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Abstract

The purpose of this communication is to present a hybrid method to simulate the transient

elastic waves over a short time in multilayer semi-infinite media subjected to given transient

loads. The medium is constituted of a finite number of unbounded layers with finite thick-

nesses. We present a method avoiding usual numerical difficulties for such a problem. The

proposed method is based on a time domain formulation associated with a 2D-space Fourier

transform for the two infinite dimensions and using a finite element discretisation for the third

finite dimension. An example is presented for a three layers system constituted of an elas-

tic solid layer sandwiched between two acoustic fluid layers and excited by an acoustic line

source located in one of the two acoustic fluid layers.

INTRODUCTION

The purpose of this communication is to present a hybrid method to simulate the transient

elastic waves over a short time in multilayer semi-infinite media subjected to given transient

loads. The medium is constituted of a three unbounded layers with finite thicknesses. This

boundary value problem can usually be solved in the frequency domain (Fourier transform

with respect to the time domain) and in the spectral domain (Fourier transform with respect

to the space domain) using the Green functions (see for instance [1, 2, 4, 5, 7, 9]).

Another usual approach (see for instance [3, 6, 8]) consists in solving the problem

in the frequency domain and in the 2D-spectral domain (corresponding to the two infinite



dimensions) and solving the boundary value problem in the 1D-space domain corresponding

to the third finite dimension (direction transversal to the layers). Such a method can induce

numerical difficulties which can be avoided by using an adapted algebraic formulation which

can be stricky to be implemented (see for instance [3]).

In this paper, we propose an alternative approach. Since we are interested in the calcu-

lation of the transient response of the system over a relatively short time, the numerical cost

is smaller in solving directly the problem in the time domain. It should be noted that the use

of a Fourier transform to go in the frequency domain would require the calculation on a broad

frequency band increasing the numerical cost.

Therefore, we present a method avoiding these difficulties. It is based on a time domain

formulation associated with a 2D-space Fourier transform for the two infinite dimensions and

using a finite element discretisation for the third finite dimension.

First, the boundary value problem is written in 1D-space and 2D-spectral domains with

a time domain formulation. The weak formulation of the 1D-boundary problem is introduced.

Then the finite element approximation for the 1D-space is constructed. An implicit time inte-

gration scheme is used for solving the differential equation in time. The 3D-space solution in

time is then obtained by an inverse 2D-space Fourier transform. An example is presented for

a three layers system constituted of an elastic solid layer sandwiched between two acoustic

fluid layers and excited by an acoustic line source located in one of the two acoustic fluid

layers.

3D AND 1D BOUNDARY VALUE PROBLEMS

3D Boundary value problem in the 3D-space with a time-domain formulation

We consider a three-dimensional multilayer system composed of one elastic solid layer sand-

wiched between two acoustic fluid layers (see Fig. 1). Let (O, e1, e2, e3) be the Cartesian

frame of reference and (x1, x2, x3) be the coordinates of the generic point x in (O, e1, e2, e3).

The thicknesses of the layers are denoted by h1, h and h2. The first acoustic fluid layer oc-

cupies the open unbounded domain Ω1 , the second acoustic fluid layer occupies the open

unbounded domain Ω2 and the elastic solid layer occupies the open unbounded domain Ω.

Let ∂Ω1 = Γ1 ∪ Γ0, ∂Ω = Γ0 ∪ Γ and ∂Ω2 = Γ ∪ Γ2 (see Fig. 1) be respectively the

boundaries of Ω1, Ω and Ω2 where

Γ1 = {x1 ∈
 

, x2 ∈
 

, x3 = z1}

Γ0 = {x1 ∈
 

, x2 ∈
 

, x3 = 0}

Γ = {x1 ∈
 

, x2 ∈
 

, x3 = z}

Γ2 = {x1 ∈
 

, x2 ∈
 

, x3 = z2}

in which z1 = h1, z = −h and z2 = −(h + h2). Therefore, the domains Ω1, Ω and Ω2

are unbounded along the transversal directions e1 and e2 whereas they are bounded along the

vertical direction e3.
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Figure 1: Geometric configuration

The displacement field of a particle located in point x of Ω and at time t > 0 is denoted

by u(x, t) = (u1(x, t), u2(x, t), u3(x, t)). For all x belonging to Ω1 and for all time t > 0, the

disturbance of the pressure of the acoustic fluid layer occupying the domain Ω1 is denoted by

p1(x, t). The boundary value problem for this acoustic fluid layer is written as

1

c2
1

∂2p1

∂t2
− ∆p1 =

∂Q

∂t
, x ∈ Ω1 (1)

p1 = 0 , x ∈ Γ1 (2)

∂p1

∂x3
= −ρ1

∂2u3

∂t2
, x ∈ Γ0 (3)

where c1 and ρ1 are the constant speed of sound and the mass density of the fluid at equilib-

rium, ∆ is the Laplacian operator with respect to x and Q(x, t) is the acoustic source density

at point x = (x1, x2, x3) and at time t > 0.

The displacement field u of the solid elastic medium occupying the domain Ω verifies

the following boundary value problem,

ρ
∂2u

∂t2
− div  = 0 , x ∈ Ω (4)

 n = −p1 n , x ∈ Γ0 (5)

 n = −p2 n , x ∈ Γ (6)

in which ρ is the mass density and  (x, t) is the Cauchy stress tensor of the solid elastic

medium at point x and at time t > 0, n is the outward unit normal to domain Ω and div is the

divergence operator with respect to x. The constitutive equation of the solid elastic medium is

written as

 (x, t) =

3∑

i,j,k,h=1

aijkh(x)εkh(x, t) ei ⊗ ej (7)



in which
∑3

i,j,k,h=1 aijkh(x)ei ⊗ ej ⊗ ek ⊗ eh is the elasticity tensor of the medium and

εkh = 1
2(∂uk

∂xh
+ ∂uh

∂xk
) is the linearized strain tensor. It is assumed that the components aijkh(x)

depend only on x3. We then have aijkh(x) = aijkh(x3).

For all x belonging to Ω2 and for all time t > 0, the disturbance p2(x, t) of the pressure

of the acoustic fluid occupying the domain Ω2 is such that

1

c2
2

∂2p2

∂t2
− ∆p2 = 0 , x ∈ Ω2 (8)

p2 = 0 , x ∈ Γ2 (9)

∂p2

∂x3
= −ρ2

∂2u3

∂t2
, x ∈ Γ (10)

where c2 and ρ2 are the constant speed of sound and the mass density of the fluid at equilib-

rium.

Futhermore, the system is at rest at time t = 0. Consequently, we have

p1(x, 0) = 0 , x ∈ Ω1 ∪ ∂Ω1 (11)

u(x, 0) = 0 , x ∈ Ω ∪ ∂Ω (12)

p2(x, 0) = 0 , x ∈ Ω2 ∪ ∂Ω2 (13)

1D Boundary value problem in the 2D-spectral domain with a time-domain formulation

For all x3 fixed in ]z2, z1[, the 2D-Fourier transform of an integrable function (x1, x2) 7→

f(x1, x2, x3) on
 2 is defined by

f̂(k, x3, t) =

∫

 
2

f(x1, x2, x3, t) ei(k1 x1+k2 x2)dx1 dx2

in which k = (k1, k2) belongs to
 2. Applying the 2D-Fourier transform to Eqs. (1) to (13)

yields the 1D boundary value problem of the system in the 1D space domain with a 2D-

spectral and time domains formulation. Such a boundary value problem is written with respect

to the functions p̂1, û and p̂2 which are respectively the 2D-Fourier transforms of functions

p1, u and p2.

WEAK FORMULATION AND FINITE ELEMENT MODEL

Weak formulation of the 1D boundary value problem

Let C1 and C2 be the function spaces constituted of all the sufficiently differentiable complex-

valued functions x3 7→ δp1(x3) and x3 7→ δp2(x3) respectively, defined on ]0, z1[, ]z2, z[. We

introduce the admissible function spaces C1,0 ⊂ C1 and C2,0 ⊂ C2 such that

C1,0 = {δp1 ∈ C1; δp1(z1) = 0} (14)

C2,0 = {δp2 ∈ C2; δp2(z2) = 0} (15)



Let C be the admissible function space constituted of all the sufficiently differentiable func-

tions x3 7→ δu(x3) from ]z, 0[ into
 3.

The weak formulation of the 1D boundary value problem is written as : for all k fixed

in
 2 and for all fixed t, find p̂1(k, ·, t) ∈ C1,0, û(k, ·, t) ∈ C and p̂2(k, ·, t) ∈ C2,0 such that,

for all δp1 ∈ C1,0, δu ∈ C and δp2 ∈ C2,0,

a1

(
∂2p̂1

∂t2
, δp1

)
+ b1(k, p̂1, δp1) + r1

(
∂2û

∂t2
, δp1

)
= f1(δp1, t) , (16)

a

(
∂2û

∂t2
, δu

)
+ b(k, û, δu) + r2(δu, p̂2) − r1(δu, p̂1) = 0 , (17)

a2

(
∂2p̂2

∂t2
, δp2

)
+ b2(k, p̂2, δp2) − r2

(
∂2û

∂t2
, δp2

)
= 0 , (18)

in which the overline denotes the complex conjugate, where a1 and b1 are positive-definite

and positive sesquilinear forms on C1 × C1, the sesquilinear form r1 is defined on C × C1, the

antilinear form f1 is defined on C1, the sesquilinear forms a2 and b2 are positive-definite and

positive on C2 × C2, the sesquilinear form r2 is defined on C × C2, the sequilinear form a is

positive-definite on C × C and finally, the sesquilinear form b is defined on C × C.

Finite element discretisation of the 1D boundary rvalue problem

Let p̂1(k, t), v̂(k, t) and p̂2(k, t) be the complex vectors of the nodal values of the functions

x3 7→ p̂1(k, x3, t), x3 7→ û(k, x3, t) and x3 7→ p̂2(k, x3, t) related to the finite element

mesh of the domain [z2, z1] which is constituted of νtot nodes. The finite elements used are

Lagrangian 1D-finite element with 3 nodes. For all k fixed in
 2 and for all fixed t, the finite

element discretisation of the weak formulation of the 1D boundary value problem yields the

following linear system of equations

[A1] ¨̂p1 + [B1(k)] p̂1 + [R1] ¨̂v = f1(t) (19)

[A] ¨̂v+ [B(k)] v̂ + [R2]
T
p̂2 − [R1]

T
p̂1 = 0 (20)

[A2] ¨̂p2 + [B2(k)] p̂2 − [R2] ¨̂v = 0 (21)

in which the double dots mean the second derivative with respect to t and where Eqs. (19),

(20) and (21) are on
 ν1 ,

 ν and
 ν2 respectively. These three equations can be rewritten as

[ ! ] ¨̂" + [ # (k)] "̂ = $ (t) (22)

in which "̂ (k, t) = (p̂1(k, t), v̂(k, t), p̂2(k, t)) belongs to
 ν1+ν+ν2 .

Finite element solution in the 3D-space domain with a time-domain formulation

Let "̂ n,m,ℓ = (p̂n,m,ℓ
1 , v̂n,m,ℓ, p̂

n,m,ℓ
2 ) be the solution of Eq. (22) at time t = n∆t, with k1 =

m∆k1 and k2 = ℓ∆k2 for n = 0, . . . ,N , for m = −M, . . . ,M −1 and ℓ = −L, . . . , L−1.

The implicit inconditionaly stable Newmark scheme is used in order to solve the differential

equation (22) in time. Let " n,m,ℓ = (pn,m,ℓ
1 , vn,m,ℓ, p

n,m,ℓ
2 ) be the vector of the nodal values of



x3 7→ p1(x1, x2, x3, t), x3 7→ u(x1, x2, x3, t) and x3 7→ p2(x1, x2, x3, t) related to the finite

element mesh of the domain [z2, z1] at time t = n∆t with x1 = m∆x1 and x2 = ℓ∆x2 for

n = 0, . . . ,N , for m = −M, . . . ,M − 1 and for ℓ = −L, . . . , L − 1. We then have

 n,m,ℓ =
∆k1∆k2

4π2

M−1∑

p=−M

L−1∑

q=−L

 ̂ n,p,qe−i (p m ∆k1∆x1+q ℓ∆k2∆x2) (23)

which can be evaluated by using a 2D Fast Fourier Transform.

NUMERICAL EXAMPLE

In order to show the efficiency of the method, we present a numerical example for which the

first acoustic fluid layer is excited by an acoustic line source located at positions x1 = xS
1 ,

x3 = xS
3 and x2 ∈

 
where xS

1 and xS
3 are given parameters of the problem (see Table 1).

Such an acoustic line source is modelled by an acoustic source density Q (see Eq. (1)) such

that

∂Q

∂t
(x, t) = sin(2πfct)e

−4(t fc−1)2δ0(x1 − xS
1 )δ0(x3 − xS

3 ) .

For such an acoustic line source, p1, u and p2 do not depend on variable x2. Consequently,

the 3D formulation presented above is restricted to the 2D case.

It is assumed that the domain Ω related to the solid layer is constituted of an elastic

transverse isotropic medium for which the longitudinal Young modulus is denoted by EL,

the transversal Young modulus by ET , the longitudinal shear modulus by GL, the transversal

shear modulus by GT , the longitudinal Poisson coefficient by νL and the transversal Poisson

coefficient is denoted by νT . The numerical values of these mechanical parameters are given

in Table 1. The parameters for the numerical method are presented in Table 2.

h1 10−2m h 4 × 10−3m h2 10−2m

ρ1 1000 Kg.m−3 ρ 1722 Kg.m−3 ρ2 1000 Kg.m−3

c1 1500 m.s−1 EL 16.6 GPa c2 1500 m.s−1

fc 1 MHz ET 9.5 GPa

xS
1 0 GL 4.7 GPa

xS
3 2 × 10−3m GT 3.3 GPa

Table 1. Values of the mechanical parameters

Let vm(x, t) be the von Mises stress at point x ∈ Ω and at time t. Figure 2 shows the

graph of functions (x1, x3) 7→ p1(x1, x2, x3, t), (x1, x3) 7→ vm(x1, x2, x3, t) and (x1, x3) 7→

p2(x1, x2, x3, t) for any x2 fixed in
 
and at t = 0.6µs (Fig. A), t = 1.075µs (Fig. B),

t = 1.475µs (Fig. C), t = 3.15µs (Fig. D), t = 4.775µs (Fig. E), t = 7.3µs (Fig. F),

t = 7.875µs (Fig. G), t = 10.725µs (Fig. H). For this simulation, the total CPU time is 140 s

using a 3.8 MHz Xeon processor. Such a CPU time represents a very low computational cost

with respect to a full finite element computation.
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Figure 2: Wave propagation in the three layers (pressure field in the fluid layers and

von Mises stress field in the elastic layer) at t = 0.6µs (Fig. A), t = 1.075µs (Fig. B),

t = 1.475µs (Fig. C), t = 3.15µs (Fig. D), t = 4.775µs (Fig. E), t = 7.3µs (Fig. F),

t = 7.875µs (Fig. G), t = 10.725µs (Fig. H).

∆k1 ∆x1 M ∆t N νh1
νh νh2

4.8828 0.3 × 10−3 2048 2.5 × 10−8 432 101 82 101

Table 2. Values of the numerical method



CONCLUSION

We have presented a method to simulate the transient elastic waves over a short time in multi-

layer semi-infinite media subjected to given transient loads. First, the boundary value problem

is rewritten in the 1D-space domains with 2D-spectral and a time domains formulation by ap-

plying a 2D-space Fourier transform to the usual 3D boundary value problem. The weak

formulation of such a 1D boundary value problem and the corresponding finite element dis-

cretisation have been constructed. The differential system of equation is solve in time by

using the implicit inconditionaly stable Newmark scheme. A numerical example has been

presented. Even if this numerical example is restricted to the 2D case of the method, it can be

seen that the proposed method is very efficient and well adapted to the numerical simulation

of transient elastic waves in multilayer systems. This method can easily be extended to the

study of viscoelastic transient waves in multilayer media.
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