator of dynamical systems for which there are rigid body displacement fields.

(4) The fourth ensemble of random matrices is the subset SE + lf of SE + introduced in Soize (2005b), constituted of random matrices in SE + for which a linear form on SE + is given. A particular case is the ensemble SE + tr for which the trace of the random matrix is given. For instance, such an ensemble is useful for modeling uncertainties of the mass operator of a dynamical system for which the spatial distibution of the mass is uncertain but for which the total mass is known.

(5) The fifth ensemble, SE inv , of random matrices, herein called the the pseudo-inverse ensemble, is a new ensemble introduced in Soize (2005b), constituted of rectangular random matrices having a mean-square pseudo-inverse. For instance, such an ensemble is useful for modeling uncertainties in the coupling operator between an elastic solid and an acoustic fluid (structural-acoustic system) and is used in the application presented in Section 7.4.

Construction and Convergence of the Stochastic Solution

(A) Stochastic solution as a second-order stochastic process. For any T > 0, it is proved in Soize (2001aSoize ( ,2001c) ) that, for all t in [0 , T ], we have E{ Y n (t) 2 } ≤ C 1 < +∞ and E{ Ẏn (t) 2 } ≤ C 2 < +∞ under reasonable assumptions concerning the nonlinear damping and restoring forces and if T 0 f(t) 2 dt < +∞. Further, C 1 and C 2 are positive constants that are independent of n and t.

(B) Construction of the stochastic solution. The stochastic solution of Eq. ( 4) is constructed using the Monte Carlo numerical simulation with n s realizations. For each realization, an implicit step-by-step integration method (Newmark method) is used for solving Eq. ( 4). The realizations of the random matrix

[A n ], in which [A n ] represents [M n ], [D n ] or [K n ]
, are constructed using Section 3.5(D). It should be noted that the numerical cost is low with such a method because Eq. ( 4) corresponds to a stochastic reduced model with n ≪ m.

(C) Convergence analysis. Using the usual estimation of the mathematical expectation operator E, the convergence with respect to dimension n of the stochastic reduced model and to the number n s of realizations used in the Monte Carlo numerical method, is studied by constructing the function

(n s , n) → Conv(n s , n) = { 1 ns ns k=1 T 0 Q n (t, θ k ) 2 dt} 1/2 , in which Q n (t, θ 1 ), . . . , Q n (t, θ ns ) are n s realizations of Q n (t).

Numerical Validation: Capability of the Proposed Approach

(A) Designed system. The designed system is a slender cylindrical elastic medium Ωdefined in a cartesian co-ordinate system (Oxyz). The cylinder has a rectangular section and dimensions h 1 = 10 m, h 2 = 1 m and h 3 = 1.5 m. The elastic medium is made of a composite material. This structure is simply supported on the lower edges. The other parts of the boundary ∂Ω of domain Ω are free. (B) Real system. The real system corresponds to the designed system. There are uncertainties on the geometry due to manufacturing tolerances. The domain of the real system is Ω RS which differs from Ω. The simply supported conditions are not exactly realized and the composite material does not exactly correspond to the given specifications of the designed system. This real system is excited by a frequency-dependent pressure field p exp (ω) which is constant in space on the part Γ RS of the boundary ∂Ω RS . We are interested in the dynamics of the real system in the frequency band B =]0, 1000] Hz subjected to a pressure field excitation which is constant in space over Γ RS and constant in frequency band B. The details of data can be found in (Soize, 2005a). (C) Mean model. The mean model, as a predictive model of the real system, is constructed from the designed system. This mean model is constituted of a damped homogeneous Euler elastic beam with length h 1 , simply supported at x = 0 and x = h 1 . The mean model input is the point force located at x 0 = 4.25 m with an intensity g(ω) = -½ B (ω). The composite material of the designed system is modeled by a homogeneous isotropic elastic material whose nominal parameters are E = 10 10 N/m 2 (Young's modulus), ρ = 1700 Kg/m 3 (mass density) and ξ = 0.01 (damping rates). The computed eigenfrequencies of the mean system are ν 1 = 11, ν 2 = 44, ν 3 = 99, ν 4 = 176, ν 5 = 275, ν 6 = 396, ν 7 = 539, ν 8 = 704, ν 9 = 891, ν 10 = 1100, . . . , ν 80 = 70385 Hz. For ω in B, this external force induces flexural vibrations in the plane (Oxy). (D) Numerical experiment of the real system. A "numerical experimental" response of the real system is obtained by (1) constructing a 3D elastic model of the real system, (2) discretizing the real system by the finite element method, and (3) solving the equation by modal analysis. The material is taken as homogeneous and isotropic with a Young modulus of 10 10 N/m 2 , a Poisson coefficient of 0.15, a mass density equal to 1700 Kg/m 3 . The modal damping ratios are the realizations of a uniform random variable on [0.009 , 0.011] of mean value 0.01. The finite element mesh is constituted of 80 × 8 × 12 = 7680 three-dimensional 8-nodes solid elements. There are 9477 nodes and a total of 28275 degrees of freedom (due to the boundary conditions, the displacement is zero for 2 × 26 nodes). A point force (0, -½ B (ω), 0) is applied to the node of co-ordinates (4.25, 0.5, 0.75). The finite element approximation of the displacement field (u exp , v exp , w exp ) is computed on frequency band B by using modal analysis with the first 150 elastic modes. There are 101 eigenfrequencies in band B and 49 eigenfrequencies in frequency band [1000,1197] Hz. The fundamental eigenfrequency is ν exp 1 = 16 Hz. There are 14 eigenfrequencies in frequency band [0, 230] Hz. The eigenfrequencies of the first 5 flexural modes corresponding to the first 5 elastic modes of the mean model (Euler beam) and having respectively 2 to 6 nodes (zero Oy-displacement) on the neutral fiber are ν exp j1 = 16, ν exp j2 = 40, ν exp j3 = 91, ν exp j4 = 153, ν exp j5 = 220, Hz with j 1 = 1, j 2 = 3, j 3 = 7, j 4 = 10, j 5 = 14. (E) Estimation of the dispersion parameters for random uncertainties modeling. Using the "numerical experiment" of the real system, an estimation of the dispersion parameters δ M , δ D and δ K of the random generalized mass, damping and stiffness matrices is performed by using the method presented in Soize (2003a). Such an estimation yields δ M = 0.29, δ D = 0.30 and δ K = 0.68. (F) Prediction with random uncertainties and "experimental" comparisons. In this section, we present (1) prediction with the nonparametric probabilistic model of random uncertainties and ( 2) comparisons with the mean model prediction and with the "experimental" response of the real system. The convergence with respect to n and n s (dimension of the stochastic reduced model and number of realizations used in the Monte Carlo numerical simulation method) is first studied in Section 3.7. Figure 3 displays the graph of function n s → Conv(n s , n) defined in Section 3.7 (C) for different values of n. This figure shows that a reasonable convergence is reached for n ≥ 80 and n s ≥ 1500. Let O 1 and O 2 be the observation points on the line (x, 0, 0), x ∈]0, h 1 [ (neutral fiber) and located at x 1 = 5.000 m and x 2 = 6.375 m respectively. The confidence region of the modulus of the frequency response function at each observation point O 1 or O 2 is calculated by using the method presented in Section 3. The confidence region for frequency response at a given observation point is carried out with a probability level P c = 0.98 and for n = 80 and n s = 3000. For observation points O 1 and O 2 , Figs. 4-a and4-b, respectively, display the comparisons between the mean model response predictions, the "experimental" responses of the real system and the confidence region predictions of the stochastic system resulting from the use of the nonparametric probabilistic approach for random uncertainties. (G) Lack of capability of the parametric probabilistic approach to take into account model uncertainties. In this section, we presents the results obtained from the usual parametric probabilistic approach (data uncertainties). For such an approach, the random variables are the mass density ρ, the geometric parameters h 1 , h 2 and h 3 , the Young modulus E and the damping ratio ξ. These 6 random variables are assumed to be mutually independent. Positive-valued random variables h 1 , h 2 and h 3 are uniformely distributed with known mean values h 1 , h 2 and h 3 and coefficients of variation δ h1 , δ h2 and δ h3 to be identified (see below) (the coefficient of variation is the standard deviation divided by the mean value). In addition, it is assumed that δ h1 = δ h2 = δ h3 . Positive-valued random variables ρ, E and ξ are Gamma random variables with known mean values ρ, E and ξ and for coefficients of variation δ ρ , δ E and δ ξ to be identified (see below). Let Λ par 1 and Λ nonpar 1 be the lowest random eigenfrequencies of the stochastic systems constructed with the parametric and nonparametric approach respectively. Let δ Λ par 1 and δ Λ nonpar 1 be the coefficients of variation of random variables Λ par 1 and Λ nonpar 1 . In order to compare comparable things, the coefficients of variation δ h1 = δ h2 = δ h3 , δ ρ and δ E of random variables h 1 , h 2 , h 3 , ρ and E for the parametric probabilistic approach, were calculated to yield min{(δ Λ par

1 -δ Λ nonpar 1 ) 2 } in which δ Λ nonpar 1 = 0.076918 is known.
A solution is δ h1 = δ h2 = δ h3 = 0.024, δ ρ = 0.03, δ E = 0.1 corresponding to δ Λ par 1 = 0.076492. The coefficient of variation δ ξ is calculated by the equation δ ξ = δ D which yields δ ξ = 0.3. For observation points O 1 and O 2 , Figs. 5-a and 5-b display respectively the comparisons between the mean model response predictions, the "experimental" responses of the real system and the confidence region predictions of the stochastic system resulting from the use of the parametric probabilistic approach of random uncertainties. (H) Conclusion. The comparaisons of Fig. 4-a with 5-a and 4-b with 5-b show that the two approaches yield similar results in the low-frequency range [0 , 100] Hz (this band is relatively robust with respect to model uncertainties) are very different in the frequency band [100, 1000] Hz. The parametric probabilistic approach allows data uncertainties to be taken into account but cannot address model uncertainties which become more significant for frequency increases. On the contrary, the nonparametric probabilistic approach allows model uncertainties to be taken into account.

Experimental Validation: Dynamics of a Composite Sandwich Panel

Two experimental validations of the proposed theory have been published by [START_REF] Chebli | Experimental validation of a nonparametric probabilistic model of non homogeneous uncertainties for dynamical systems[END_REF] and [START_REF] Duchereau | Transient dynamics in structures with nonhomogeneous uncertainties induced by complex joints[END_REF] in the context of heterogeneous model uncertainties in vibration and transient dynamics of structures. In this section, we present an experimental validation in another context, i.e. the vibration of multilayer composites. In addition the experimental identification of the dispersion parameters controlling model uncertainties is presented. The details of the results summarized in this section can be found in [START_REF] Chen | Experimental identification and validation of a probability model addressing model uncertainties in structural dynamics: case of composite sandwich panels[END_REF]. (A) Designed panel. The designed panel is a sandwich panel constituted of five layers four of which are thin carbon-resin unidirectional plies and one is a high stiffness closedcell foam core (see Fig. 6). This panel is defined with respect to a Cartesian coordinate system Oxyz and is 0.40 m long(Ox axis), 0.30 m wide (Oy axis) and 0.01068 m thick (Oz axis). The middle plane of the sandwich panel is Oxy and the origine O is located in one corner. Each carbon layer is made of a thin carbon-resin ply with a thickness of 0.00017 m, a mass density ρ = 1600 Kg/m 3 and whose elasticity constants are: (B) Manufactured panels. Eight sandwich panels were manufactured from the designed panel using the same process and the same materials. All sandwich panels were baked in the same batch to suppress the influence of variations in the baking conditions, e.g. time and temperature. (C) Experimental frequency response functions. The dynamical testing of the eight sandwich panels was realized in the free-free condition. The middle plane of the sandwich panel was vertical and the panel was suspended with a very low eigenfrequency. The measurements were performed on the frequency band B = [10 , 4500] Hz. The input z-force was a point load applied to point N 0 of coordinates (0.187, 0.103, 0) m. An electrodynamic shaker delivered a broad band signal. The output z-accelerations were measured at 25 points by accelerometers. For the sake of brevity, the presentation is limited to the point with coordinates (0.337, 0.216, 0) m. The experimental cross-frequency response functions were identified on frequency band B using the usual spectral analysis methods and signal processing. (D) Experimental modal analysis. An experimental modal analysis was performed in the frequency band [10 , 1550] Hz using the identified experimental frequency response functions. For each sandwich panel r = 1, . . . , 8, eleven elastic modes were identified in this frequency band. For sandwich panel r, the following usual modal parameters of each experimental elastic mode α were identified: (1) the eigenfrequency ω exp α (θ r ), (2) the damping ratio ξ exp α (θ r ), (3) the elastic mode shape ψ (E) Mean model and its updating. The designed panel is modeled as a laminated composite thin plate for which each layer is an orthotropic elastic material in plane stress. Since we are only interested in the z-displacement of the middle plane of the sandwich panel in the bending mode and since the panel is a free structure, there are 3 rigid body modes. We are interested in the construction of the responses in the frequency domain over the frequency band of analysis B. The designed panel is modeled by using a regular finite element mesh constituted of 128 × 64 four-nodes finite elements for laminated plate bending. The number of DOF is 25 155. The damping of the structure is introduced by an arbitrary usual model controlled by the modal damping ratios deduced from the measurements. The mean model has been updated in average using the first 4 experimental eigenfrequencies for each panel (8 panels). (F) Reduced mean model. The reduced mean model was constructed by using the first n = 200 elastic modes of the updated mean model including the 3 rigid body modes. Convergence was found to be reached for this number of modes. (G) FRF calculation with the reduced mean model and experimental comparisons. The crossfrequency response function corresponding to the observation point is calcultated with the reduced mean model. Figure 7 displays, in log scale, the graphs of the modulus of the experimental and numerical cross-frequency response functions for which the input is the driven point and the output is the z-acceleration at the observation point. Note that there are 9 curves in the figure: 8 curves correspond to the experimental cross-frequency response functions of the 8 sandwich panels and 1 curve corresponds to the numerical cross-frequency response function computed with the reduced mean model. The comparison of the experimental cross-frequency response functions with the one constructed with the reduced mean model is reasonably good in the frequency band [0, 1500] Hz and relatively poor in [1500 , 4500] Hz. In the frequency band [1500, 4500] Hz, the lack of predictability is increasing with the frequency and is mainly due to model uncertainties (modeling the sandwich panel by using the laminated composite thin plate theory) and to a lesser degree to data uncertainties (mechanical parameters). Let δ M , δ D and δ K be the dispersion parameters of the random generalized mass, damping and stiffness matrices. They were estimated by using the experimental generalized matrices corresponding to the 8 experimental sandwich panels, and for a dimension ν < n. The dispersion parameters δ M , δ D and δ K were estimated by [START_REF] Chen | Experimental identification and validation of a probability model addressing model uncertainties in structural dynamics: case of composite sandwich panels[END_REF]) using the method presented in Soize (2003a and[START_REF] Capiez-Lernout | Data and model uncertainties in complex aerospace engineering systems[END_REF] (J) Conclusions. Experimental results obtained for a set of 8 light sandwich panels show the sensitivity of the dynamical response of the panels in the medium-frequency range. The use of the classical laminated composite thin plate theory to construct the predictive mean model introduces significant model uncertainties in the medium-frequency range. Since such dynamical systems are very sensitive to uncertainties, the introduction of a probabilistic model of both data and model uncertainties is necessary to improve the predictability of the mean model. The prediction from the nonparametric model compared with the experiments is good.

Industrial Applications

The nonparametric probabilistic modeling of random uncertainties have recently be developed for industrial applications in computational dynamics for linear and nonlinear dynamical systems, for complex structures and vibroacoustic systems:

(1) The linear dynamics of a bladed disk mistuned due to manufacturing tolerances uncertainties (Capiez-Lernout et al. 2005a).

(2) The identification and quantification of the design margins in the nonlinear dynamics of a reactor coolant system [START_REF] Desceliers | Non-parametric-parametric model for random uncertainties in nonlinear structural dynamics -Application to earthquake engineering[END_REF].

(3) The robustness of the numerical simulation model with respect to model and data uncertainties in dynamics of a spatial structure [START_REF] Capiez-Lernout | Data and model uncertainties in complex aerospace engineering systems[END_REF]). ( 4) The robustness of the numerical vibroacoustic FRF of cars with respect to model and data uncertainties [START_REF] Durand | Random uncertainties for vibroacoustic frequency response functions of cars[END_REF]2005).

Conclusions

A nonparametric probabilistic approach has been proposed to take into account model uncertainties and data uncertainties in computational dynamics. It is shown with a simple example that the usual parametric probabilistic approach allows data uncertainties to be analyzed but does not allow model uncertainties to be taken into account. An additional experimental validation of the approach proposed is given. Such a therory has been applied to industrial applications.
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 1 Figure 1. Designed system, real system and mean model as the predictive model of the real system.
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 2 Figure 2. Parametric and nonparametric probabilistic approaches of random uncertainties.

  is the known external load vector of the m inputs (forces and/or moments); [ Å ], [ ] and [ Ã ] are the mass, damping and stiffness matrices of the linear part of the model, which are positive-definite symmetric (m× m) real matrices;

  whose construction is recalled hereafter. (1) The random matrices [M n ], [D n ] and [K n ] are defined on the probability space (A, T , P), with values in Å + n (Ê). (2) The mean values of these random matrices are E{
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 3 Figure 3. Statistical convergence: graphs of the function n s → log 10 {Conv(n s , n)} for n = 20, n = 30 and 60 (three lower thin solid lines, for n = 80, n = 120 and n = 160 (three upper lines: n = 80 (thin solid line), n = 120 (mid solid line) and n = 160 (thick solid line). Horizontal axis n s .
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 4 Figure 4. Confidence region prediction of the stochastic system with nonparametric approach at observation point O1 (Fig. (a) left) and O2 (Fig. (b) right) (grey region). Mean model response (thin solid line). "Numerical experiment" of the real system (thick solid line).
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 5 Figure 5. Confidence region prediction of the stochastic system with parametric approach at observation point O1 (Fig. (a) left) and O2 (Fig. (b) right)(grey region). Mean model response (thin solid line). "Numerical experiment" of the real system (thick solid line).
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 6 Figure 6. Composite sandwich panel.

  exp α (θ r ) and the corresponding generalized mass µ exp α (θ r ). Let ω exp α = (1/8) 8 r=1 ω exp α (θ r ) be the average experimental eigenfrequency α. Introducing f exp α = ω exp α /(2 π), the results are f exp 1 = 191.0 Hz, f exp 2 = 329.5 Hz, f exp 3 = 532.0 Hz and f exp 4 = 635.1 Hz. For α = 1, . . . , 11, let ξ exp α = (1/8) 8 r=1 ξ exp α (θ r ) be the average experimental damping ratio α and let ξ exp = (1/11) 11 α=1 ξ exp α be the global average experimental damping ratio. The result is ξ exp = 0.01.
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 7 Figure7. Graphs of the cross-FRF between driven point and observation point. Horizontal axis: frequency in Hertz. Vertical axis: log 10 of the modulus of the acceleration in m/s 2 . Experimental cross-FRF corresponding to the 8 panels (8 thin solid lines). Numerical cross-FRF calulated with the reduced mean model (thick solid line) (H) Experimental identification of the dispersion parameters of the nonparametric model. Let δ M , δ D and δ K be the dispersion parameters of the random generalized mass, damping and stiffness matrices. They were estimated by using the experimental generalized matrices corresponding to the 8 experimental sandwich panels, and for a dimension ν < n. The dispersion parameters δ M , δ D and δ K were estimated by[START_REF] Chen | Experimental identification and validation of a probability model addressing model uncertainties in structural dynamics: case of composite sandwich panels[END_REF]) using the method presented inSoize (2003a and[START_REF] Capiez-Lernout | Data and model uncertainties in complex aerospace engineering systems[END_REF] and yields δ M = 0.23, δ D = 0.43 and δ K = 0.25 for random matrices [M n ], [D n ] and [K n ] (these values are independent of dimension n of the stochastic reduced model). (I) Confidence region prediction for the FRF and experimental comparisons.Figure 8 displays the confidence region prediction for the random cross-frequency response functions between the driven point and the observation point, computed with n s = 2000 realizations for the Monte Carlo numerical simulation and n = 200 (mean-square convergence is reached for these values).
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  Figure 8 displays the confidence region prediction for the random cross-frequency response functions between the driven point and the observation point, computed with n s = 2000 realizations for the Monte Carlo numerical simulation and n = 200 (mean-square convergence is reached for these values).
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 8 Figure 8. Confidence region prediction for the random cross-FRF. Horizontal axis: frequency in Hertz. Vertical axis: log 10 of the modulus of the acceleration in m/s 2 . Experimental cross-FRF corresponding to the 8 panels (8 thin solid lines). Numerical cross-FRF calculated with the reduced