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Nonparametric stochastic modeling of linear systems with prescribed 
variance of several natural frequencies

M.P. Mignolet 
Arizona State University, Tempe, AZ 85287-6106, USA 

C. Soize 
Université de Marne-la-Vallée, 77454 Marne-la-Vallée, France 

ABSTRACT: A complete probabilistic model of random positive definite matrices is developed that incorpo-
rates constraints on the standard deviations of a set of its eigenvalues. The model is in particular applicable 
to the representation of the mass and stiffness matrices of random dynamic systems of which certain natural 
frequencies are observed. The model development is based on the maximization of the entropy under a set of 
constraints representing the prescribed eigenvalue standard deviations, the mean matrix being given, and the 
existence of the mean Frobenius norm of the inverse of the random matrix. The efficient simulation of samples 
of random matrices according to the proposed model is discussed in detail. Finally, examples of application 
validate the above concepts and demonstrate the usefulness of the proposed model. 
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1 INTRODUCTION 

The stochastic modeling and simulation of random 
multi degree of freedom systems has often in the past 
been accomplished by postulating joint probability 
density functions of the components of their mass, 
stiffness, and/or damping matrices or, equivalently, 
of their corresponding natural frequencies, damping 
ratios, and mode shapes (e.g., Ghanem and Spanos, 
1991; Kleiber et al., 1992; Rivas-Guerra and Mignolet, 
2004; Schueller, 1997). However, a different approach 
has recently been proposed (Soize, 2000; 2001) and 
validated (see Soize, 2005, for a review) in which 
the probabilistic model of the mass, stiffness, and/or 
damping matrices is not assumed but rather determined 
to maximize the entropy under the constraints (i) that 
these matrices are positive definite, (ii) that their mean 
values are prescribed, and (iii) of an overall measure 
of variation (variance of the norms of the matrices 
prescribed). This approach, which has been named 
nonparametric since no parameter value is selected by 
the user, is applicable to a broad range of applications in 
which little is known about the variability of the system. 
This approach will be referred to as unconstrained in 
the remainder of this paper. 

There are many other situations as well in which more 
information is known about the variations of the system. 
For example, some routine testing may be done on at 
least part of the system (e.g., blades in turbomachinery 
applications) or an extensive testing may be performed 
on a small sample to better understand an observed 
problem or avoid one from occurring. Such testing 
often focuses on the natural frequencies and thus yields 

estimates of their means and variances. Since the mean 
natural frequencies are likely to be close to the values 
obtained for the design configurations, it is typically 
the variances which provide the best information about 
the system randomness.

In this light, the goal of the present investigation 
is to extend the formulation of the nonparametric 
approach to allow for additional constraints on the 
standard deviations of some of the eigenvalues of the 
mass, damping, and/or stiffness matrices. This novel 
approach will be referred to as constrained in the 
remainder of the paper.

Note that the expected domain of application of 
these concepts is the low frequency range in which the 
natural frequencies distinguishable and observable.

2 ENTROPY MAXIMIZATION AND 
CONSTRAINTS

It is desired here to simulate realizations of symmetric 
positive definite random matrices, e.g. the mass and/
or the stiffness matrix of a linear dynamic system, the 
properties of which, i.e., eigenvalues, eigenvectors, 
components, etc., are all random. This requirement 
necessitates the specification of the joint probability 
density function of all elements of the matrix. In 
most practical problems, however, this information is 
not available – only some moments and/or marginal 
probability density functions are likely to be available. 
In the absence of the exact distribution, it is then 
appropriate to ask what are the desirable features of 
this distribution. In this context, note that the design 
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of structural systems is often robust, i.e., that small 
perturbations in their geometrical and material 
properties do not alter significantly the probability 
of failure/fatigue life of the system considered (see 
Rivas-Guerra and Mignolet, 2004 for a notable 
counterexample in turbomachinery). It is thus 
desirable to dispose of a probabilistic model which 
places particular emphasis on “larger” deviations 
from the design conditions. Equivalently, this model 
should have a large value of the entropy.

Consistently with the above discussion, a prob-
abilistic model of uncertain nxn matrices A

=
 has been 

formulated (Soize, 2000; 2001) to maximize the value 
of the entropy S

S p a a da
A A

= −∫
Ω

( ) ( )1n p
 

(1)

given the following physical constraints:

p a daA

Ω
∫ =( ) 1  (2)

E[ ] ( )A a p a da A
A

= =∫
Ω  

(3)

and

1n[det( )] ( )a ap da finite
A

Ω
∫ = ν  (4)

where E[.] denotes the operation of mathematical 

expectation, p aA( )  is the joint probability density 

function of the elements of A
=

, and det (A
=

) is its 

determinant. 
The first two of the above constraints correspond 

to the normalization of the total probability to 1 
(Eq. (2)) and the specification of the mean matrix 
(Eq. (3)). The third one, Eq. (4), implies the existence 
of the mean squared Frobenius norm of the inverse 
matrix A

= 
–1 (see Soize (2000, 2001) for discussion). 

To apply this approach to the simulation of random 
mass, stiffness, and damping matrices of dynamical 
systems, it is further required to ensure both the 
symmetry and positive definiteness of every realized 
matrix A

=
. This is achieved by introducing the Cholesky 

decomposition of A
=

 i.e., 

A LL
T

= ɶɶ  (5)

where ɶL  is an lower triangular matrix with non-
negative diagonal elements and T denotes the opera-
tion of matrix transposition. The domain of support 

Ω of the obtained probability density function is then 
such that the elements ɶL

ij
 belong to (−∞, + ∞) 

for i ≠ j and [0,+ ∞] for i = j i.e., 

Ω = ={ =

−∞ +∞( ) >

a LL L i j n

L i j

T

ij

ij

; , , ,..., :

, ,

ɶ

ɶ

1

∈

 +∞( )



}∩ ∈ɶL

ii
0,

Not only have the theoretical aspects of this 
formulation been discussed extensively but it also 
been broadly validated and applied (see Soize 
(2005) for a review). Note in the above approach 
that the level of uncertainty is controlled by the 
single parameter ν so that only a broad knowledge 
of the matrix uncertainty needs to be known. In 
some situations however, e.g., when considering 
insertable turbomachinery blades, tests may have 
been performed that provide more information on 
the system variability. In the context of structural 
dynamics, such tests will often focus on the natural 
frequencies of the system and would result in 
estimates of the variance of the first few natural 
frequencies. In such circumstances, it is highly 
desirable to dispose of a probabilistic model of 
the corresponding mass and stiffness matrices that 
accurately accounts for this information. If only 
one natural frequency is observed, its variance as 
estimated by the tests can serve for the determination 
of the parameter ν, Eq. (4), corresponding to the 
mass and/or stiffness matrix model. However, to 
account for two or more variances, it is necessary 
to extend the formulation of Eqs. (1)–(4) by 
introducing additional constraints that can reflect 
the knowledge on the natural frequencies. To 
address this extension, consider the generalized 
eigenvalue problems

A B A B
i i i i i

ϕ λ ϕ φ λ φ= =and  i
ɶ

 
(6), (7)

 

where B
=

 is a deterministic symmetric, positive definite 
matrix. In the ensuing discussions, it will be assumed 
that the eigenvectors ϕ

i  and φ
i
 are normalized with 

respect to B
=

 so that

ϕ ϕ ϕ
T

i
i

T

i
i i

B A= =1 ϕ λ
 

(8)

and

φ φ φ φ λΤ Τ

i i
B A

i i i
 =1 = ɶ .

 
(9)

Constraining the variance of the eigenvalues 
λ

i
 directly is unfortunately extremely challenging 

because of the lack of an exact expression for the natural 
frequencies of the random matrix A

= 

. Accordingly, an 
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indirect approach will be selected here which relies 
on simple constraints that are akin to the second 
order moments of the eigenvalues. More specifically, 
it will be assumed that

E A a a a s
i

T

i i

T

i A i i
( ) ( ) (φ φ φ φ λ2

2
2

2



 =∫=

Ω

p d) ɶ
 (10)

where s
i 
, i ∈ Ι ⊆ [1, n], are m known positive constants 

and φ
i  are the eigenvectors of the mean matrix

A
=
–
 corresponding to the m eigenvalues of which the 

variance is known. For example, if the variances of 
the three lowest eigenvalues of A

=
 have been estimated, 

then φ
i
 

will similarly be the eigenvectors of the 
mean matrix A

=
–
 corresponding to its three lowest 

eigenvalues. 
Several comments can made in regards to the 

constraints of Eq. (10). First, these conditions 
involve second order moments, not variances, but 
this switch is appropriate because the mean values 
of ( )φ φ

i

T

i
A  are already prescribed by Eq. (3). Next, as 

discussed above, these conditions do not generally 
relate exactly to the natural frequencies of the random 
matrix A

=
 , but they do so when its eigenvectors are 

the same as those of its mean A
=
–
. Finally, it should 

be noted that the specification of the constraints of 
Eq. (10) provides freedom in the probabilistic model 
of the random matrix A

=
 which can be used to match 

the known variances of the natural frequencies. This 
last issue will be discussed in more details further. 

3 PROBABILISTIC MODEL DERIVATION 

Following the discussions of the previous sections, 
the proposed probabilistic model p a

A
( )  maximizes 

the entropy, S of Eq. (1), under the constraints 
of Eqs. (2)–(4) and (10) as well as the symmetry 
and positive definiteness requirement of Eq. (5). 
Using Lagrange multipliers, µ

0
, µ

=
 λ−1, and ɶτ

i
 the 

constrained maximization of Eq. (1) is reduced to the 
unconstrained maximization of

S S p a a ap a da
A

T

A

∗= −








∫ ∫−

Ω

µ
0

( ) ( )d tr ɶµ
Ω






+ −( ) 





−

∫

∑
∈

λ 1 1n

Ω

det( )a p a a
A

i
i I

( ) d

ɶτ (( )φ φ
i

T

i A
a p a da2

Ω
∫ ( )

 

(11)

Proceeding next by calculus of variations, it is shown 
that

p a C a a a
A

T

i i

T

i
( ) [det( )] exp ( )= −ɶ ɶ ɶ

λ− φ1 µ −tr ( ) τ φ
ii I∈
∑













2

 (12) 

where C
~

 is the appropriate normalization constant to 
satisfy the normalization condition, Eq. (2). It should 
be noted from Eq. (12) that this probabilistic model 
is independent of a rotation/change of coordinate 
system as the vectors φ

i
 are fixed in space. 

Before addressing the evaluation of the Lagrange 
multipliers, it is desired to simplify Eq. (12) and to 
address the positive definiteness requirement. In  
regards to simplifications, introduce first the matrix 
L
=
– such that

A LL L
T T

= =
















and Φ Λɶ
1 2

0

/

 (13a,b)

where Φ  denotes the nxm matrix formed by the m 
eigenvectors φ

i
i I, ,∈  and ɶΛ  is the corresponding 

diagonal matrix of eigenvalues. Note that the condition 
of Eq. (13b) is introduced to simplify the constraints 
of Eq. (10) as will be shown below. From Eqs. (6)–(9), 
it can be proved that L

=

–
 can be expressed in the 

partitioned form

L = 






−
A DΦ ɶΛ

1 2/

 (14)

where the nx(n – m) matrix D  is any decomposition, 
e.g. Cholesky, of

D D A A A
T T

= −
−

Φ ΦɶΛ
1

. (15)

Pre- and postmultiplying Eq. (15) by Φ
T

 and Φ,, 

respectively, it is found that D
T
Φ = 0  as required in 

Eq. (13b).
Next, express the random matrix A

=
 as

A L G L
T

= .
 

(16)
 

Proceeding with this change of random variables, it 
is found that the probability density function of the 

elements of G  is

p g C g g g
G

T

i ii
i

( ) det( ) exp= 





− −−

=

λ τ1 2

1

tr( )µ
mm

∑










 (17)

where C is a new normalization constant,

µ µ= =L L
T

i i i
ɶ ɶ ɶ ɶand τ τ λ2 .

To guarantee the symmetry and positive definite-
ness of G, and thus of A  the model of Eq. (17) is 

reformulated in terms of the elements of the lower 
triangular matrix H  such that

G H H
T= .  

(18) 
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As demonstrated in Soize (2000), the Jacobian of the 
transformation and the resulting distribution are

J hn

l

n

ll

n l=
=

− +2
1

1Π  (19)

p h C h
H l

n

ll

n l( )

exp

=










× −

=

− + −Π
1

2 1λ

trr h h h
T T

i

m

i il
l

i

µ τ( )−

















= =
∑ ∑

1

2

1

2











 
(20)

where C is the appropriate normalization constant 
over the domain

Ω
− 

= {h
ij
, i, j = 1,..., n : [h

ij
 ∈ (−∞, ∞), i > j]

    ∩[h
ij 
∈ +[0, +∞)]}.

To evaluate the Lagrange multipliers µ and τ
i
, 

it is necessary to first express the constraints of 
Eqs. (3) and (10) in terms of the elements of the 
random matrix H . Combining Eqs. (3), (16), and 

(18), it is found that 

E G I
n





 =  (21)

where I
n
 denotes the n × n identity matrix. The sim-

plicity of this condition implies an equally simple 
form of the matrix µ Specifically, it will be shown 

that this matrix is diagonal. Under this assumption, 
Eq. (20) reduces to 

p h C h hH
i

m

i ii

p i

ii il

l

i

( ) exp( )= −







=
=

∑Π
1

2

1

µ −






























=
∑τi il

l

i

h
2

1

2













× −
= +
Π

i m

n

i ii

p i

ii iiC h h
1

2( ) exp µ



{ }× −


{ }

= + =

−

Π Π
i m

n

l

i

il ii ilC h
1 1

1
2exp µ

 (22)

where C
i
, i = 1,..., n, and C

il
, i = m + 1,..., n; l = 1,...,

i −1, are appropriate normalization constants and 

( ) 2 1.p i n i= − −+ λ  (23)

It is concluded from Eq. (22) that: 

   (i)  the elements h
ii
,i > l and i > m are all indepen

dent of each other and independent of the 
other elements hil .  Further, they are normally 
distributed with mean 0 and standard deviation 
σ

il ii
= −( ) ./2 1 2µ

  (ii)  the elements h
ii
, i > m, are all independent of 

each other and independent of the other elements 
hil . Further, they are distributed according to

p h C h h h
H ii i ii

p i

ii ii ii
ii

( ) exp ,( )= −

 ≥µ 2 0  (24)

where C p i
i ii

p i= ++



2 1 2

1 2µ ( ) /
/ (( ( ) ) / )Γ  (25) 

and Γ(.)  denotes the Gamma function. 
(iii)  the elements, h

il 
, l = 1,..., i for a given i ∈ [l, m] 

are dependent on each other but independent of 
the other elements h

il
. Their joint distribution is

p h C h h
Hil il i ii

p

ii il
l

i

( ) exp( )= −







=
∑i µ 2

1


























=

∑−τ
i il

l

i

h2

1

2

over the domain 
(26) 

Ωi
il il

i

h l i h i l

h

= = ∈ −∞ +∞ >

∩

{ , ,..., : [ ( , ), ]

[

1

ii
∈ +∞[ , )]}.0

From the first observation, (i), it is concluded that 
E[G

il
] = 0 for i > l and i > m. Further, the observation 

(iii) and the symmetry of the distribution of Eq. 
(26) with respect to the origin imply similarly that 
E[G

il
] = 0 for i > l and i ≤ m. It then remains to 

satisfy the diagonal terms of the mean condition, Eq. 
(21). For i > m,

E G E H i E H
ii il

l

i

ii

ii




 = = 



 = − +

=
∑1 1

1

2

2

1

( )
µ

22





 (27) 

where E H
ii

2



  is obtained by integration of Eq. (26) as 

( ( ) ) / .p i ii+1 2µ  Combining this result and Eqs. (25) 
and (27), it is found that 

µ
ii

= + − >( ) / .n i m2 1 2λ for  (28) 

At this point, it only remains to determine the 
Lagrange multipliers µii  and τi for i m∈ [ , ].1  This step 
is achieved by enforcing the conditions

E G
ii





 =1 (29)

and Eq. (11) or E G s
ii i

2 2



 =  (30) 

for i ≤ m To this end, it is useful to proceed with 
the following change of variables that highlights the 
random element G

ii

G H H G
ii il

l

i

ii ii i
= =

=
∑ 2

1
1

, cosΘ  (31),(32) 

H Gi i ii i i( ) sin cos− =1 1 2Θ Θ  (33) 

H G
i i ii i i i( )

sin sin cos− =
2 1 2 3

Θ Θ Θ  (34)

H G
i ii i i i i1 1 2 1

= −sin sin ...sin
( )

Θ Θ Θ  (35)

where Θ Θ
i il

l i
1

0 2 0 2 2∈ ∈ = −[ , / ], [ , ], ,..., ,π π  and  

Θi i( ) [ , ).− ∈1 0 2π  The Jacobian of this transformation 

can be found (e.g. see Soize, 2000) to be
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J
g

ii

i

i

i

i

i'
( )

| | | sin | |

/

=
2

2 1

1

2

2

3

−

− −sin ... sinθ θ θθ
i i( )

|−2  (36) 

Then, the joint probability density function of G
ii
 and 

Θ
il
, l = 1,..., i − 1, is

p g C g g
G ii il i ii

n

ii i
ii il

Θ
λ µ( , ) exp( ) /θ = −+ −1

2

2 3 2

ii i ii

i

i

i

p i

g−





× 



 ×−

τ 2

1

2

1
| sin | cos |

( )

θ θ ssin | ... | sin | .
( )

θ θ
i

i

i i2

3

2

−
−

 (37)

The above expression demonstrates that the random 
variables G

ii
 and Θ

il 
,l = 1,..., i − 1, are all independent 

of each other and that the joint probability density 
function of the angles , Θ

il 
,l = 1,..., i − 1, does not 

depend on the values of τ
i
. This important observation 

will be used in the next section. Further, the marginal 
distribution of G

ii 
is 

p g C g g g
G ii i ii ii ii i ii

ii

n( ) exp( ) /= + λ− −µ −2 3 2 2τ

  (38)

where g
ii
 ≥ 0 For each value of i, the two parameters 

µ
ii 

and τ
i
 are then finally solved from the constraints 

given by Eqs. (29) and (30). 

4 SIMULATION OF RANDOM MATRICES 

The simulation of random matrices A
=

 according to the 
model derived above is achieved by first generating 

random matrices H according to the joint distributions 

of Eqs. (22), (24), (26), (37) and (38). Once a sample 

of H  has been generated, the corresponding matrix 

G  is determined from Eq. (18) and, finally, a 
realization of A

=
 is obtained from Eq. (16). Thus, the 

simulation effort reduces to the generation of appro-

priate samples of H . From the observations drawn 
in the previous section, it is concluded that there 
are, besides the simulation of the Gaussian variates 
H

il 
, i > m and i > l, three particular issues. These 

are: (i) the generation of the diagonal elements 
H

ii 
, i > m according to the distribution of Eq. (24),

(ii) the simulation of the ratios H G i m,iiil / , ≤  
described by the angular variables in Eqs (32)–(37),
and (iii) the generation of samples of G

ii
, i ≤ m, 

according to Eqs. (38). These three issues are 
addressed below. 

4.1 Simulation of H
ii 
, i > m 

The generation of samples of H
ii
 is simplified by 

considering the variable Y Hii

2= µ ii ii .  
Proceeding with 

the change of variables, it is found that the probability 
density function of Y

ii
 is 

p y
y

p i
y

Y ii

ii

p i

ii

( )
( ( ) ) /

exp

( ( ) ) /

=
+





−
−1 2

1 2Γ iii ii
y



 ≥, .0  (39) 

Accordingly, it is found that Y
ii
 is a Gamma distributed 

random variable for which efficient simulation 
algorithms exist, e.g. see Devroye (1986). Once a 
sample of Y

ii
 has been simulated according to the 

Gamma distribution, the corresponding value of 
H

ii 
,i > m, is found as

H Y
ii ii ii

= / µ  
(40) 

where µ
ii
 is given by Eq. (28). 

4.2 Simulation of H G m i
il ii
/ , , ,...,i ≤ =l 1

A first approach for the simulation of the random 

variables H G l i
il ii/ , ,..., ,= −1 1  and i ≤ m, is to 

proceed from the generalized spherical coordinates 
transformation of Eqs. (32)–(35) and to generate 
independent angles Θ

il 
,l = 1,..., i−1, according to the 

distributions 

p
i

i i i

i

i

p i

Θ
1

1 1 1

2

1
( ) | sin | [cos ] ( )θ θ θ= −ɶC  (41)

and p
il il il il

i l
Θ θ( ) | sin |= − −ɶC θ 1

 (42)

with, θ θ
i il1

0∈ [0 2] [ ], / , ,π π∈  for l = 2,..., i = 2 and 
θ

i i( )
[ , ]−1
0 2∈ π

 
and where the coefficients ɶC

il  
are 

appropriate normalization constants. 
Note however that the above distributions are non 

standard and thus a different, easier approach was 
selected here. Specifically, it was observed in the 
previous section that the probability density function 
of Eqs. (41) and (42) do not depend on τ

i  and thus
they would be the same for

 
τi = 0. In this case how-

ever, the simulation of the random variables H
il  

is 
completely similar to the case i > m, i.e., the random 
variables, H

il 
, l ≠ i are Gaussian variates with mean

zero and standard deviation 1 / 2µ
ii
 while H Y

il ii ii
= /µ  

where Y
ii
 is a Gamma random variable. Note further 

that the appropriate value of µii  to be used is the one 
given by Eq. (28) to insure the consistency with p(i) of 
Eq. (23). 

In view of these comments, the simulation of the

terms H G l i i m
il ii
/ , ,..., , ,= − ≤1 1 and  can effici-

ently be accomplished as follows: 

(a) generate ɶH
ii

 as

ɶ ɶH Y
ii ii ii

= /µ  (43)

where µii  is given by Eq. (28) and Y
ii
 is a Gamma 

distributed random variable of probability density 
function given by Eq. (39). 
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(b)  generate H
~

il 
, l = 1,..., i−1, as zero mean Gaussian 

random variables with standard deviation 1 / 2µ
ii
.

(c) form ɶ ɶG H
ii

=
=

∑ il
l

i
2

1

 and the desired ratios

H H l
ilil ii ii

G G i/ / ,... .= ɶ ɶ =1 ,  (44) 

4.3 Simulation of G
ii 
, i ≤ m 

The last step in the simulation of the random matrix 
H  is the generation of the diagonal elements G

ii
 

according to their probability density function of 
Eq. (38). This distribution is non standard and thus 
a dedicated simulation algorithm by rejection from 
the Student’s t distribution with 3 degrees-of-freedom  
was devised (see Devroye (1986) for background). 
Such an algorithm requires that there exists a constant 
cθ such that 

p g c p g g
G ii Z ii ii

ii

( ) ( )≤ ≥
θ θ

for all 0  (45)

where pG
ii 

(g
ii
) is defined by Eq. (38) and pZθ 

(g
ii
) is 

the probability density function of Zθ = y
0
 + θZ in 

which Z is a random variable having the Student’s t 
distribution with 3 degrees-of-freedom. i.e., the 
probability density function of Zθ 

is 

p g
g y

Z ii
ii

θ θ θ
( )

( )
/

= +
−









−
1

2 2
1

2

0

2

2

3 2

 (46)
 

for gii ∈   ,− ( )+∞ ∞ . If values of cθ, θ and y
0 
can be found 

for which Eq. (45) holds, then random deviates G
ii 
can 

be generated as

G Z c p Z U p Z
ii Z G

ii

= ≤
θ θ θ θθ

provided ( ) ( ) (47) 

in which U  denotes a random variable uniform in 
the interval [0, 1] and is independent of Zθ. When the 
inequality in Eq. (47) is not satisfied, no sample G

ii
  

is generated. Note further that 1/cθ is the probability 
that this inequality be satisfied, so that cθ represents 
the average number of pairs of samples (Zθ,U ) that 
must be generated per value of G

ii 
to be simulated. 

Accordingly, it is desired to have a value of cθ as close 
as possible to 1.

The Student’s t distribution with 3 degrees-of-
freedom was selected for the random variable Z first 
because it can easily be simulated as 

Z U U U= − −2 1 1 2/ ( )( / )  (48) 

where U is a random number uniformly distributed in 
[0,1]. Another advantage of the Student’s t distribution 
is that it led to values of cθ that remained reasonably 
small, i.e., to efficient simulation algorithms, over 
a broad range of values of the parameters p(i) and 
τi/µii

2 .

 The approach selected here for the determination 
of the parameters cθ, θ, and y

0 
is to force the two 

distributions pG
ii
(g

ii
) and pZθ(gii

) to have their 
respective modes at the same value (g*

ii
) = y

0 
and 

to have pG
ii
(g*

ii
) = cθ pZθ 

(g*
ii
). These 2 conditions 

will provide the values of cθ and y
0 

in terms of θ. 
Specifically, it is found that 

y q
i

ii i ii0

21

4
8= + −( )

τ
τµ µ ≥0

 
(49)

where q n= ( 2 3) / 2.+ −λ   (50) 

and 

c C y y yi

q

θ θ= − −( )2 2 0 0 0

2exp .µii iτ  (51) 

An acceptable simulation algorithm is obtained for 
all values of θ for which the inequality of Eq. (45) is 
satisfied. However, the most efficient of these algo-
rithms is the one that minimizes the corresponding cθ, 
see Eq. (51). The exact solution of this optimization 
problem is difficult to achieve but two good possible 
values of θ are

θ
τ

τ
=

+ ( )
( )

9 12

8

0 0

0

2

y y

y

µ

µ

ii i

ii i

+ 4

+ 4
.  (52)
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0 0

2y w y w w* * */ /
ii i i

τ τ
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where

 

w
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γ

γ
 

(54), (55) 

γ3 3 2 3108= + + +b 8 12 81 12a b ba  (56) 

and a
ii i i ii i

= + = +( )µ µ4
0 0

τ τ τy b y3 2 .  (57) 

A comparison of the simulation algorithms 
based on Eqs. (52) and (53)–(57) has shown that 
the algorithm based on Eqs. (49), (51), (53)–(57) 
performs very well, typically requiring an average of 
1.4 pairs of independent uniform random numbers 
per sample G

ii
 to be simulated. In unusual cases, the 

number of pairs of uniform variates may rise to 3. The 
algorithm based on Eq. (52) in place of Eqs. (53)–(57) 
performs almost as well in the cases of greater prac-
tical interest but may lead to a large simulation effort 
when q is small (e.g., equal 0) and | | /µ

ii i
τ  is typically 

less than 3. 
The simulation of random values G

ii
 according 

to the probability density function of Eq. (38) then 
proceeds as follows. For given values of µ

ii i
and ,τ   

the mode y
0
 is first determined according to 

Eq. (49), and θ
θ

and c C/
i
 are obtained in order from 

Eqs. (52), or (53)–(57), and (51). After this preparation 
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phase, pairs of independent random numbers 
( , )U U  uniform in [0, 1] are simulated. From U, a 
variate Z of the Student’s t distribution is obtained 
from Eq. (48) and the corresponding variable Zθ 

is 
determined as Zθ = y

0 
+

 
θZ. It is next necessary to 

assess if the inequality of Eq. (47) is satisfied.
To this end, the term ( ) ( )c C PZ Z U

iθ θ θ
/  is evaluated 

from the above values of c C
iθ

/ and U  and with 

pzθ(zθ) denoting the value of p(Zθ)(gii
), Eq. (46), for 

g
ii  

= Zθ . The ratio p Z C
Gii i

( ) /
θ

 is similarly obtained 

from Eq. (38). If

( / ) ( ) ( )/ ,c C p Z U p Z Ci Z G i
ii

θ θ θθ

≤  (58) 

a value of G
ii
 is obtained as G

ii  
= Zθ. Otherwise, the 

value of Zθ is rejected and no corresponding sample 
of G

ii
 is generated. Either way, the process is repeated 

starting with the simulation of a new pair of uniform 
random variables ( , )U U  until the appropriate number 
of samples of G

ii
 has been obtained. Note that Eq. (58)

is equivalent to the inequality of Eq. (47) but is 
preferable to it because it does not require the numeri-
cal evaluation of the normalization constant C

i
.

5 IDENTIFICATION OF NONPARAMETRIC 
MODEL PARAMETERS 

5.1 Identification of the parameters λ τ, ,µ
ii i

and

The above derivations have been carried out in terms 
of the parameters λ τ, , ,µ

ii i
and  and but these coeffi-

cients are not part of the original problem statement 
and thus they should, in principle, be evaluated in 
terms of the stated constraints, Eqs. (4), (29), and 
(30). Note in this regard that the constraint of Eq. (4) 
has two aspects: the finiteness of ν  and its specific 
value. The finiteness of ν  guarantees the existence 
of the mean squared Frobenius norm of the inverse 

matrix A
=

–1 
while the specific value of this coefficient 

providing an overall measure of the randomness of the 
matrices A

=
.

Note however that the available information 
about the randomness of the model lies in the stan-
dard deviations of some of its natural frequencies 
and thus it would be desirable to identify all model 
parameters from that information alone. Such an 
approach has already been proposed (Capiez-Lernout 
et al., 2005): the standard deviation of the first natu-
ral frequency was used to evaluate the parameter λ.
of an unconstrained model. A similar procedure is 
accordingly proposed here. Specifically, it will be 
assumed that the standard deviations of m+1 natural 
frequencies are known. Then, one of these standard 
deviation conditions will be used to yield the value 
of λ while the m others will be enforced through 
constraints of the form of Eq. (10). 

To complete this strategy, it remains to determine 
which standard deviation should be singled out and 
used to compute λ. In this regard, it is valuable to 
analyze the behavior of the distribution of Eq. (38) 
as q → ∞ large values of this parameter occur for 
small to moderate system variability. In this limit, it is 
found that a positive value of τ

i
 is obtained only if 

s q
i

2 1 1≤ + / . (59)

In this regard, note that 1 + 1/q is the value of 

E G
2

ii
[ ]

 
obtained from the unconstrained distribution of

Eq. (24) in the same limit of q → ∞. It is thus con-
cluded that the specified value of s

2
i  must be less than 

what would be obtained by the unconstrained model 
with the same λ. This result is in fact not surprising 
since enforcing a higher value of E G

2

ii
[ ]  would lead 

to an increase of entropy over the unconstrained, 
maximum entropy model. 

This result also elucidates the determination of the 
parameter λ.. Specifically, it will be evaluated from 
the standard deviation of the natural frequency which 
amongst the m + 1 prescribed ones has the largest 
value of s

2
i .

 
Practically, this condition is equivalent 

to selecting the natural frequency such that the ratio 
of its standard deviation to the corresponding natural 
frequency of the mean model is largest. Equality will 
be achieved in Eq. (59) for that value of i and the 
corresponding parameter τ

i
 will be zero. 

The above observation that EG2
ii
 = 1 + 1/q for 

the unconstrained model as q → ∞ implies that the 
ratios of the standard deviations of its random natural 
frequencies divided by the corresponding values for 
the mean model are the same, i.e., 1/q, for all natural 
frequencies. Thus, imposing an unconstrained model 
for the rows m + 1 to n of the matrix H  implies 
that the corresponding natural frequencies will have 
the largest standard deviations possible. While this 
condition will lead to the largest value of the entropy, 
it would seem that the observed natural frequency 
of highest rank would provide the best basis for 
forecasting the variations of the unobserved, higher 
rank natural frequencies. Accordingly, it is proposed 
here that the parameters µ

ii
 and τ

i 
obtained for the row 

of H  associated with the observed natural frequency 
of highest rank be used also for the rows corresponding 
to unobserved, higher rank natural frequencies. Thus, 
the standard deviations of these random variables will 
be approximately (for finite value of q) constant as 
the rank increases. 

6 NUMERICAL RESULTS AND VALIDATION

6.1 Examples of application

To exemplify the above developments, a n = 5 
degree of freedom dynamic system was considered 
exhibiting variations of its stiffness matrix. The 
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above methodology was then applied with A B= =and  

being the stiffness and mass matrices, respectively.

Further, the analysis of the system was carried out in 
the modal coordinates of the mean model with mass 
normalized modes. Thus, B=  is the 5 × 5 unit matrix 

and A  is the diagonal matrix containing the squares 

of the natural frequencies which were first assumed 
to be 1, 3, 5, 7, and 9 rad/s (mean model 1). Finally, 
the damping matrix was constructed by assuming a 
damping ratio of 1% on all modes. 

Three sets of computations were carried out, two 
with the unconstrained nonparametric approach and 
one with the present constrained formulation. The 
first unconstrained model was obtained by enforcing 
a standard deviation of the first natural frequency 
equal to 0.058, i.e., 5.8% of the corresponding value 
for the mean model. The second unconstrained model 
was similarly determined but with a lower standard 
deviation, i.e., 0.033. As stated earlier, it was 
observed that the ratios of the standard deviations 
of the natural frequencies of the random systems 
divided by their corresponding values for the mean 
models varied very little, from 0.00575 to 0.00584 
for the first system and from 0.00331 to 0.00334 for 
the second one. 

The present approach was applied next by impos-
ing ratios of standard deviations to mean model 
value of 5.8% and 3.3% for the first and second 
natural frequency, respectively. Since the first natu-
ral frequency exhibits the largest relative variations, 
the first row of H , i.e., the one most closely associ-
ated with the first frequency, was characterized by 
an unconstrained model, i.e., τ

i  
= 0. Given the lack 

of information on the third, fourth, and fifth natural 
frequencies, the parameters µ

ii
 and τ

i
 were assumed 
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lower (“1FreqLo”) level of variations.

to be the same for i ≥ 2. Accordingly, there were only 
4 model parameters to be determined: µ

11
, λ, µ

22 and  
τ2. They were iteratively obtained by imposing the 
prescribed standard deviations on natural frequencies 
(the exact constraints, not the approximate ones 
of Eq. (10)) and Eq. (29) for i = 1 and 2. In fact,
Eq. (29) for i = 1 is readily satisfied by selecting 
µ11 and λ to be related by Eq. (28) with i = 1. Note 
further that the conditions of Eq. (29) for i = 3, 4, and 
5 are automatically satisfied when it is for i = 2 as 
the model parameters µ

ii 
and τ

i 
and are the same for 

i ≥ 2 A sample of 10,000 random matrices was 
assumed for all computations. 

Shown in Fig. 1 are, for each of the three random 
systems, the distributions of the five natural 
frequencies divided by their corresponding value 
for the mean model. It is seen from this figure that 
the probability density function of the first natural 
frequency of the constrained system closely match 
the distributions of the natural frequencies (divided 
by their corresponding value for the mean model) 
of the unconstrained system with the largest, i.e., 
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5.8%, level of variations. Similarly, the distributions 
of the 2nd–5th natural frequencies of the constrained 
system (divided by their corresponding value for 
the mean model) match the similar probability 
density functions of all 5 natural frequencies of 
the uncon-strained model with the lowest, i.e., 
3.3%, level of variations. It is thus concluded that 
the constrained model accurately matches the 
prescribed information on the variations of its natural 
frequencies. 

A comparison of the frequency response functions 
of the 3 random systems was carried out next. Shown 
in Fig. 2 are the 95th percentile of the Frobenius norm 
of the frequency response matrix[ ]K i− + −ω2 1M Cω   
for the constrained model, for the two corresponding 
unconstrained models, and for the mean model. It is 
clearly seen from this figure (and additional results 
not shown here for brevity) that the frequency 
response functions of the constrained model and of 
the unconstrained one corresponding to the smaller 
(3.3%) variations in natural frequencies match 
very closely in the range ω ≥1 5. rad/s.  For smaller 
frequencies however, e.g. see Fig. 2(b), the constrained 
model frequency response function closely match 
the unconstrained model with the largest variations 
natural in frequencies. These results are in fact in 
complete agreement with the distributions of natural 
frequencies presented in Fig. 1. 

It was desired next to assess if the closeness of 
two natural frequencies of the mean model could 
affect the applicability of the approach and/or the 
validity of the above observations. To this end, the 
above computations were repeated exactly except 
for the second natural frequency of the mean model 
which was selected to be 1.06 rad/s., i.e., very close 
to the first one (mean model 2). The parameters of all 
three random systems were recomputed and the distri- butions of natural frequencies and norm of frequency 

response functions were again determined. Not with 
standing the closeness of the natural frequencies of 
the mean system, the constrained model accurately 
matched the prescribed variations of the natural 
frequencies, see Fig. 3. Note again that the distribution 
of the first natural frequency matches the one 
from the unconstrained model with higher level of 
variations, while the probability density function of 
the second one matches its counterpart for the other 
unconstrained model, as seen in Fig. 1. Finally, the 
norm of the frequency response function matrix, see 
Fig. 4, exhibits the properties already described in 
connection with Fig. 2. In regards to the behavior 
near 1 Hz, note first that the two peaks of the mean 
model have merged when considering any of its 
statistics (mean, 5th, and 95th percentile) for either 
of the three random systems. Finally, note that the 
95th percentile of the norm of the frequency response 
function of the constrained model matches closely 
its unconstrained counterpart with the larger level 
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of variations left of the peak (as dictated by the first 
natural frequency) and the one with the lower level of 
variations right of the peak (as dictated by the second 
natural frequency). 

7 SUMMARY 

The focus of this paper was on the derivation and 
validation of a maximum entropy based probabilistic 
model of positive definite matrices, such as the 
stiff-ness and mass matrices of a dynamic system. 
Following prior work in this area, the maximum of 
the entropy is sought under the additional constraints 
that the mean matrix is known, that each realization   
A
=

 is positive definite, and that the mean squared 
Frobenius norm of its inverse exists. A new set of 
constraints was however added in the present effort, 
Eq. (10), to permit the enforcement of prescribed 
standard deviations of an arbitrary number of natural 
frequencies of the random system. Accordingly, the 
present methodology provides a full probabilistic 
model of random systems from basic variability 
information. Further, this model is independent of a 
rotation/change of coordinate system, as desired. It 
should be noted that if only the standard deviation of 
a single natural frequency is prescribed, the present 
model reduces to the one previously developed. 

Central to the inclusion of natural frequency 
variations in the model are the Rayleigh quotient 
type constraints of Eq. (10) and the representations 
of the mean and random matrices A Aand

 
in the 

specific form of Eqs. (13), (14), and (16). These 
representations transfer the m frequency constraints 
of Eq. (10) into prescribed second order moments of 
the first m diagonal elements of the positive definite 
random matrix G=, the mean value of which is identity. 
Enforcing the positive definiteness of G, is achieved 
by formulating directly the probabilistic model in 
terms of its Cholesky decomposition H=.

In fact, the joint probability density function of its 
elements is given by Eq. (22) in which it is recog-
nized that each row is stochastically independent 
of the others. Further, the first m rows, i.e., those 
associated with the natural frequency constraints, and 
the remaining ones are characterized by two different 
types of joint probability density functions. For rows 
m + 1 to n, it is found, as in prior investigations, 
that all elements are independent of each other 
with the diagonal ones being distributed as square 
root of Gamma random variables. Further, the non-
diagonal elements are found to follow a Gaussian 

distribution. The joint probability density function 
of the elements in the rows 1 to m is more complex 
because of the frequency constraint which induces a 
statistical coupling between these random variables. 
Nevertheless, the joint probability density function of 
these elements was obtained, Eq. (26), and discussed 
extensively. Further, a simple approach was given to 
simulate these elements which hinges on the generation 
of samples of the diagonal elements Gii according to 
the distribution of Eq. (38). This task was achieved by 
an efficient, specially designed rejection algorithm, 
see Eqs. (45) and (52)–(57).

The details of the application of this model were 
discussed and exemplified on the stiffness matrix 
of two 5 degree of freedom models, one exhibiting 
widely spread frequencies while the other has two 
very close natural frequencies. In both cases, the 
model accurately matched the prescribed information 
on the natural frequency variations and thus provides 
a sound and complete probabilistic description 
of the random stiffness matrix of these stochastic 
systems. 
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