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Robust design optimization with respect to model and data uncertainties 
in computational mechanics

E. Capiez-Lernout & C. Soize 
Laboratoire de Mécanique, University of Marne-La-Vallée, France 

ABSTRACT: In this paper, a probabilistic approach is proposed to solve the robust design optimization problem 
of complex dynamical systems not only with respect to data uncertainties but also to model uncertainties. The 
possible designs are represented by a numerical finite element model whose parameters belong to an admissible 
set of design parameters. A recent nonparametric probabilistic model of uncertainties is used for taking into 
account model uncertainties and data uncertainties. The robust design optimization problem is formulated as a 
multi-objective optimization problem which consist to minimize a cost function including a target with respect 
to an admissible set of design parameters. The theory is presented followed by a numerical application. 

Keywords: robust design, model uncertainties, structural dynamics

with respect to data uncertainties and not with respect 
to model uncertainties.

In the present paper, a robust design with respect 
to nonhomogeneous model uncertainties and adapted 
to the context of complex dynamical systems is 
proposed. Model uncertainties are taken into account 
by using the nonparametric probabilistic approach 
(Soize, 2000; Soize, 2001; Soize, 2005b). Several 
experimental validations (Duchereau and Soize 2005; 
Chebli and Soize, 2004; Durand et al., 2005, Chen 
et al., 2006) and numerical validations (Soize, 2005b, 
Soize, 2005a; Capiez-Lernout et al., 2005; Capiez-
Lernout et al., 2006) have proved the capability of 
the nonparametric probabilistic approach to take into 
account model uncertainties and data uncertainties. 
The cost function used to formulate the robust design 
optimization problem is then defined as a function of 
the design parameter. Concerning the formulation of 
the cost function, the performance objective includes 
not only the target but also the robustness with respect 
to model uncertainties and data uncertainties. 

In section 2, the set of mean reduced matrix models 
related to the set of all the feasible designs is constructed 
by using the Benfield and Hruda substructuring 
technique (Benfield and Hruda, 1971). In section 3, the 
design optimization problem is formulated assuming 
no uncertainties in the model of the dynamical system. 
Section 4 is devoted to the implementation of the 
nonparametric probabilistic approach for model and 
data uncertainties. Section 5 concerns the construction 
of the cost function describing the target and the 
sensitivity of the dynamical system to uncertainties 
(performance objectives) in order to formulate the 

1 INTRODUCTION

Design optimization has become a major subject of 
interest in many industrial areas. The main challenge 
consists in including the effects of uncertainties in 
the design optimization problem (Taguchi et al., 
1989) called the robust design. In the context of 
mechanical engineering, the robust design leads to 
solve a nonlinear constrained optimization problem 
with numerical models which are little sensitive to 
uncertainties in the vicinity of the design point (see 
for instance (Parkinson et al., 1993; Ramakrishnan 
and Rao, 1996) for the early works and (Lee and Park, 
2001; Jung and Lee, 2002; Sandgren and Cameron, 
2002; Doltsinis and Kang, 2004; Zang et al., 2005; 
Papadrakakis et al., 2005) for the most recent advances 
concerning this research area). The main difficulty of 
such robust design optimization problems concerns the 
probabilistic model of uncertainties, whose relevance 
is a major factor for the robust design optimization 
problem. The use of an erroneous probabilistic model 
yields an erroneous optimal design. However there is 
no reason for that the responses of the real dynamical 
system which is manufactured from this erro n-
eous optimal design correspond to the performance 
objective. Until now, most of the published papers 
concerning robust design have been carried out in 
the context of static performances using parametric 
probabilistic models for modeling data uncertainties 
in the mechanical system. The robust design in the 
dynamic field is relatively recent (Doltsinis and 
Kang, 2004; Zang et al., 2005). In any case, all the 
works published until now concern robust design 
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robust design optimization problem with respect 1 
to model and data uncertainties. Finally, a numerical 
application is presented in section 6.

2 MEAN DYNAMICAL SYSTEM 

The dynamical system is made up of a given master 
system (a structure) coupled with a subsystem (a 
substructure) which has to be designed. The dynamical 
system is assumed to be linear and slightly damped. 
The equations are discretized by the finite element 
method and are written in the frequency domain. 
The frequency band of analysis is denoted by 
B. It is assumed that the master system has no 
rigid body displacements and that the subsystem is 
free with r rigid body modes. Let p = (p

1
,…, p

s 
) be 

the C
s
-vector of the design parameters (geometry, 

elasticity properties, boundary conditions, etc.). 
The vector of the design parameters belongs to an 
admissible set P  defined by the set of constraints 
prescribed by the design. For p fixed in P  and for 
ω fixed in B, the equation of the mean dynamical 
system is written as

A A1 2( ) ( , ) ( , ) ( , ),ω ω ω ω



 +


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
( ) =p u p f p  (1) 

in which u(p, ω) is the Cn-vector of the n DOF and 
f(p, ω) is the Cn-vector induced by the external forces. 
In Eq. (1), the symmetric n × n complex matrices 
[A1(ω)] and [A2(p, ω)] are the dynamical stiffness 
matrices of the master system and of the subsystem. 
It is assumed that vector f(p, ω) and matrix are 
[A2 (p, ω)] written as 

f p f f( , ) ( ) ( ),ω ω ω= +
=

∑0

1

p
i

i

i

s
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It should be noted that the theory presented in this 
paper is also valuable when this linear assumption is 
removed, but then requires the numerical calculation of 
the gradient and the Hessian of f(p, ω) and [A2(p, ω)] 
for each p in P. In this paper, the Benfield and Hruda 
dynamic substructuring method (Benfield and Hruda, 
1971) is used. Let [H(p)] be the projection basis 
corresponding to the Benfield and Hruda dynamic 
substructuring method and such that

u p p
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in which qi(p, ω) is the ℂNi-vector of the reduced 
coordinates, for i = {1, 2}. In the robust design 
optimization context, the probabilistic model of 
uncertainties must be independent of the value of the 
design parameter p. This implies that the projection 
basis for the subsystem must be independent of p. 
Consequently, a numerical value p

0
 of p is chosen as 

an initial design value. Let V
N
 be the subspace of Rn  

spanned by the N = N
1
 + N

2
 columns of [H(p

0
)]. The 

value of N is chosen (in studying the convergence) 
such that u(p, ω) belongs to V

N
 for all p in P. 

Equation (4) is then replaced by
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Projecting Eq. (1) in using Eq. (5) yields the mean 
reduced matrix equation

A A
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in which f
red

 (p, ω) = [H(p
0
)]

T

 f(p, ω) and where 

[A
red

1
(ω)] and [A

red

2
(p, ω)] are symmetric N × N complex 

matrices. Note that [A
red

1
(ω)] is a full matrix and that 

matrix [A
red

2
(p, ω)] is written as

 
. (7)

3 FORMULATION FOR THE DESIGN 
OPTIMIZATION PROBLEM WITH
A NUMERICAL MODEL WITH 
NO UNCERTAINTIES

In this Section, we remind a formulation to solve the 
design optimization problem assuming that there is no 
uncertainties. This formulation will be used to compare 
the solution of this deterministic design optimization 
problem with the robust design optimization solution 
presented in Section 5. Let w(p, ω) be the vector in 
Ck of the observations of the mean dynamical system, 
defined as a function of the displacement vector 
u(p, ω) such that

w p( , ) ( ( , )),ω ω
ω

= b u p
 

(8)

where bω is a given function from Cn into Ck depen
ding on the frequency ω. The performance objectives 
for the observations in the frequency band B

1
 ⊂ B 

will be defined as the “target”. This target is then 
represented by the function ω ֏ g(ω) from B1 into ℂk. 
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The cost function j ( )p
 is formulated as a distance 

between the target g and the observation w(p, .) and 
is written as

j( )

( , )

,p

w p g

g
=

⋅ −
B
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1

1

2

2

  

(9)

in which PgP2
B1 

=∫
B1

Pg(ω)P2 dω with Pg(ω)P the 

hermitian  norm of g(ω). The design optimization 
problem is formulated as the minimization of the cost 
function j

–
 (p) with respect to the design parameter 

p in the admissible set P : find pD in P such that 
 j
–
 (pD) ≤  j

–
 (p) for all p in P .

4 STOCHASTIC DYNAMICAL SYSTEM WITH 
MODEL AND DATA UNCERTAINTIES 

As explained in the Introduction, the robust  design 
optimization problem is formulated with respect to 
the model uncertainties and data uncertainties existing 
in the mean model of the dynamical system. In this 
Section, we introduce this nonparametric probabilistic 
approach of uncertainties (Soize, 2000; Soize, 2001; 
Soize, 2005b). It is assumed that the  mean model 
of the master system and subsystem contain model 
uncertainties and data uncertainties. The level of 
uncertainties of these two systems is a priori different 
and will be then characterized by different values of 
the dispersion parameters defined below. 

Let [ M
red
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red
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], [ K

red

1
] and [ M

2

s
(p)], [ D

2

s
(p)], 

[ K
2

s
(p)] be the mean reduced mass, damping, stiffness 

matrices of the mean master system and of the 
mean subsystem respectively. The dynamic stiffness 

reduced matrices are such that [A
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are positive symmetric N × N
 
matrices whose rank 
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The methodology of the nonparametric probabilistic 
approach consists in replacing the matrices [ M

red

1
], 

[D
red

1 ], [ K
red

1 ] and [ M 2
s(p)], [D2

s(p)], [ K2
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in which ε is the mathematical expectation.
The probability model for each one of these random 

matrices is briefly recalled below. Let [ E
i
(p)], i = {1, 2} 

be the positive symmetric n × n real matrix of rank m 
representing one of the matrices of the set {[M

red

1
], [D

red

1
], 

[K
red

1
]} when i = 1 or of the set {[M

2
s (p)], [D

2
s (p)], [K

2
s (p)]} 

when i = 2. Using the nonparametric probabilistic 
approach, the matrix [Ei(p)] is replaced by the random 
matrix [Ei(p)] such that 
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in which [Li
E
(p)] is a m × n rectangular real matrix 

such that [Ei(p)] = [Li
E
(p)]T [Li

E
(p)] and where [Gi

E
] 

is a random matrix with value in the set of all the 
positive-definite symmetric m × m matrices. All the 
details concerning the construction of the probability 
model of random matrix [Gi

E
] can be found in (Soize, 

2000; Soize, 2001; Soize, 2005b). The dispersion 
of the random matrix [Gi

E
] is controlled by one 

real positive parameter δ
E

i  called the dispersion 
parameter. This means that the dispersion parameters 
related to random matrices [G1

M
], [G1

D
], [G1

K
] and 

[G2
M
], [G2

D
], [G2

K
] are δ δ δ

M D K

1 1 1, ,  and δ δ δ
M D K

2 2 2, , . It 

should be noted that as a result of this theory, these six 
random matrices are independent random matrices. 
In addition, there exists an algebraic representation 
of these random matrices useful to the Monte Carlo 
numerical simulation. 

In coherence with the notation of Section 2, 
let U(p, ω) be the C

n
-valued random vector of 

the displacement. The equations of the stochastic 
reduced system corresponding to the nonparametric 
probabilistic model of uncertainties are given by 
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where Qi(p, ω) is the CN
i -valued random vector of the 

reduced coordinates, for i ∈ {1, 2}, solution of the 
random matrix equation 
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5 FORMULATION OF THE ROBUST 
DESIGN OPTIMIZATION PROBLEM WITH 
RESPECT TO MODEL UNCERTAINTIES 
AND DATA UNCERTAINTIES

In this Section, the robust design optimization problem 
is formulated with respect to model uncertainties 
and data uncertainties using the nonparametric 
probabilistic approach described in Section 4. The 
robust design optimization problem deals with the mini-
mization of a cost function with respect to the design 
parameter. The cost function is constructed with an 
uncertain numerical model. Contrary to the design 
optimization problem described in Section 3, the cost 
function is not defined for the performance of the 
mean dynamical system but is defined with respect 
to the performance of the stochastic dynamical 
system representing the real manufactured system. 
For the robust problem, the performance objectives 
are double: (1) minimizing the distance between the 
mean value of the stochastic observation and the target 
and (2) minimizing the sensitivity of the stochastic 
observation with respect to model uncertainties 
and data uncertainties. The solution of this robust 
design optimization problem yields an optimal 
value of the design parameter which corresponds 
to an optimal dynamical system from which the
real manufactured system fulfills the performance 
objectives.

In coherence with the notation introduced in
Section 3, let W(p, ω) be the Ck-valued random vari-
able modeling the random observation of the stochastic 
dynamical system. It is defined as a function of the 
random displacement vector U(p, ω) such that

W p b U p( , ) ( ( , )).ω ωω=  (15)
 

The cost function is then defined by 

j j( , ) ( ) ( ) ( ),p p pα α α σ= + −
1

21 2  (16)
 

where α belonging to [0, 1/2] is the weighting 
factor. In Eq. (16), the functions j

1
(p) and σ2 (p) are 

given by 

j
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in which µ(p, ω) = ε{W(p, ω)}. Note that j
1
(p) is 

related to a distance between the stochastic obser-
vation and the target. It allows the two performance 
objectives (1) and (2) to be simultaneously achieved. 
It can be shown that Eq. (16) can be rewritten as 

j( ) ( ,.) ( ) (p
g

p g p, ) .α α α σ= − + −( )1
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12

2 2

P P
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The robust design optimization problem is formu-
lated as a multi-objective optimization problem which 
consists to minimize the cost function p ֏ j(p, α) with 
respect to the admissible set P  of the design parameter 
p. For given dispersion parameters δ δ δ

M D K

1 1 1, ,  and  
δ δ δ

M D K

2 2 2, , and for a given value of α ∈ [ ]0,1 / 2 , the 
robust design optimization problem is written as: find 

 

p
RD

 in P  such that

j j( (p p p
RD, ) , ), for all inα α≤

 
P   

(20) 

The value of the weighting factor  characterizes  
the importance of each performance objective with 
respect to the other one and is adjusted in order to 
obtain the better solution. When α = 1/2, the weight 
of the performance objectives (1) and (2) are the same. 
For small values of α, the performance objective 
related to the robustness with respect to model and data 
uncertainties becomes more important with respect to 
the performance objective related to the target. Since 
the normalisation does not change the optimization 
problem, it should be noted that the formulation used 
is coherent with the usual formulation of the robust 
design optimization problem (Doltsinis and Kang, 
2004; Zang et al., 2005; Papadrakakis et al., 2005) 
when the target is not taken into account (g = 0) 
and for the mono-dimensional case (k = 1). Note 
that the definition of the robust design optimization 
problem is coherent with respect to the deterministic 
design optimization problem given in Section 3, i.e., 

limPδP ֏ 0  p
RD = pD  in which δ = ( )δ δ δ δ δ δ

M D K M D K

1 1 1 2 2 2, , , , , . 

Finally, the robust design optimization problem is 

solved by using the sequential quadratic optimization 
algorithm (Fletcher, 1980; Powell, 1983) coupled with 
the Monte Carlo numerical simulation.

6 NUMERICAL APPLICATION

6.1 Mean finite element model of the 
dynamical system 

The mean master system is an heterogeneous system  
made up of a plate with two attached lumped masses, 
one attached spring and 51 attached single DOF linear  
oscillators.

The plate is a thin plate in bending mode and is 
located in the plane (Ox, Oy) of a cartesian coordinate 
system (Oxyz). The out-plane displacements are only 
considered. The plate is made of a homogeneous, 
isotropic elastic material with mass density 7800 
Kg × m–3, Poisson ratio 0.29, Young modulus 
2 × 1011 N × m–2. The plate has constant thickness 

σ ε2

1

2

21

1

( ) ( ,.) ( ,.)p
g

= −{ }
B

B
W p pµ
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0.4 × 10–3 m, length 0.5 m and width 0.4 m. The 
plate is simply supported on three edges and is free 
on the fourth edge corresponding to y = 0. The 
mean finite element model of the plate is constituted 
of 2000 bending plate elements (with 4 nodes) and 
is shown in Fig. 1. A damping model is added to 
the plate corresponding to a hysteretic model with 
a mean loss factor 0.02. The two lumped masses 
have mass 4 Kg and 1 Kg, located at points (0.15, 
0.15, 0) and (0.2, 0, 0) respectively (see Fig. 1). The 
attached spring has stiffness 2.388 × 1011 N × m–1 
and is located at point (0.06, 0.23, 0) (see Fig. 1). 
The attached oscillators are grouped by sets of 3 
oscillators (see Fig. 1). The eigenfrequencies of 
these oscillators are in the band [350, 750] Hz. The 
mean subsystem to be optimized is constituted of 9 
identical vibration absorbers, each one being made 
up of 5 single DOF linear oscillators in parallel (see 
Fig. 1). The eigenfrequencies of the 5 oscillators are 
560, 565, 570, 575, 580 Hz. The critical damping rate 
is the same for the 5 oscillators and is 0.01. The five 
oscillators of a vibration absorber have the same mass 
m which has to be optimized. The total mass of the 
vibration absorbers is then defined by  m 
and is the design parameter of the mechanical system. 
The finite element model of the mean dynamical 
system (master system coupled with the five vibration 
absorbers) is thus constituted of n = 6106 DOF with 
n

1
 = 6052 internal DOF of the mean master system, 

n
2
 = 45 internal DOF for the mean subsystem and 

n∑ = 9 coupling interface DOF. The mean dynamical 
system is submitted to a given deterministic unit 
transverse load constant in frequency band [5, 1200] 
Hz with amplitude 1 (see Fig. 1). The observation 
chosen for the dynamic analysis is the signal energy 

related to the out-plane accelerations of the plate 
such that w(p, ω) = bω(u(p, ω)) = ω2||uplate (p, ω)|| in 
which uplate (p, ω) is the complex vector constituted of 
the 1960 out-plane displacements of the plate.

6.2 Reference solution for the master system

The design parameter is the total mass �m. Since 
the eigenfrequency and the critical damping of the 
oscillators of the vibration absorbers are fixed, the 
mass, damping and stiffness matrices of the subsystem 
are linear functions of the design parameter �m. In 
the present case, the excitation does not depend on 
�m. The reference observation w master(ω) is defined 
as the response of the mean master system. Figure. 
2 displays the graph of ω ֏ 20 log

10 
(ω master(ω)). In

Fig. 2, it can be seen that the level of the reference 
solution for the mean master system is lower than 
77.5 dB in the frequency band [400,700]Hz except 
for one single peak whose resonance occurs at 571 Hz 
with level 80.5 dB, i.e., 3 dB more.

6.3 Estimation of the numerical parameters for the 
robust design optimization problem

Let {W master(θ
j 
, ω), j = 1, …, n

s
} be the n

s
 independent 

realisations of random variable W master (ω). The robust 
optimization problem needs to solve the stochastic 
reduced equation Eq. (12). The numerical parameters 
are then the dimension N of the reduced dynamical 
system and the number n

s
 of realizations used in 

the Monte Carlo numerical simulation. Therefore 
a convergence analysis has to be performed with 
respect to N and n

s
 for the stochastic reduced system. 

Nevertheless, we have verified that the numerical 
parameters identified for the stochastic master 
system give convergent results for the stochastic 
reduced system. The computation is performed for 
the dispersion parameters of the master system such 
that δ

M

1 = δ
D

1 = δ
K
1 = 0.05. A stochastic convergence 

Figure 1. Finite element mesh of the dynamical system: attached 

spring (n), attached lumped mass (l), attached set of 3 single 

DOF linear oscillators (∆), vibration absorbers (s), excitation 

node (u), simply supported boundary (thick line), free boundary 

(thick dashed line).

Figure 2. Reference observation of the mean master system. 

Graph of function ν ֏ 20 log
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 (wmaster(2 π ν)). Horizontal axis 

is the frequency ν in Hz.
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analysis with N
2
 = n

2 
+ n∑ = 54 is carried out in 

order to define the number N
1
 of modes to be kept in 

the modal reduction and the number n
s
 of realizations. 

The mean-square convergence is analyzed by studying 
the function (n

s
, N

1
) ֏ Conv (n

s
, N

1
) defined by

Conv d2 master( , ) ( , ))n N
n

W
s

s j

n

j

s

1
1

21
= ∫∑

= B

P θ ω ωP ,,  (21)

in which W master(θ
j 
, ω) is calculated with a reduced 

model of dimension N = N
1
 + N

2
. Figure 3 displays 

the graph of n
s
 ֏ 20 log

10
(Conv (n

s
, N

1
)) for N

1
 = 300. 

It can be seen that a reasonable convergence is 
reached for n

s
 = 300. Figure 4 displays the graph 

N
1
 ֏ 20 log

10 
(Conv (n

s
, N

1
)) for n

s
 = 300. Convergence 

is reached for N
1
 = 225.

6.4 Target and its comparison with the 
reference observation

The robust design optimization is carried out over 
the frequency band B

1
 = [500, 600]Hz in which 

the response of the mean master system presents a 
resonance the level of which being 80.5 dB (see 
Fig. 5). The target is defined in order to limit the 
vibration level in band B

1
. Figure 5 shows the target 

ω ֏ 20 log
10 

(g(ω)) related to the reference observation 
ω ֏ 20 log

10 
(ωmaster(ω)) defined in Section 6.2.

6.5 Robust design optimization

Below, the robust design optimization is carried 
out with δ

M

1 = δ
D

1 = δ
K
1 = 0.05 for the master system 

and with δ
M

2 = δ
D

2 = δ
K
2 = 0 for the subsystem (no 

uncertainties in the subsystem) with N
1
 = 225 and 

n
s
 = 300. The admissible set for design parameter   

is defined such that  ∈[4.5 × 107, 1.8 × 10–3]Kg. We 
are interested in comparing the design optimization 
(no uncertainties) with the robust design optimization 
(with uncertainties) for a weighting factor α which 
is chosen as 0.5. The design optimization yields 
optimal design parameters D = 2.6 × 10−4 Kg 
and RD= 8.12 × 10−4 Kg. A stochastic dynamical 
analysis of each one of the two optimal designs is then 
carried out in order to analyze the sensitivity of these 
two optimal designs with respect to model and data 
uncertainties. Let µ ω µ ω σ ω σ ωD RD D RD( ), ( ) ( ), ( )and  
be the mean values and the standard deviations of 
the random observations WD(ω) and WRD(ω) defined 
by WD(ω) = W( D,ω), WRD(ω) = W( RD, ω). The 
results are PσDP

B1
= 6.0408 × 10−2PgP

B1
 and PσDP

B1
= 

5.8877 × 10−2PgP
B1

 which means that the robust 
design optimization yields an optimal design slightly 
more robust than the design optimzation. However, 
we have PµDP

B1
= 9.4082 × 10−1PgP

B1
 and PµRDP

B1
= 

9.2634× 10−1PgP
B1

, which means that the mean value 
given by the robust design is slightly farther from 
the target than the mean value given by the design 
optimization.

0 100 200 300 400 500
126.3

126.35

126.4

126.45

Figure 3. Convergence analysis : Graph of function n
s
 ֏ 20 log

10 

(Conv(n
s
, N

1
)) for the stochastic master system with N

1
 = 300. 

Horizontal axis is n
s
. 
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Figure 4. Convergence analysis : Graph of function N
1
 ֏ 20 

log
10 

(Conv(n
s
, N

1
)) for the stochastic master system with n

s
 = 

300. Horizontal axis is N
1
.
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Figure 5. Deffinition of the target ν ֏ 20 log
10

 (g(2 π ν)) (thick 

dashed line). Comparison with the reference observation ν ֏ 

20 log
10

 (wmaster(2 π ν)) (thin solid line) in the frequency band 

B
1
 = [500, 600] Hz (horizontal axis).
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Similarly to the stochastic case, let w 

D(ω) = 
w ( D, ω) and w 

RD (ω) = w ( RD, ω). Fig. 6 displays 
the comparison of the target with the response of the 
mean models corresponding to the design optimization 
and corresponding to the robust design optimization.

For all ω fixed in B, the confidence interval of 
the random variable WRD(ω) is constructed for a 
probability level P

c
 = 0.95 using the sample quantiles 

(Serfling, 1980).
Figure 7 compares the reference solution (response 

of the mean master system) ω ֏ 20 log
10 (w 

master (ω)) 
with the confidence region of the robust design 
optimization. In particular, the resonance of the 
reference solution occuring at frequency 571 Hz has 
been reduced (about of 3 dB or 4 dB) by the robust 

design optimization process. It can be seen that the 
response of the mean master system belongs to the 
confidence region of the response of the stochastic 
system corresponding to the robust design optimization 
except in the frequency band B

1
 for which the target 

is active. 
Figures 8 and 9 compare the reference solution 

ω ω ω(֏ ))20 log10 master
(  with the confidence regions 

of the random responses ω ֏ 20 log
10 

(WD(ω)) 
corresponding to the design optimization and ω ֏ 
20 log

10 
(WRD(ω)) corresponding to the robust design 

optimization for a probability level P
c
 = 0.95 in the 

frequency band B
1.

In Fig. 9, there are five resonances which occur 
at frequencies 508 Hz, 524 Hz, 539 Hz, 571 Hz and 
583 Hz. In Figure. 9, for peaks number 1 and 4, it can 
be seen that the robust design optimization yields 
similar results to the design optimization. For peaks 
number 2 and 5, the robust design optimization yields 
lower responses levels. Moreover, the confidence region 
is particularly narrow in the frequency band [550, 
600] Hz which means that the optimum design is more 
robust with respect to model and data uncertainties 
than in the frequency band [500, 550] Hz.
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Figure 6. Comparison of the target ν ֏ 20 log
10

 (g(2π 

ν)) (thick dashed line) with the response of the mean 

model corresponding to the design optimization ν ֏ 20 log
10

 

(wD(2π ν)) (thin dark gray line) and corresponding to the robust 

design optimization ν ֏ 20 log
10

 (wRD(2 π ν)) (thin light gray 

line) for α = 1/2. Horizontal axis is the frequency ν in Hz.
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Figure 7. Comparison of the reference observation ν ֏ 20 log
10

 

(wmaster(2 π ν)) (thin solid line) with the confidence region (light 

gray region) of random response for the robust design, over the 

band B = [5, 1200]Hz (horizontal axis) and for α = 1/2 and

a probability level P
c
 = 0.95. Horizontal axis is the frequency 

ν in Hz.
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Figure 8. Comparison of the reference solution ν ֏ 20 log
10

 

(wmaster(2πν)) (thin solid line) with the conf idence region 

(dark gray region) of the random response ν ֏ 20 log
10

(WD(2πν)) corresponding to the design optimization and 

with the confidence region (light gray region) of the random 

response ν ֏ 20 log
10

 (WRD(2πν)) corresponding to the robust 

design optimization. Horizontal axis is the frequency ν in Hz.
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7 CONCLUSION

In this paper, we have presented an approach which 
allows the robust design optimization problem to 
be formulated and solved in presence of model 
uncertainties. Model uncertainties are taken into 
account with a nonparametric probabilistic approach. 
Thanks to an adapted algebraic development, the num-
erical optimization problem is solved with accuracy 
and with a low numerical cost. The approach proposed 
is general and can be used for analyzing complex 
dynamical systems in computational mechanics.

ACKNOWLEDGMENT

This research has been partially financed by the French 
National Research Agency (ANR) through project 
CORODYNA (Ref ANR-05-BLAN-0082-01).

REFERENCES

Benfield, W.A., and Hruda, R.F. 1971. Vibration analysis of 

structures by component mode substitution. AIAA Journal 

9(7): 1255–1261.

Capiez-Lernout, E., et al. 2006. Data and model uncertainties in 

complex aerospace engineering systems. Journal of Sound 

and Vibration  295(3–5): 923–938.

Capiez-Lernout, E., et al. 2005. Blade manufacturing tolerances 

definition for a mistuned industrial bladed disk. ASME 

Journal of Engineering for Gas Turbines and Power 127(3): 

621–628.

Chebli, H., and Soize, C. 2004. Experimental validation of a 

nonparametric probabilistic model of nonhomogeneous 

uncertainties for dynamical systems. Journal of the  

Acoustical Society of America 115(2): 697–705.

Chen, C., Duhamel, D., and Soize, C. 2006. Probabilistic 

approach for model and data uncertainties and its 

experimental identification in structural dynamics: case of 

composite sandwich panels. Journal of Sound and Vibration 

294(1–2): 64–81.

Doltsinis, I., and Kang, Z. 2004. Robust design of 

structures using optimization methods. Computer Methods 

in Applied Mechanics and Engineering 193(23–26): 

2221–2237.

Duchereau, J., and Soize, C. 2005. Transient dynamics in 

structures with nonhomogeneous uncertainties induced by 

complex joints. Mechanical Systems and Signal Processing 

20(4): 854–867.

Durand, J.-F., Gagliardini, L., and Soize, C. 2005. Nonparametric 

modeling of the variability of vehicle vibroacoustic behavior. 

Proceedings on the SAE Noise and Vibration Conference 

and Exhibition, Traverse City, Michigan, USA, 16–19 May 

2005. ISBN 0 7680 16576.

Fletcher, R. 1980. Practical methods of optimization, constrained 

optimization (2). John Wiley and Sons.

Jung, D.H., and Lee, B.C. 2002. Development of a simple 

and efficient method for robust design optimization. 

International Journal for Numerical Methods in Engineering 

53(9): 2201–2215.

Lee, K.-H., and Park, G.-J. 2001. Robust optimization 

considering tolerances of design variables. Computers & 

Structures 79(1): 77–86.

Papadrakakis, M., Lagaros, N.D., and Plevris, V. 2005. Design 

optimization of steel structures considering uncertainties. 

Engineering Structures 27(9): 1408–1418.

Parkinson, A., Sorensen, C., and Pouhassan, N. 1993. A general 

approach for robust optimal design. ASME Journal of 

Mechanical Design 115(1): 74–80.

Powell, M.J.D. 1983. Variable metric methods for constrained 

optimization. Mathematical Programming: the state of the 

art, 288–311.

Ramakrishnan, B., and Rao, S.S. 1996. A general loss function 

based optimization procedure for robust design. Engineering 

Optimization 25(4): 255–276.

Sandgren, E., and Cameron, T.M. 2002. Robust design 

optimization of structures through consideration of variation. 

Computers  Structures 80(20–21): 1605–1613.

Serfling, R.J. 1980. Approximation theorems of mathematical 

statistics. Wiley, New York.

Soize, C. 2000. A nonparametric model of random uncertainties 

for reduced matrix models in structural dynamics. 

Probabilistic Engineering Mechanics 15(3): 277–294.

Soize, C. 2001. Maximum entropy approach for modeling 

random uncertainties in transient elastodynamics. Journal 

of the Acoustical Society of America 109(5): 1979–1996.

Soize, C. 2005a. Probabilistic models for computational 

stochastic mechanics and applications. Proceedings on 

the 9th International Conference on Structural Safety and 

Reliability ICOSSAR’05, Rome, Italy, 19–23 June 2005. 

G. Augusti, G.I. Schueller and M. Ciampoli, Millpress, 

Rotterdam, Netherlands, ISBN 90 5966 0404.

Soize, C. 2005b. Random matrix theory for modeling random 

uncertainties in computational mechanics. Computer 

Methods in Applied Mechanics and Engineering 194 (12–16):

1333–1366.

Taguchi, G., Elsayed, E., and Hsiang, T. 1989. Quality 

engineering in production systems. McGraw-Hill.

Zang, C., Friswell, M.I., and Mottershead, J.E. 2005. A review 

of robust optimal design and its application in dynamics. 

Computers & Structures 83(4–5): 315–326. 

500 520 540 560 580 600

72

73

74

75

76

77

78

79

80

81

1
2

3
4 5
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(wmaster(2πν)) (thin solid line) with the two confidence regions 
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