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A class of tensor-valued random fields for random anisotropic elastic 
microstructure modeling and stochastic homogenization

C. Soize
Université de Marne la Vallée, France, E-mail: chistian.soize@univ-mlv.fr

ABSTRACT: A generic micro-scale stochastic model is presented for a large class of random anisotropic 
elastic microstructures allowing a parametric analysis of the Representative Volume Element (RVE) size to 
be performed. This new approach can be useful for a direct experimental identification of random anisotropic 
elastic microstructures when the standard method cannot easily be applied. Such a RVE is used to construct the 
macroscopic properties in the context of stochastic homogenization. The probability analysis is not performed 
as usual for a given particular random microstructure defined in terms of its constituents, but is performed for 
a large class of random anisotropic elastic microstructures. For this class, the probability distribution of the 
random effective stiffness tensor is explicitly constructed and allows a full probability analysis of the RVE size 
to be carried out with respect to the spatial correlation length of the random microstructure.

Keywords: microstructures, probability and statistics, anisotopic material, elastic material, inhomogeneous 
material

1 INTRODUCTION

The probabilistic model of a random microstructure 
(such as a composite constituted of several constituents) 
can directly be constructed from the geometry and  
mechanical  properties of its constituents. This is the 
case for the class of random heterogeneous materials 
whose microstructures can be modeled as a distribution 
of inclusions or cavities of well-defined geometry in a 
given matrix, see for instance (Willis, 1982; Torquato 
and Stell, 1985; Drugan and Willis, 1996; Torquato, 
1997; Quintanilla and Torquato, 1997; Nemat-
Nasser and Hori, 1999; Quintanilla, 1999; Ostoja-
Starzewski, 1998; Kachanov et al., 2001; Milton, 
2002; Roberts and Garboczi, 2002; Torquato, 2002; 
Drugan, 2003; Monetto and Drugan, 2004). Generally, 
the statistics-based bounding techniques only use 
the lower-order statistics (first- and second-order 
moments) and the probability distributions which give 
the detailed probabilistic information are not taken 
into account. Recently, a global stochastic model of the 
local stiffness tensor of the random microstructure has 
been constructed using chaos decomposition (Jardak 
and Ghanem, 2004). The random microstructure can 
be homogenized if there is are representative volume 
element (RVE) size such that the random fluctuations 
of the random effective stiffness tensor around 
the statistical mean value of the random effective 
stiffness tensor is “negligible”. RVE size has received 
a particular attention; see for instance (Cailletaud 

et al., 1994; Drugan and Willis, 1996; Gusev, 1997; 
Nemat-Nasser and Hori, 1999; Kanit et al., 2003; 
Monetto and Drugan, 2004; Sab and Nedjar, 2005).

The prime objective of this paper is not to 
analyse a particular random isotropic or anisotropic 
microstructure described in terms of its constituents, 
but is to propose (when the standard method cannot 
easily be applied to anisotropic elastic micro-
structures) a new way which could be useful for a direct 
experimental identification of random anisotropic 
elastic microstructures introducing a micro-scale 
stochastic model. The main idea of this paper is then 
to directly introduce a micro-scale stochastic model 
of the random anisotropic elastic microstructure, 
which is not deduced from the stochastic models of 
its constituents. Such a micro-scale stochastic model 
must verify fundamental mathematical properties to 
obtain a physical model of any anisotropic elastic 
microstructure. The random anisotropic elastic 
microstructure (for instance a mortar constituted 
of a cement paste with embedded sand particles, 
some porous media such as plaster boards, some 
cortical bones, some biological membranes and more 
generally, some living tissues, etc) is then modeled by 
an equivalent random continuous anisotropic elastic 
medium which is completely defined by its local 
stiffness fourth-order tensor-valued random field 
x ֏ ℂ(x) = {ℂ

ijkh
(x)

ijkh
}. The random field ℂ is then 

constituted of 21 mutually dependent real-valued 
random fields modeling the anisotropic microstructure 



at the micro-scale level. The theory proposed allows 
strong anisotropic random fluctuations to be taken into 
account. Such an equivalent random anisotropic elastic 
medium can also be viewed (but it is not necessary) 
as the stochastic homogenization of the random 
anisotropic microstructure on a micro-scale RVE. The 
great interest of such a direct construction of a micro-
scale stochastic model of the random anisotropic 
elastic microstructure is the capability to identify the 
parameters of the random field x ֏ ℂ(x) using strain 
measurements on the boundary of tested specimens 
at the RVE- or macro-scale and solving an inverse 
stochastic problem. It is then necessary to choose a 
stochastic representation of x ֏ ℂ(x) in a class of 
random fields for which only a few parameters are 
required to define its system of marginal probability 
distributions. Therefore, the inverse problem related 
to such an experimental identification of x ֏ ℂ(x) 
is more feasible. In addition, such a class of random 
fields x ֏ ℂ(x) must be constructed using only 
the available information and not “hypothetical” 
information for which no statistics are available or for 
which the number of experimental specimens is too 
small to obtain a good convergence of the statistical 
estimators. For the tensor-valued random field, 
x ֏ ℂ(x), the largest class can be constructed using 
as available information: the symmetry properties, 
the mean value x ֏ ℂ(x) which is assumed to 
be known and a stochastic nonuniform ellipticity 
condition for the corresponding linear elasticity 
stochastic differential operator. Clearly, any random 
anisotropic elastic microstructure belongs to this 
class. The results presented in this paper could allow 
the micro-scale stochastic model to be identified from 
RVE- or macro-scale measurements solving aninverse 
stochastic problem.

2 MACROSCOPIC PROPERTIES OF A RANDOM 
ANISOTROPIC MICROSTRUCTURE

Consider a random microstructure constituted of 
a random heterogeneous anisotropic elastic linear 
medium. The random local (or microscopic) consti-
tutive equation is written as σ(x) = ℂ(x) : ε(x) which 
means σ

jk
 (x) = ℂ

jkℓm 
(x) εℓm 

(x), in which x ֏ σ
jk 

(x) 
is the random local stress tensor field, εℓm

(D(x)) =
1 2/ ( ( ) / ( ) / )∂ ∂ +∂ ∂D x D x

m mℓ ℓ
x x

 
is the random local 

strain tensor field, x ֏ D(x) = (D
1
(x), D

2
(x), D

3
(x)) is 

the random local displacement field, x ֏ ℂ(x) is the 
fourth-order tensor-valued random field allowing the 
elastic properties of the random microstructure to be 
characterized and where x = (x

1
, x

2
, x

3
) is a point of 

the RVE which is a 3D bounded open domain Ω in 
ℝ3. The random effective (or macroscopic) stress and 
strain tensors are usually defined as the average in the 

RVE of the random local stress and strain tensor 
fields,

< >=
Ω

< >=
ΩΩ Ω∫ ∫σ ε

1 1

| |
( ) ,

| |
( ) .σ εx x x xd d

 
(1)

2.1 Localization and random effective
stiffness tensor

The localization is done with a given random effective 
strain ε on the boundary ∂Ω of the RVE which is 
independent of x. Consequently, the random local 
displacement field D in the microstructure Ω can 
be constructed by solving the following stochastic 
boundary value problem (BVP) in Ω,

−div in onσ ε= Ω = ∂Ω0 , ( ) .D x x  (2)

Since the solution D of Eq. (2) depends linearly on
ε, the random local strain tensor can be written as

ε(D(x)) = H(x) : ε, (3)

in which the symmetric fourth-order tensor-valued 
random field x ֏ H(x) corresponds to the strain 
localization associated with the stochastic BVP 
defined by Eq. (2). In order to construct the random 
field H, for all ℓ and m in {1, 2, 3}, the second-order 
tensors gℓm are introduced such that

g
jk

m

j km jm k

ℓ

ℓ ℓ
= +

1

2
( ),δ δ δ δ  (4)

in which δjℓ is the Kronecker symbol. For all ℓ and m 

in {1, 2, 3}, let Dℓm be the random local displacement 
field which is the solution of the following stochastic 
BVP in Ω,

−div 0 in , on ,σ
ℓ ℓ ℓm m m= = ∂Ω ΩD x x( ) g  (5)

in which σℓm (x) = ℂ(x) : ε(Dℓm (x)). We then have

H jkℓm (x) = ε
jk
(Dℓm (x)), (6) 

with the property < Hjkℓm > = g
ℓm
jk  . The symmetric 

fourth-order random effective stiffness tensor ℂeff 
which is defined by < σ > = ℂeff : < ε > can then be 
calculated by 

ℂeff = < ℂ : H > . (7)

2.2 Micro-scale stochastic model for random 
anisotropic elastic microstructures 

For all x fixed in Ω, the random fourth-order tensor 
ℂ(x) has a given mean value, must verify the
symmetry property and a stochastic nonuniform 
ellipticity condition related to positive-definiteness 
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properties. The random field C is constituted of 21 
mutually dependent real-valued random fields and 
the system of marginal probability distributions of 
C is required because the unknown random solution 
xx DD xx֏ ℓm( )  of the stochastic BVP defined by Eq. (5) 
is a nonlinear mapping of the random field C.

The mean value of the random field C is a 
deterministic tensor-valued field x x֏ ℂ{ ( )}

ijkh ijkh
.

The microscale stochastic model has to be such 
that E

ijkh ijkh{ }C ( ) ( )x x= ℂ  for all x, where E is the 
mathematical expectation. The known symmetries 
can be taken into account with the mean model 
represented by the tensor { ( )}ℂ

ijkh ijkhx . This paper 

deals with the case for which the random fluctuation 
tensor { ( ) ( )}Cijkh ijkh ijkhx x−ℂ  around the mean tensor 
is purely anisotropic, without any symmetries.

We present an extension of the probability model 
proposed in (Soize, 2004 and 2006) which only 
uses the available information. The usual uniform 
elliptic condition is not introduced to construct this 
probability model because such a condition does not 
correspond to available information (objective data). 
For the proposed stochastic model, a nonuniform 
ellipticity condition is introduced for x x֏ ℂ( )  
which corresponds to the available information and 
which, for all ℓ and m fixed in {1, 2, 3}, allows the 
random weak formulation of the stochastic BVP 
defined by Eq. (5) to have a unique second-order 
random solution x D x֏ ℓm( ).

In order to define the stochastic model of the 
tensor valued random field C, the (6 × 6) matrix 
representation [A(x)] of the fourth-order tensor 
C(x) is introduced. Therefore, let I and J be the new 
indices belonging to {1, . . . , 6} such that I = (j, k) 
and J = (ℓ, m) with the following correspondence: 
1 = (1, 1), 2 = (2, 2), 3 = (3, 3), 4 = (1, 2), 5 = (1, 3) and 
6 = (2, 3). Thus, for all x in Ω, the random (6 × 6) 
real matrix [A(x)] is such that

A x x( ) ( ).



 I J

= ℂ
ℓjk m

 

(8)

For all x fixed in Ω, due to the symmetry and 
positive definiteness properties of the random fourth-
order tensor C(x), it can be deduced that [A(x)] is a 
random variable with values in the set M

6
+(R) of all the 

(6 × 6) real symmetric positive-definite matrices. The 
M

6
+(R)-valued random field {[A(x)], x ∈Ω}, indexed 

by Ω, defined on the probability space (Q, τ, P), is 
constituted of 6 × (6 + 1)/2 = 21 mutually dependent 
real-valued random fields defining the fourth-order 
tensor-valued random field C indexed by Ω.

The mean function x ° [a (x)] of the random field 
[A] is assumed to be a given function from Ω into 
M6

+(R) such that, for all x fixed in Ω,

E{[ ( )]} [ ( )].A x x= a  (9)

Since [a (x)] belongs to M6
+(R), there is an upper 

triangular invertible matrix [L(x)] in M6
+(R) (the set 

of all the (6 × 6) real matrices) such that

[ ( )] [ ( )] [ ( )].a L LTxx xx xx=
 

(10)

It is assumed that x ° [L(x)] is bounded on Ω 
and that x ° [a (x)] satisfies the usual uniform 
ellipticity condition on Ω. For all x fixed in Ω, the
random matrix [A(x)] is written as

[ ( )] [ ( )] [ ( )][ ( )],AA xx xx GG xx xx= L LT

 
(11)

in which x ° [G(x)] is a random field defined on
(Q ,τ, P), indexed by R3, with values in M6

+(R), such 
that for all x in R3, E{[G(x)]} = [I] in which [I ] is the 
identity matrix. The random field [G] is completely 
defined in Section 3.

3 STOCHASTIC MODEL OF THE RANDOM 
FIELDS [G] AND [A]

Let d ≥ 1 and n ≥ 1 be two given integers. The 
random field x = (x

1
, . . . , x

d
) ° [G(x)] is indexed 

by Rd  with values in M
n
+ (R). In Eq. (11), we have 

d = 3 and n = 6. As explained in Section 2.2, the 
extended probability model presented below is based 
on the construction and the mathematical analysis of 
the random field [G] performed in (Soize, 2006). The 
results which allow the numerical calculation to be 
performed are summarized below. The random field 
x ° [G(x)] is constructed as a homogeneous and 
normalized non-Gaussian positive-definite matrix-
valued random field, defined on probability space 
(Q, τ, P), indexed by Rd, with values in M

n
+(R). This 

random field is constructed as a nonlinear mapping of 
stochastic germs.

3.1 Random fields U
jj′ as the stochastic germs of 

the random field [G]

The stochastic germs are constituted of n(n + 1)/2 
independent second-order centered homogeneous 
Gaussian random fields x ° Ujj ′(x), 1 ≤ j ≤ j ′ ≤ n, 
defined on the probability space (Q, τ, P), indexed 
by R

d
, with values in R and such that E{Ujj ′ 

(x)} = 0 and E{Ujj ′ (x)2} = 1. Consequently, all 
these random fields are completely and uniquely 
defined by the n(n + 1)/2 autocorrelation functions 
RUjj ′ (η) = E{U jj ′ (x + η) U jj ′ (x)} def ined for all 
η = (η

1
, . . . , ηd) in R

d and such that RUjj ′ (0) = 1. In 
order to obtain a class having a reasonable number 
of parameters, these autocorrelation functions are
written as R

U

jj

d

jj

d
jj ′

= × ×′ ′( ) ( ) ( )η ρ η ρ η
1 1

...  in which, 
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for all k = 1, . . . , d, one has ρ
k
jj ′ (0) = 1 and for all 

η
k
 ≠ 0,

ρ
k

jj ′ ′ ′=( ) ( ) / ( )sin /( )η π η πη
k k

jj

k k k

jjL L4 22 2 2 2 (( ),
 

(12)

in which L Ljj

d

jj

1

′ ′

, . . . ,  are positive real numbers. Each 
random field Ujj ′ is then mean-square continuous 
on Rd and it power spectral measure has a compact 
support. Such a model has dn(n + 1)/2 real parameters
L Ljj

d

jj

1

′ ′, . . . , for 1 ≤ j  ≤ j ′ ≤ n which represent the 
spatial correlation lengths of the stochastic germs Ujj ′.

3.2 Defining an adapted family of functions

The construction of the random field [G] requires 
the introduction of an adapted family of functions
{u ° h(α, u)}α>0. Let α be a positive real number. 
The function u ° h(α, u) from R into [0, + ∞] is 
introduced such that Γα = h (α, U ) is a gamma random 
variable with parameter α while U is a normalized 
Gaussian random variable (E{U} = 0  and  E{U 2} = 1).
Consequently, for all u in R, we have

h u F F u
U

( , ) ( ) .α
α

= ( )−
Γ

1

 
(13)

in which u ° FU(u) = ∫−∞

−u ve v
1

2π d  is the cumulative 
distribution function of the normalized Gaussian 
random variable U. The function p F p֏ Γ

_

α

1
( )  

from [0, 1] into [0, + ∞] is the reciprocal function
of the cumulative distribution function γ ° FΓα (γ) =
∫

0

1 1dγ α− −1

Γ( )α t te  of the gamma random variable Γα 
with parameter α in which Γ (α) is the gamma function 
defined by Γ =  0

+( dα α) ∫ ∞ − −t e tt1 .

3.3 Defining the random field [G]

The random field x ° [G(x)], defined on the 
probability space (Q, τ, P), indexed by R

d, with 
values in Mn

+(R) is constructed as follows:

 (i)  Let {Ujj ′ (x), x ∈ Rd}1 ≤ j ≤ j ′≤ n be the n(n + 1)/2 

independent random fields introduced in Section 
3.1. For all x in Rd and for all i and j such that 
1 ≤ j  ≤ j ′ ≤ n, we have

E U E U
jj jj′ ′{ } = { } =( ) , ( ) .x x0 12

 
(14)

 (ii)  Let δ be the real number, independent of x and 

n, such that 0 < < ( 1) ( 5) <1δ n n+ + − 1. This para-

meter which is assumed to be known (resulting, 
for instance, from an experimental identification 
solving an inverse problem) allows the dispersion 
of the random field [G] to be controlled.

(iii)  For all x in Rd, the random matrix [G(x)] is 
written

[ ( )] [ ( )] [ ( )],GG xx LL xx LL xx= T

 
(15)

in which [L(x)] is the upper (n × n) real triangular 
random matrix defined as follows:

For 1 ≤ j ≤ j ′ ≤ n, the n(n + 1)/2 random 
fields x ֏ [L( )]x jj'  are independent.

For j < j ′, the real-valued random field 
x ֏ [L( )]x

jj'
, indexed by R

d, is defined by 
[ ( )] ( )L x x

jj' jj'
= σU in which σ is such that  σ = δ 

(n + 1)−1/2.
For j = j ′, the positive-valued  random field 

x ° [L(x)]
jj
, indexed by R

d, is defined by 

[L(x)]
jj
 = σ α2h U

j jj
( , ) )X  in which α

j
 = (n + 1)/

(2δ2) + (1 − j)/2.
Let [B] be a random matrix, defined on 

( , , ),Θ T Ρ  with values in the set M
m
(R) of all 

the (m × m) real matrices. For θ ∈ Θ, let [B(θ)] ∈ 
M

m
(R) be a realization of [B]. The norm ||B(θ)|| 

of [B(θ)] induced by the Euclidean norm ||v||of 
v in Rm is such that

P P P P P PBB( ) sup ( ) ,v 1θ θ= ≤ [ ] ∈B v v R
m

.
 

(16)

It can be proven the following fundamental 
property (non uniform ellipticity condition 
replacing the usual uniform ellipticity condition 
which is not introduced): let Ω be any bounded 
open domain of Rd and let  Ω  = Ω ∪ ∂Ω be its 
closure. We then have

E c
G

{(sup || [ ( )] ||)
x

G x∈Ω
− = ∞1 22} ,< +  (17)

in which sup is the supremum and where 0 < c
G
 

< + ∞ is a finite positive constant. Note that 
the mathematical proof of Eq. (17) can easily 
be derived from (Soize, 2006) for the extended 
class introduced in Section 3.1.

3.4  Basic properties of the random field [A] and its 
parameters

The random field x ° [A(x)] is a second-order random 
field on Ω: E{||A(x)||2} ≤ E{||A(x)||2

F
} < + ∞ in 

which || · ||
F
 is the Frobenius norm. The system of the 

marginal probability distributions of the random field 
x ° [A(x)] is completely defined, is not Gaussian 
and is deduced from the system of the marginal
probability distributions of the random field x ° 
[G(x)] by using Eq. (11). In general, since [a(x)] 
depends on x, then the random field {[A(x)], x ∈ Ω} 
is non homogeneous. For all fixed x, the dispersion 
parameter δ

A
(x) of the random matrix [A(x)], which 

is defined by

δ
A F F

E a a( ) {|| [ ( )] – [ ( )] || }/ || ( ) || ,x A x x x2 2 2=  (18)
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is such that

δ
δ

A
n

a

a
( )

( [ ( )])

[ ( )] }
x

x

x
=

+
+











1
1

2

2

tr

tr





1 2

. (19)

The random field x ° [G(x)] almost surely has 
continuous trajectories. If the function x ° [a(x)] is 
continuous on Ω , then the random field x ° [A(x)] 
almost surely has continuous trajectories on Ω . 
Nevertheless, if the function x ° [a(x)] is not continuous 
on Ω−, then the random field x ° [A(x)] almost surely 
does not have continuous trajectories on Ω .

Then the random field x ° [G(x)] is completely 
and uniquely defined by the following parameters: the 
M

6

+
(R)-valued mean function x ° [a(x)], the positive 

real parameter δ and the 63 positive real parameters 
L

1
jj ′, L

2
jj ′, L

3
jj ′ for 1 ≤j ≤ j ′ ≤ 6. The smallest number 

of parameters corresponds to the following case: x ° 
[a(x)], δ and L

d
=L

1
jj ′ = L

2
jj ′=L

3
jj ′ for all 1 ≤ j ≤ j ′  ≤6.

3.5 Spatial correlation lengths of the random field 
[A] for the homogeneous case

If [a(x)] = [a] is independent of x, then the random 
field {[A(x)] = [L ]T [G(x)] [L] , x ∈ Ω} can be viewed 
as the restriction to Ω of a homogeneous random field 
indexed by R3. Then the dispersion parameter defined 
by Eq. (18) is independent of x and then δ

A 
(x) = δ

A
. 

Let η = (η
1
, η

2
, η

3
) ° rA (η) be the function defined 

from R3 into R by 

r
E a a

E

A( )
{([ ( )] – [ ])([ ( )] – [ ])}

{||
η =

+tr A x A x

A

η

(( )] – [ ] || }
.

x a
F

2

 
(20)

It can be seen that r A(0) = 1 and r A(−η) = r A(η). 
For k = 1, 2, 3, the spatial correlation length L

k
A of 

x ° [A(x)] and relative to the coordinate x
k 
can then 

be defined by

L r
K

A A

k
=

+∞

∫ | ( ) | ,η
k

0
dη

 (21)

in which η1 = (η
1
, 0, 0), η2 = (0, η

2
, 0) and η3 = (0, 

0, η
3
 ). 

4  DISCRETIZING WITH STOCHASTIC 
FINITE ELEMENTS AND SOLVING 
THE RANDOM EQUATION

For all ℓ and m in {1, 2, 3}, we have to (1) solve 
the stochastic BVP defined by Eq. (5) with 
σℓm(x) = C(x) : ε(Dℓm(x)) in order to construct the 
random local displacement field Dℓm; (2) calculate 
the fourth-order tensor-valued random field H 
defined by Eq. (6) and corresponding to the strain 
localization; (3) estimate the probabilistic properties 

of the fourth-order random effective stiffness tensor 
Ceff defined by Eq. (7).

In order to solve this problem, the following 
computational stochastic method is used.

The weak formulation of the stochastic BVP is 
constructed and the existence of a unique second-
order stochastic solution can be proven. Note that 
the usual proof of the existence of a solution can be 
directly deduced if a uniform ellipticity condition 
and a uniform boundness condition for the fourth-
order tensor valued random field x ° C(x) is used. 
This usual proof cannot be used for the present case 
due to the non introduction of these uniformness 
conditions which are substituted by the more realistic 
probabilistic hypothesis which has been introduced 
and which corresponds to the introduction of the non 
uniformness condition. The adapted proof can be 
obtained thanks to Eq. (17).

The stochastic finite element method is used for 
discretizing the weak formulation and Eq. (5). For 
such a numerical approximation, the random local 
stiffness tensor field x ° Cjkℓm(x) and the random 
local strain tensor field x ° ε

jk
(D

ℓm(x)) are discretized 
at all the Gauss-Legendre quadrature points of the 
finite elements.

The probabilistic quantities are then estimated by 
using the Monte Carlo simulation method which is 
made up of 3 main steps: (a) developing a generator 
for constructing ns independent realizations {x ° 
C(x, θ

r
), r = 1, . . . n

s
} of the random field x ° C(x) 

using the probability model presented in Section 3; 
(b) for each realization x ° C(x, θ

r
), calculating the 

corresponding realization Ceff(θ
r
) of the effective 

tensor (and related quantities such as the random 
eigenvalues of the random tensor Ceff) by solving 
a deterministic matrix equation; (c) with the n

s
 

independent realizations,estimating the probabilistic 
quantities (moments, probability distributions) using
the mathematical statistics and studying the conver-
gence with respect to n

s
.

4.1 Finite element discretization

Let V = L
2
(Θ, V ) be the real Hilbert space of all the 

second-order random variables θ ° {x ° D(x, θ)} 
defined on probability space (Θ, τ, P), with values 
in the Hilbert space V = (H1(Ω))3. Let e(d) be the 
strain vector defined by e(d) = (ε

11
(d), ε

22
(d), ε

33
(d), 

2 ε
12

(d), 2 ε
13

(d), 2 ε
23

(d)) and let (D, δD) °K(D, δD) 
be the random bilinear form on V × V defined by

K D D A x e D x e D x x.( , ) [ ( )] ( ( )), ( ( ))δ δ= < >∫ Ω
d  (22)

The stochastic finite element method is used to 
discretize the weak formulation. A finite element mesh 
of domain is carried out using 3D solid finite elements.
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We then have Ω = ∪
e
Ω

e
 in which Ω

e
 is the domain of 

the finite element number e. Any displacement field 
x ° d(x) in V and its associated strain vector field 
x ° e(x) are then approximated by

d(x) . [B(x)]w, x ∈Ω , e(x) . [S(x)]w, x ∈ Ω,

in which w = (w
1
, . . . ,w

v
 ) is the vector of the v 

degrees of freedom corresponding to the values of the 
components of the field d at the nodes of the mesh. 
The (3 × v) real matrices [B(x)] and [S(x)] are known 
matrices usually constructed by using the interpolation 
functions of the finite elements. For any integrable 
function x ° f(x) defined on Ω and continuous on 
Ω

e
, the following usual numerical approximation can 

be written as ∫Ωe  
f(x)dx . Σ

k

Ne

k=1
ω

α
 f(xαk), in which 

{ }ω ω
α α

1

, ... ,
N e

 and { , ..., }1
x x

α αNe  are the sets of all 

the N
e
 weights and the N

e
 Gauss-Legendre quadrature 

points for the finite element Ω
e
. Consequently, it can be 

written that ∫Ω f (x) dx = Σ Ωe e
f∫ ( )x xd  . Σ

α α

αω=1

N f ( ),x  

in which {ω
1
, . . . ,ω

N
} and {x1, . . . , xN} are the sets of 

all the N weights and the N Gauss-Legendre quadrature 
points for Ω = ∪

e
Ω

e
 with N = ∑

e
 N

e
.

For all x inΩ , the finite element approximation of 
all D and δD in V is then written as D(x) . [B(x)]W 
and δD(x) . [B(x)]δW, in which W and δW are 
Rv-valued second-order random vectors. Therefore, 
the corresponding finite element approximation of 
the random bilinear form defined by Eq. (22) is such
that < [K]W, δW > = K([B( . )]W, [B( . )]δW), defining 
the (v × v) random stiffness matrix [K] such that

[ ] = [ ( )] [ ( )] [ ( )] .K A x x
Ω∫ S ST

x  (23)

The random stiffness matrix [K] defined by Eq. 
(23) can then be approximated by the random matrix 
[KN] such that 

[ ] = ,
=1

K x A x x x
N

N
ωα

α

α

α α[ ( )] [ ( )][ ( )]S S dT∑  (24)

in which the M
6
+(R)-valued random field x ֏ [A(x)] 

is discretized in the N Gauss-Legendre quadrature 
points x1, . . . , xN. The integral over Ω in Eq. (24) 
must be read as a mean-square integral and it can be 
proven that the convergence is reached when N goes 
to infinity. For a given fixed N, the random matrix 
[K

N
] will be a good approximation of the random 

matrix [K] in the mean-square sense if the number N 
of the Gauss-Legendre quadrature points x1, . . . , xN 
is sufficiently large and is adapted to the variations 
of the intercorrelation functions of the real-valued 
random fields [A]

kℓ and [A]
k ′ ℓ ′.

The finite element discretization of the random 
field Dℓm is then written as Dℓm(x) . [B(x)]Wℓm, 
x ∈ Ω . The second-order random vector Wℓm with 
values in R

ν can then be written as Wℓm = (W
i
ℓm, 

W
b
ℓm) in which W

i
ℓm is the Rνi-valued second-order 

random vector of the v
i
 degrees of freedom for the 

nodes inside the domain Ω and where W
b
ℓm is the Rvb 

deterministic vector of the v
b
 degrees of freedom for 

the nodes belonging to the boundary ∂Ω. This last 
vector is such that dℓm(x) . [B(x)]W

b
ℓm for all x in ∂Ω 

and the vector w
b
ℓm is constituted of the values of the 

components of the field dℓm at the nodes belonging 
to the boundary ∂Ω. The blockwriting of the random 
stiffness matrix [K] defined by Eq. (23) is

[ ]
[

K
K K

K K
=

[ ] [ ]

] [ ]
.ii ib

ib

T

bb













The finite element approximation of Eq. (5) is 
then given by the following random matrix equation 
allowing the unknown random vector W

i
ℓm to be 

calculated,

[Kii
]Wi

ℓm = − [Kib
]wb

ℓm . (25)

The random values H(x1), ..., H(xN) of H are 
calculated by using Eq. (6). Let C(x1), ... , C(xN) be the 
random values of C. The finite element approximation 
of the fourth-order random effective stiffness tensor 
Ceff defined by Eq. (7) can then be written as 

ℂ ℂeff ≃
1

1| |
.

Ω
ω

α

α α

α
( ) : ( )x xH

=∑N

 
(26)

The M
6
+(R)-valued random matrix [Aeff] of the 

fourth order random effective stiffness tensor Ceff is 
such that

[ ] =eff eff
A

I J
ℂ

ℓjk m
.
 

(27)

4.2  Defining the probabilistic quantities for the 
random effective stiffness matrix

It is assumed that the mean model of the micro-
structure is homogeneous, that is to say [a(x)] = [a] 
is independent of x. Consequently, the random 
field [A] describing the fourth-order tensor-valued 
random field C can be viewed as the restriction to 
Ω of a homogeneous random field indexed by R3. 
Using Eq. (19), the dispersion parameter δ

A
 which 

is then independent of x can easily be deduced from 
the value of the dispersion parameter δ. The spatial 
correlation lengths L

1
A, L

2
A and L

3
A defined by Eq. (21) 

depend on the values of the parameters L L Ljj jj jj

1 2 3

′ ′ ′
, ,  for 

1 ≤ j ≤ j′ ≤ 6 of the stochastic germs. Therefore, every 
probabilistic analysis of the macroscopic properties 
of the random anisotropic elastic microstructure 
is performed for a given value of the parameters 
[ ] anda L, , ,δ L Ljj jj jj

1 2 3

′ ′ ′
for 1 ≤ j ≤ j' ≤ 6. Let z p z֏ z( ) 

be the probability density function with respect to dz 
of the random variable Z defined by
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Z m= −P P
P P

A
eff

Aeff

1 ,

 

(28)

in which m
|| A

eff
 ||
= E{||Aeff||}. The support of pz is R+. 

The cumulative distribution function z* ֏ F
z
(z*) of 

the random variable Z is then defined by

Fz z pz z z E
z

( ) ( ) { },∗ = =
∗

∗∫ d , I1

in which I1

0 Z z

Z

≤

z Z z≤ ≤∗ = =∗1 0if and if not .
 

(29)

4.3 Solving the random equation and computing 
the statistical estimations

The stochastic problem defined by Eqs. (25) to (28)
is solved by using the Monte Carlo numerical 
simulation method with n

s
 independent realizations 

θ θ
1
,...,

n
s

in Θ. The independent stochastic germs 
U

jj'
 for 1 ≤ j ≤ j′ ≤ 6 are simulated in the N 

Gauss-Legendre quadrature points x1, . . . , xN. The 
mathematical expectation of any random quantity 

R is estimated by E R = / n R
s r

{ } 1
r

n
s

=∑ 1
( ).θ  The 

cumulative probability distribution FZ defined by 
Eq. (28) is estimated with the usual estimator 
(Serfling, 1980). Let [A

v
eff] be the random effective 

stiffness matrix calculated with the finite element 
model having v degrees of freedom. For a given value 
of v, the convergence of the Monte Carlo numerical 
simulation with respect to n

s
 can be controlled by 

studying the function 

n n
n

s s

s

r

n

r

s֏ conv
eff

eff( , )
|| ||

|| ( )ν
1 1

1
A

A

ν
ν=∑ θ |||

/

2

1 2









 

(30)

in which ||A
v
eff

 
(θ

r
)|| is the realization θ

r 
of the 

random variable ||A
v
eff||. If the mean model of the 

microstructure is homogeneous, then the local 
stiffness matrix [a] is independent of x and then 
[A

v
eff] = [a]. The right hand side of Eq. (30) 

corresponds to the statistical estimation of the 
norm |||A

v
eff||| = (E{||A

v
eff||2})1/2 of the random matrix 

[A
v
eff]. For a given value of ns, the convergence with 

respect to the number v of degrees of freedom of the 
finite element model is given by the function v ֏ 
conv(ns, v).

5 APPLICATION TO AN ANISOTROPIC 
RANDOM MICROSTRUCTURE

5.1 Mean model and finite element discretization of 
the mean model of the microstructure

The open bounded domain Ω (the RVE) of R
3
 is 

such that Ω = ([0, 1])3. The mean model of the micro-
structure corresponds to a homogeneous anisotropic 

linear elastic medium whose local stiffness matrix [a] 
belonging to M

n
+(R) with n = 6 is then independent 

of x and such that [a] = 1010

×

3.3617 1.7027 1.3637 0.1049 0.2278 2.1013

1.70

− −
227 1.6092 0.7262 0.0437 0.1197 0.8612

1.3637 0.7

−
2262 1.4653 0.1174 0.1506 1.0587

0.1049 0.0437

− −
− −− −
− − −

0.1174 0.1319 0.0093 0.1574

0.2278 0.1197 0..1506 0.0093 0.1530 0.1303

2.1013 0.8612 1.0587

−
−− −0.1574 0.1303 1.7446





























The finite element model is a regular mesh of 
12 × 12 × 12 = 1728 nodes and 11 × 11 × 
11 = 1331 finite elements which are 8-nodes solid 
elements with 2 × 2 × 2 Gauss-Legendre quadrature 
points. Therefore there are 5184 degrees of freedom, 
N = 10648 Gauss-Legendre quadrature points, 
v

i
 = 3000 degrees of freedom for the nodes inside 

domain Ω and v
b
 = 2184 degrees of freedom for the 

nodes belonging to boundary ∂Ω. In this case, the 
weights ωα are such that ωα  = |Ω|/N and consequently, 
Eq. (26) can be rewritten as

C C H
e Nff 1

≃
N

( ) : ( ).x x
α

α

α

=∑ 1
 

5.2 Micro-scale stochastic model, computational 
parameters and stochastic response

(i)  Micro-scale stochastic model. The stochastic 
model of the elasticity tensor of the random 
anisotropic microstructure is defined in Sections 
2.2 and 3. The random field x ֏ [A(x)], 
indexed by Ω, with values in M+

n
 (R), with 

n = 6, is such that (see Eq. (11)), [A(x)] = [L]T 
[G(x)][L] in which the matrix [a], defined 
in Section 5.1 is written (see Eq. (10)) as 
[a] = [L]T[L]. The stochastic field x ֏
[G(x)], indexed by R3, with values in M+

n
(R), is 

defined in Section 3.
(ii)   Dispersion parameter. The dispersion parameter 

δ
A
 defined by Eq. (18) is then independent of x and 

can be calculated as a function of the parameter 
δ by using Eq. (19) and yields δ

A
 = 0.6192 × δ. 

For δ = 0.1, 0.2, 0.3 and 0.4, one then has δ
A
 = 

0.0619, 0.1238, 0.1858 and 0.2477 respectively. 
Below, all the results are given as function of δ 
instead of δ

A
.

(iii)   Parameters of the stochastic germs and spatial 
correlation lengths of the random field [A]. In 
is assumed that the parameters L

1
jj′, L

2
jj′, L

3
jj′ for 

1 ≤ j ≤ j′ ≤ 6 of the stochastic germs are such 
that L

1
jj′ = L

2
jj′ = L

3
jj′ = L

d
 for all j and j′ in which 

L
d
 is the unique parameter relative to the length-

scales of the stochastic germs. For each given 
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value of δ and for each given value of L
d
, the 

independent realizations of the random matrices 
[A(x1)], . . . , [A(xN)] at the N = 10648 points 
x1, . . . , xN are calculated. Since L

1
jj′ = L

2
jj′ = 

L
3
jj′ = L

d
 for all j and j′, it can easily be deduced 

that the correlation function defined by Eq. (20) 
is such that rA(η, 0, 0) = rA(0, η, 0) = rA(0, 0, η). 
The following notation rA

d
 (η) = rA(η, 0, 0) = rA(0, 

η, 0) = rA(0, 0, η) is then used below. It can be 
proven that the function rA

d
 is independent of δ. 

From Eq. (21), it can then be seen that the spatial 
correlation lengths L

1
A , L

2
A and L

3
A of the random 

field x ֏ [A(x)] are then equal to a same value 
denoted by L

A
.

     For L
d
 = 0.1, Fig. 1 displays the graph of the 

function η ֏ rA
d
(η) calculated with Eq. (20) in 

which the mathematical expectation is estimated 
by using the Monte Carlo simulation with 2000 
independent realizations. For these values, the 
spatial correlation length L

A
 is calculated by Eq. 

(21) and is such that L
A
 = 0.1113 for L

d
 = 0.1 

and L
A
 = 1.113 for L

d
 = 1. More generally, one 

has L
A
 = 1.113 L

d
. Due to this correspondence 

between L
A
 and L

d
, it is equivalent to present the 

results in terms of the spatial correlation length 
L

A
 or the parameter L

d
. Below, the results are 

presented in function of L
d
.

    Let C
d
 be the cube L

A
 × L

A
 × L

A
. For the smallest 

value of L
A
 considered in the numerical calculation 

(L
A
 = 0.1113 corresponding to L

d
 = 0.1) there are 

about 14 Gauss-Legendre quadrature points in C
d
. 

For L
A
 = 0.2226 corresponding to L

d
 = 0.2, there 

are about 112 points. This is sufficient to obtain 
a good approximation of the random matrix 
[K] by [K

N
] in the mean square sense taking 

into account the very slow variations (over any 
interval of length L

A
) of the correlation function 

displays in Fig. 1. In addition, Fig. 2 shows that 
the convergence is reached with respect to N for 
this smallest value of L

A
 and for the strongest 

stochastic fluctuations considered (δ = 0.4). 
This is an additional important information 
to conclude that the convergence is reached 
in the mean-square sense with a reasonable
accuracy.

(iv)   Stochastic convergence analysis for the random 
effective stiffness matrix. For each given value 
of the dispersion parameter δ, for each given 
value of the parameter L

d
 and for a given finite 

element model having ν degrees of freedom, the 
probabilistic quantities for the random effective 
stiffness matrix are estimated by using the Monte 
Carlo numerical simulation.

The mean-square convergence with respect to n
s
 

has been studied by constructing the function n
s
 ֏ 

0 0.2 0.4 0.6 0.8 1
–0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 1. Graph of the correlation function η ֏ rA
d 

(η) for 

L
d
 = 0.1. Horizontal axis η. Vertical axis rA

d 
(η).
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0.99

1

Figure 2. Mean-square convergence of the random effective 

stiffness matrix with respect to the number ν of degrees of 

freedom of the finite element model for δ = 0.4, L
d
 = 0.1 and for 

n
s
 = 900. Graph of function ν ֏ conv(n

s
, ν). Horizontal axis ν. 

Vertical axis conv(n
s
, ν).
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Figure 3. Graph of β ֏ P(β) = P{1 − β < Z ≤ 1 + β} for 

δ = 0.4 and for several values of the spatial correlation length 

L
d
 = 0.1 (circle), 0.2 (no marker), 0.3 (square), 0.4 (no marker), 

0.5 (triangle-up), 0.6 (no marker), 0.7 (triangle-down). Horizontal 

axis β. Vertical axis P(β).
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conv(n
s
, ν) defined by Eq. (30). For δ = 0.4 (the largest 

value considered for the dispersion parameter), for 
L

d
 = 0.1 (the smallest value considered for this 

parameter) and for a finite element model having 
ν = 5184 degrees of freedom and corresponding to 
11 × 11 × 11 finite elements, convergence is reached 
for n

s
 ≥ 500.

The mean-square convergence with respect to 
the number ν of degrees of freedom of the finite 
element model is studied by constructing the function 
ν ֏ conv(n

s
, ν) defined by Eq. (30). Figure 2 displays 

the graph of ν ° conv(n
s
, ν) for δ = 0.4, L

d
 = 0.1 

and n
s
 = 900. Clearly, convergence is reached for 

11 × 11 × 11 finite elements corresponding to 
ν = 5184.

All the results presented below have been computed 
with n

s
 = 900 and 11 × 11 × 11 finite elements 

corresponding to ν = 5184. Convergence is reached 
for the values of L

d
 and δ which are considered 

below.

5.3 Probabilistic analysis of the RVE size

Let β be a positive real number. Let β ֏ P(β) be the 
function defined by 

P(β) = P{1 − β < Z ≤ 1 + β} = F
Z  

(1 + β) − F
Z 
(1 − β) .

For δ = 0.4 and for L
d
 belonging to [0.1, 0.7], Fig. 3 

displays the graph of the function P. For instance, for 
L

d
 = 0.2 and for β = 0.02, 0.04 and 0.08, one has

P = 0.36, 0.65 and 0.95, which means that P{0.98 < 
Z ≤ 1.02} = 0.36, P{0.96 < Z ≤ 1.04} = 0.65 and 
P{0.92 < Z ≤ 1.08} = 0.95. For instance, for δ = 
0.4 (i.e., δ

A
 = 0.2477), if stochastic homogenization 

is performed with a RVE whose size is five times the 
spatial correlation length (REV size = 1 and spatial 
correlation length L

A
 = 0.2226), then the probability 

for which the random fluctuations of the effective 
stiffness tensor is less than 2%, 4% or 8%, is 0.36, 
0.65 or 0.95 respectively.

6 CONCLUSIONS

We have presented an approach introducing a micro-
scale stochastic model which can be used when the 
standard method cannot be applied to anisotropic elastic 
microstructures. This new approach is useful for a direct 
experimental identification of random anisotropic 
elastic microstructures. A parametric probabilistic 
study of the RVE size has been performed with respect 
to the intensity δ

A
 of the stochastic fluctuations of the 

local stiffness tensor-valued random field describing 
the micro-scale stochastic model and in function of its 
correlation lengths LA

k
. Such a study is also useful to 

get information on the RVE size for which stochastic 

fluctuations are still significant and consequently, can be 
measured. Then the results presented in this paper could 
allow the micro-scale stochastic model to be identified 
from RVE- or macro-scale measurements solving an 
inverse stochastic problem. For fixed spatial correlation 
lengths and dispersion parameter δ

A
, the effective RVE 

size can effectively be calculated in a probability sense 
using the cumulative distribution function of the random 
variable measuring the random fluctuations of the 
effective stiffness tensor. A large numerical simulation 
has been carried out and the numerical results obtained 
allow a probability analysis of the representative volume 
element size to be performed.
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