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Disclaimer
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Abstract—In this paper, we analyze phenomena related to
user clumps and hot spots occurring in mobile networks at the
occasion of large urban mass gatherings in large cities. Our
analysis is based on observations made on mobility traces of GSM
users in several large cities. Classical mobility models, such as
the random waypoint, do not allow one to represent the observed
dynamics of clumps in a proper manner. This motivates the
introduction and the mathematical analysis of a new interaction-
based mobility model, which is the main contribution of the
present paper. This model is shown to allow one to describe the
dynamics of clumps and in particular to predict key phenomena
such as the building of hot spots and the scattering between
hot spots, which play a key role in the engineering of wireless
networks during such events. We show how to obtain the main
parameters of this model from simple communication activity
measurements and we illustrate this calibration process on real
cases.

I. INTRODUCTION

Traces collected by wireless operators in urban environ-

ments during multi event mass gatherings reveal that user

mobility is extremely volatile and leads to the formation of

hot spots, exemplified on the snapshot of Figure 1 which was

gathered during one the 2008 Paris Fête de la Musique, where

unpredicted gatherings are triggered by a large number of

spontaneous street concerts taking place throughout the city.

Such observations have also been made during other events,

like a summer festival in Poland and Euro2008 soccer matches

in Spain and in Romania. A key phenomenon within this

context concerns the dynamics of these hot spots, namely their

formation and their disaggregation which is random both in

space and time.

Accurate and yet tractable user mobility models allowing

one to represent these phenomena would significantly improve

the robustness and the realism of the simulators and the

analytical models used by wireless communication operators.

They would hence ameliorate the understanding of the impact

of mass mobility on QoS within this setting. Predicting hot

spots dynamics could also help in the design and the tuning

of adaptive radio resource allocation schemes, where it is

fundamental to have an idea of some time caracteristics of the

system. This allows a better utilization of the corresponding

infrastructure and eventually a better QoS and better services

to end users. As existing models are not completely adapted

to the phenomena we observe on traces, such as the random

dynamic hot spot phenomena alluded to above, we propose a

new mobility model taking into account interaction between

different users and show by a mathematical analysis based

on Markov chain theory that this interaction-mobility model

is sufficient to generate random hot spots. For this, we will

represent an urban area as a collection of potential hot spot

zones. These zones represent potentially attractive points in

the city during such mass gatherings.

The basic assumption in our model is that users influence

each other. In Section III, we first study the ”sheep model”,

where this mutual influence is particularly strong and where

hot spots form at random in time and space, but are stable

once formed (i.e. there is no disaggregation of hot spots in

this model yet). We start with the 2-zone case, in which we

find closed forms for the mean time for the formation of a

stable hot spot and for the law of its location. We also give

asymptotic estimates for these quantities, and upper bounds

on the convergence speed. We then generalize the previous

results to an arbitrary number of zones.

Section IV introduces the ”sheep and maverick” model,

which is more realistic, yet tractable, and which features all

key phenomena identified on the traces and alluded to above :

the formation of hot spots at random times and places, that we

will refer to as filling, their disaggregation that we will refer

to as scattering, and the dynamics between them.

In a last part, we leverage filling and scattering in the ”sheep

and maverick” model to calibrate our mobility model and show

that it can be made consistent with the traces.

Fig. 1. Communication activity during Fête de la Musique in Paris, on June
21st , 2008. It is 11 :23 pm. One can observe important hot spots in the center
(Châtelet, Bastille, Saint-Michel) as well as at the Parc des Princes (the city
stadium) and Auteuil (the city park).
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II. THE NEED FOR A NEW MODEL

First, let us describe more precisely the phenomenon we

want to model. A first remark is the existence of hot spots,

that follow some dynamics. On the snaphots of Fig. 2, the

crowd moves in large numbers outside a zone : we shall call

that a hot spot scattering. A new or a few new hot spots then

build up at other locations : we shall call that a hot spot filling.

We now survey existing mobility models and discuss how

they could be adapted to cope with these phenomena.

The most popular mobility model used in communication

networks is probably the Random Waypoint Model (see [9]).

This model is easy to simulate and is analytically tractable

in many situations depending of the mobility rules of the

individuals on the domain (wrap around, edge reflection...).

However, it applies to a single mobile user, or to a collection

of users moving independently.

Using this model, in order to take clumping into account, we

would have to choose a trip selection rule which gives more

mass to potentially attractive zones. As a consequence, the

law of the location of a single user would clearly favour these

zones. However, such a situation prevents any macroscopic

time dynamics. Indeed, with a large number of independent

users, all following the same law, each snapshot would be

more or less the same, very close to the theoretical location

law1.

Thus, all clumps would happen at predefined locations and

the sudden hot spot scattering as well as the sudden new hot

spot aggregation observed in our traces would happen with

extremely small probability.

More generally, any multi user model built from the super-

position of many independent single user motions will exhibit

the same ”lack of hot spot dynamics”, while a key point

observed within traces is a strong dependence between users,

since there is clearly a joint motion from a hotspot to another

leading to reinforced clumping in the corresponding zone.

Nomadic Community Mobility Model or Reference Point

Group Mobility Model (see [1]) consist in making small

groups of users move in a mean given direction, while the

users themselves are allowed to walk here and there around the

imposed direction. These models are well adapted for a group

of visitors in a museum for instance, where the trajectory is

more or less the same for everyone. However, such a system

does not allow us to make groups scatter.

Let us now review some ideas about modelling users’

interactions. Since we need a strong dependence among users,

1This follows directly from Sanov’s theorem (see [3], Theorem 6.2.10). Let
us denote by µ the law of the location of a single user. Let X1, X2, . . . Xn

be the locations of n users randomly and independently located according
to µ. Let µ̂n = 1

n

∑n
k=1 δXk

be the empirical measure associated with
a snapshot : Then for all given events B, Sanov’s theorem states that, for
large values of n, P(µ̂n ∈ B) ∼ exp [−n infν∈B H(ν|µ)], where H(ν|µ)
denotes the Kullback-Leibler divergence between the two probability measures
µ and ν. In particular, if B represents the fact that users do not clump
where they should according to µ, H(ν|µ) will be large for ν ∈ B, and
the probability to make such an observation will be extremely small when n
is large.

19h47

22h17

21h06

23h17

Fig. 2. Communication activity in Paris on June 21st, 2008, between 07:47
pm and 11:17 pm. One can observe scattering from the Parc des Princes
(south) to Auteuil (north).

a natural attempt could be to work with permanental processes

([12]) that are known to exhibit frequent clumping. However,

permanental processes are nothing but particular Cox pro-

cesses (see [12], Remark 3.6.3.). This means that we would

have to choose an underlying intensity measure which varies

over time to cope with the dynamics of clumping zones, which

is as difficult as building directly a convenient model.

As for determinantal processes, very little has been writ-

ten yet about time-dependent versions. One way consists

in starting from a gaussian analytic function, for instance

f(z) =
∑

n≥0 anz
n, where the an’s are i.i.d. Gaussian. Such

a series converges almost surely on the unit disk, and its zeros

form a determinantal process. It is then easy to make the an’s

time-dependent, by using Ornstein - Uhlenbeck processes for

instance (see [14]). The spatial processes we obtain are in

fact almost exclusively distributed on the edge of the unit

disk2. Such a phenomenon is too extreme for our purpose.

For instance, it would be better adapted to model a wave of

panick.

Another class of mobility models that could be considered

is the class of spatial birth and death processes (see [4])

first studied by Preston in 1975 (see [13]). Such a process

can simulate characteristic point patterns if one chooses its

2In fact, this is a direct consequence of the Peres & Virág theorem (see
[12], Theorem 4.1.1.), which states that the n-th joint intensities of the zeros
is given by :

ρn(z1, . . . , zn) =
1

πn
det

[

1

(1 − ziz̄j)2

]

.

In particular, ρ1(z) = 1/π(1 − |z|2).
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stationary distribution in a proper manner. Furthermore, in

contrast to the random waypoint model, it provides a real time

dynamics. However, this model is known to lead to Gibbs point

processes which are usually not analytically tractable.

This state of the art leads us to the conclusion that there is

a need for a tractable model allowing one to exhibit the type

of hot spot dynamics observed in communication traces.

III. THE SHEEP MODEL

The aim of this section is to model user clumping in some

predefined zones. The basic idea is that users tend to move

towards places where there are already more people, creating

a self-enhanced clumping.

A. General Overview

Let us divide the city into K zones, that are exchanging

mobiles one with another. In each zone, a mobile waits during

an exponential time with parameter µ before deciding whether

to change its zone or not.

In a first step, let us suppose that the mobiles are totally

influenced by their environment : they behave as sheep. They

decide to move towards one zone or another with a probability

proportional to the current repartition of the population (see

Fig. 3) of the zone. In other words, if we denote by N the

total number of mobiles, by n1 the number of mobiles in the

first zone, by n2 the number of mobiles in the second zone,

etc., a mobile from the k-th zone decides to move to the k′-th
zone with probability nk′/N . Conversely, he decides to stay

in the k-th zone with probability :

nk

N
= 1−

∑

k′ 6=k

nk′

N
.

Obviously, there are K absorbing states, which correspond

to the situation where all mobiles are in the same zone (these

are the K stable hot spots mentioned in the introduction).

Fig. 3. The sheep model. Here, N = 7 and K = 4. The mobile in the upper-
left corner has 4 choices. The four decision probabilities are proportional to
the numbers of mobiles.

If we denote a state by n = (n1, . . . , nK), then an absorbing

state is given by :

Nek = (0, . . . , N, . . . , 0)
︸ ︷︷ ︸

k−th position

, 1 ≤ k ≤ K.

We first study the 2-zone case for the sake of progressive

exposition.

B. The 2-zone Problem

In this section we take K = 2. Let us denote by

n(t) = (m(t), N −m(t)) the state of the system at time t.
Each mobile stays in his zone during a random exponential

time with parameter µ, before deciding whether to move or

not. All waiting times are supposed to be independent. In other

words, the system features a superposition of N exponential

clocks (m clocks in the left zone and N−m in the right zone).

In the left zone for instance, the superposition of all waiting

times should be an exponential clock with parameter µm, but

there is not always a transition, since mobiles have the choice

between moving and staying. Since the probability of moving

is (N −m)/N , the actual resulting clock is a thinning of the

µm-clock with probability (N − m)/N . As a conclusion, it

is a µm(N −m)/N -clock. The same proof could be derived

for the right zone.

Thus, the whole process is Markov, with transitions de-

scribed in Fig. 4.

Fig. 4. Diagram of the markovian transitions.

Let us denote by Q = (qm,m′) the infinitesimal generator.

1) Mean Absorption Time: We are interested in charac-

terizing mobility between different zones. For instance, we

would like to give an estimate of τ , the first time to reach an

absorbing state, starting from the current state of the network

n : τ = inf{t/n(t) = (0, N) or (N, 0)}. The average value

of τ is given by hn = E[τ |n(0) = n]. We know (see [11],

Theorem 3.3.3. about hitting times) that the vector h is the

minimum solution of the equation :
{

h(0,N) = h(N,0) = 0

∀m /∈ {0, N},
∑

0<i<N qmih(i,N−i) = −1.
(1)

We prove in appendix A that :

hm,N−m =
1

µ




∑

0≤i<m

N −m

N − i
+

∑

0≤i<N−m

m

N − i



 . (2)

2) Asymptotic Estimate: Typically, N corresponds to the

number of users in a city district, thus it is quite large. In order

to speed up computations, it can be useful to use an asymptotic

estimate of hn. Let x = n1/N , for 1 ≤ n1 ≤ N −1. We want

an estimate that can be used for large values of N , and for

all values of x. This means that the quality of this estimate

should only depend on N . Since N is large, we consider x as a
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continuous variable taking its values in ]0, 1[. The computation

in appendix A gives :

hn ≈ −
N

µ
((1− x) log(1− x) + x log(x)) (3)

and rn ≤ 2/µ, where rn is the absolute error of the approxi-

mate. Note that (3) is always an equivalent in the mathematical

sense, even when hn is minimal, that is, when n = 1/N or

(n− 1)/N . Indeed, in that case the approximate is equal to :

−
N

µ

(
1

N
log

(
1

N

)

+
N − 1

N
log

(
N − 1

N

))

∼
log(N)

µ
,

whereas rn remains bounded. Fig. 5 exemplifies the approxi-

mation curve.

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

Fig. 5. Asymptotic estimate of hn [in min]. N = 80 and µ = 1 min−1.
The circles represent hn, and the continuous line represents the estimate.

3) Absorption Probability: So far we have obtained a

closed form for the mean absorption time, as well as an asymp-

totic estimate. Now we would like to determine the probability

to reach state (0, N) rather than state (N, 0), starting from

n = (m,N −m). We shall denote this probability by pn.

Using Q, we obtain the transitions for the imbedded Markov

chain of the process (see Fig. 6).

Fig. 6. Imbedded Markov chain of the process.

Conditioning with respect to T1, the first transition time,

and using Markov property, we get

pn =
1

2
p
n+(−1,1) +

1

2
p
n+(1,−1).

Using the fact that p(0,N) = 1 and p(N,0) = 0, we conclude

immediately that :

pn = n2/N. (4)

C. More Clumping Zones

We now consider the same problem with K zones.

1) Description of the system: Now a state is a K-uple

n = (n1, n2, . . . , nK), with
∑

nk = N . Hence the space of

possible states is a (K − 1)-dimensional variety. A transition

from the k-th zone to the k′-th zone is given by :

n 7→ n
′ = n+ ek′ − ek (5)

(we merely introduced a migration operator in Kelly’s sense,

see [8], 2.3.). In the most general case, there are K(K − 1)
possible transitions (corresponding to existing couples (k, k′)).
The transition rate corresponding to the mobility k → k′ is

given by :

qnn′ =
µnknk′

N
.

Fig. 7. Mean absorption time [in min] for N = 50, K = 3 and
µ = 1 min−1. The z-axis represents the time, whereas the initial state is
represented on the horizontal plane, in barycentric coordinates with respect
to each of the three absorbing states.

2) Absorption Time: Generalizing equation (2) leads to :

hn =
1

µ

∑

1≤k≤K

∑

0≤i<nk

N − nk

N − i
(6)

(for a proof, see appendix B).

On fig. 7, we propose a 2-dimensional surface representing

the mean absorption time for K = 3.

Then, defining xk = nk/N , it is immediate to generalize

equation (3) to find :

h(x) ≈ −
N

µ

∑

k

(1− xk) log(1− xk) (7)

and |r(x)| ≤ K/µ.

3) Absorption Probability: In the same way as in section

III-B3, we can compute the probability to reach an absorbing

state rather than another one, for example say NeK . We use

recursive formulas between a state and its neighbours. For

example, in the most general case, we have :

pn =

∑6=
(k,k′) nknk′pn+e

k′−ek

∑ 6=
(k,k′) nknk′

.
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Using then the fact that ∀k 6= K, pNek
= 0, we obtain

all the pn’s recursively. In fact, it is quite easy to generalize

equation (4) to obtain pn(K) = nK/N = xK .
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Fig. 8. Reaching probability for N = 50, K = 3 and µ = 1 min−1.

IV. MAVERICKS AND HOT SPOTS DYNAMICS

So far, we have modeled the phenomenon of clumping

in one given zone, which is only an aspect of what can be

observed in dense urban networks during exceptional events.

The sheep model has a major drawback, which prevents it

to fit reality : as soon as it has reached an absorbing state, it

does not evolve any more. This does not account for scattering,

where a hot spot suddenly disaggregates before reforming in

other zones.

This section aims at modeling scattering. We introduce some

users, the mavericks, who are not influenced by the others. In

the model, mavericks coexist with sheep. During a transition,

mavericks choose uniformly their target zone, including their

current zone, independently from other mobiles (which is a

simple instance of independent random waypoint motion). In

this new model, states of the form Nek are not absorbing

anymore.

We introduce maverickness as follows3 : at each transition,

an individual decides to behave as a maverick with probability

α (α is the maverickness rate), and as a sheep with probability

1−α. The new rate of the (k → k′) transition is hence given

by :

qnn′ = µnk

(

α ·
1

K
+ (1 − α)

nk′

N

)

.

A. Mean Reaching Time

We call reaching time the time to reach any extremal state,

namely a state of the form Nek from some k. On Fig. 9,

we have plotted the evolution of the mean reaching time with

respect to α.

As α grows, one can observe several phenomena :

3There are several possible coexistence models. A first model would consist
in choosing a fixed population of sheep and mavericks at the beginning of the
evolution; the main objection against this model is that it is quite constrained :
suppose there are only 20 individuals; if we want to reach a ”maverickness”
rate of 0.01% for example, this is impossible.
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(f) α = 0.1

Fig. 9. Mean reaching time [in min] for N = 50, K = 3 and µ = 1 min−1.
The maverickness rate α grows from 0 to 0.1. Note that the scale of the z-axis
varies.
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Fig. 10. Maximal mean reaching time [in min] with respect to α. N = 50,
K = 3 and µ = 1 min−1.

• The mean reaching time grows exponentially with α. On

Fig. 10, we have plotted the maximal mean reaching time

with respect to α (this corresponds to the case where all

zones initially contain each approximately N/K individ-

uals).

• On Fig. 9, as α increases (in other words, as the system

becomes saturated by mavericks), the surface becomes

very quickly plateau-shaped (this is already the case for

α = 0.08). Apart from the regions close to extremal

states, all reaching times are more or less the same, which

means that reaching times become insensitive to initial
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state. Even if the system starts from a state close to an

extremal point, it takes a large excursion and a long time

to reach one of the extreme states. It is interesting to

observe that such a small proportion of mavericks can

induce such a perturbation (for further details, see section

IV-B). This is not yet a proof but just an indication that

there is scattering (we propose a systematic study of

scattering in section IV-C).

B. Phase Transition

To characterize the phase transition observed in Fig. 9, we

calculate the invariant measure π of the ”sheep and maverick”

Markov process, and observe whether there is a value of α for

which all configurations are equiprobable. π is given by the

equation πQ = 0. Let β = α
K(1−α) , we have :

π(n) = A

K∏

k=1

1

nk!

nk−1∏

i=0

(Nβ + i), (8)

where A is a normalizing constant. This result is proved in

appendix C. On Fig. 11, we plot the invariant measure with

respect to α for K = 2 and N = 50. As already indicated

by Fig. 9, it appears that when α grows, the influence of

mavericks is more and more noticeable. For higher values of

α, the probability is more concentrated on uniformly-spread

states.
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Fig. 11. Invariant measure for N = 50, K = 2 and µ = 1 min−1. When
α exceeds 0.038, the shape of the curve reverses.

There is a critical value αc where the curve’s shape reverses.

What does the transition look like? Is it possible to obtain a

completely flat curve (or surface in the general case) ?

Expression (8) shows that it is possible. It is sufficient to

impose Nβ − 1 = 0 to obtain a uniform distribution. This

corresponds to the critical value :

αc =
K

N +K
.

• for α < αc, the influence of the sheep remains noticeable.

This is the most interesting case, because the system still

exhibits clumping.

• for α = αc, all states are equivalent4.

• for α > αc, the sheep loose very fast their influence.

As traces reveal the existence of clumping, we shall assume

until the end of the paper that α < αc.

C. Macro-states and Hot Spot Dynamics

The system is fully characterized by four parameters, which

are N , K , µ and α. The three first parameters can be directly

measured, but α cannot. And yet, it is of major importance.

In a sense, it represents the propensity of users to clump.

How can we make it best fit reality ? We would like to find

a typical characteristic of the system, easy to measure and

strongly related to α. This is what this subsection aims at.

Let us study further the case α < αc. If we simulate

such a system, we observe clumping as expected, but we

also observe scattering. We would like to evaluate how often

a scattering happens. However, extremal states of the form

Nek are extremely rare, so that it would be difficult to base

our analysis on them. We will rather consider ”macro-states”,

which are the union of several states close to one of the

extremal states.

For example, let us denote by Ak the macro-state in

which the k-th zone contains a significant proportion of the

population : Ak = {n : nk > Nsup}, where Nsup is an lower

bound for a zone to be considered as dense. Conversely, we

define Bk = {n : nk < Ninf}, where Ninf is a lower bound.

Then a scattering is simply a transition from Ak to Bk. More

precisely, for k fixed, we define the corresponding scattering

time Sk as the duration between the first instant when we reach

Ak and the first instant when we reach Bk after that. Another

option would have consisted in using the last time we leave Ak

before reaching Bk in place. But this is not a stopping time,

which would make such a choice more difficult to handle using

Markov chain theory. Hence the former definition.

The expectation of Sk only depends on initial state, regard-

ing that we start in Ak or not. If we do not start in Ak, then

almost surely nk will be equal to Nsup+1 when we reach A.

4As N → ∞, this assumption can be interpreted as follows : since
αc ∼ K/N , it means that, asymptotically, it is enough to have only one
maverick per zone to saturate the system, which is quite surprising.
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It is shown in appendix D that E[S|n(0) = n] is given by

the following analytic expression :

N

µ(1− α)

nk∨(Nsup+1)
∑

l=Ninf

N∑

j=l

∏

l≤i<j δ(i)

j(N(K − 1)β +N − j)
, (9)

with

δ(i) =
(N − i)(Nβ + i)

i(N(K − 1)β +N − i)
.

The expression in (9) only depends on the initial state, and in

particular on whether it belongs to Ak or not. If we are not in

Ak, then (9) does not depend on n. By symmetry w.r.t. k, we

can denote it by E[S]. Fig. 12 depicts the evolution of E[S]
in function of α for several values of N .

Let αmin be the value of α such that E[S] is minimum. For

certain values of N , E[S] is strictly decreasing over [0, 1],
so that αmin = 1, but for some other values of N (like

N = 1000), E[S] starts increasing after αmin.

Fig. 12. Mean scattering time [in min] with respect to α. Nsup/N = 80%,
Ninf/N = 20%, K = 3 and µ = 1 min−1. For each curve, the vertical solid
line corresponds to the critical value αc, while the dotted line corresponds to
αmin (whenever it is less than the right bound of the axis).

In the same way, we can compute the mean ”filling time” F
of a zone, which is the dual of the scattering time, and which

we propose to define as the time for the population in a given

zone to grow from Ninf to Nsup. We have :

E[F ] =
N

µ(1 − α)

N−Ninf+1∑

l=N−Nsup

N∑

j=l

∏

l≤i<j ǫ(i)

j(Nβ +N − j)
, (10)

with

ǫ(i) =
1

δ(N − i)
=

(N − i)(N(K − 1)β + i)

i(Nβ +N − i)
.

Note that it is easy to find some recursive formulas for the

computation of E[S] and E[F ], which allows to decrease the

complexity of their evaluation down to a Big-O of N .

V. CALIBRATION WITH TRACES

The aim of this section is to see whether the crowd

movements observed in the traces can be described by our

”sheep and maverick” mobility model.

We propose to use E[S] or E[F ] for our calibration. These

quantities can be measured. Let us now see that if E[S] and

N are known for instance, we can then deduce α by solving

an inverse problem. If the function E[S] = f(α) is injective,

at least for α < αc, this inverse problem can be solved

without ambiguity. It appears that f(α) is always convex,

thus decreasing on ]0, αmin[, so that a necessary and sufficient

condition would be αc ≤ αmin, provided we prove convexity.

On Fig. 12 this is always the case, but this is not true in

general; a counter-example is K = 2, N = 100, Nsup/N
= 0.99%. In practice, αmin seems to be hard to compute

analytically, so that we could not find a simple sufficient

condition.

Our experiences show that such counter-examples appear

to be extremely rare, especially when K > 2. It seems that

most choices of Ninf and Nsup satisfy the injectivity of f(α)
on ]0, αc[. However, if it turned out that it is impossible to

choose Ninf and Nsup properly, we advise to complement the

measure of E[S] with a measure of E[F ] for instance.

In contrast, when measuring just E[F ], one has to be more

cautious, since the injectivity of g(α) = E[F ] on ]0, αc[ seems

less common.

Let us consider for instance the transfer that happens

between Parc des Princes and Auteuil (see Fig. 2). Observing

carefully our data, we conclude that there are three attracting

zones :

• Auteuil itself

• the Parc des Princes, northern part

• the Parc des Princes, southern part

so that we take K = 3. On Fig. 13, one can see the numbers

of users in each zone.

Fig. 13. Traces collected during the Fête de la Musique between the three
attracting zones.

The total number of traces remains more or less constant,

so that we choose an average value of N = 4830. This gives

αc = 6.2× 10−4. In our data, a SMS signalization lasts about

one second : each time a SMS is sent or received, a new

user is counted, but he is deleted after one second. Therefore,

even if this is not true, but in order to remain consistent,

we make as if users were staying one second in the zone

before disappearing. Thus we put µ = 1 sec−1. Choosing

to calibrate first on Auteuil filling, we take Nsup/N = 55%
and Ninf/N = 45%. After verifying that g(α) is injective on
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]0, αc[, we find α = 0.6× 10−4, that is, α ≪ αc. This was to

expect, since scattering is very clear in our case.

In order to verify this value, we also measure the Parc des

Princes South scattering, which yields α = 0.5× 10−4.

Now, if our model is consistent, it has to predict other

clumps or scattering over Paris. Let us consider the triangle

Châtelet-Saint Michel-Bastille for instance, in the heart of

Paris (see Fig. 14). These zones are attractive. Besides, we

consider a fourth zone which is the complementary region

inside the triangle. That one experiences scattering, whereas

the three attractive zones experience filling at the same time.

Fig. 14. Traces collected during the Fête de la Musique in the triangle
Châtelet-Saint Michel-Bastille.

Theoretically, a filling of a zone from 5% to 28% for

instance should last about 10800 seconds, according to the

value of α we found previously. Now, the filling of Bastille

lasts about 11300 seconds, so does the filling of Châtelet, and

the filling of Saint Michel lasts about 11000 seconds, which

is very close to our prediction.

VI. CONCLUSION AND PERSPECTIVES

In this paper, we proposed a new mobility model able to

represent and quantify the hot spots found on traces, along

with their random time dynamics. Our aim was not to build

a generic mobility model, adapted to every kind of situation,

but rather to focus on multi-event mass gatherings. We have

proved our model to be analytically tractable, by derivating

closed forms and asymptotic estimates. Using measurements

from a GSM network, we also showed how to calibrate the

model to fit reality. In addition, our model was proved to be

able to predict the order of magnitude of hot spots in different

time-space situations.

Apart from the main application, which consists in build-

ing an efficient mobility model for network simulators, we

describe here some applications, that rely on the ability to

predicting clumping or scattering with a good likelihood.

A. Dynamic Spectrum Allocation and Software Defined Radio

Dynamic Spectrum Allocation (see [7]), consists in allocat-

ing variable bandwidth resources, according to differrent zones

and different densities of population. As for Software Defined

Radio (see [10]), it consists in deploying base stations that are

able to switch from a system (like GSM) to another one (like

UMTS), depending on the demand.

Even if they have not been implemented in real networks

yet, these two domains are today quite an active field of

research. It is crucial that implemented algorithms can have

an idea of the typical evolution durations of the system.

For instance, if we can predict if a zone that is full will

remain so for a long time, or if an empty zone will soon fill,

one can decide with much more accuracy whether allocating

resources or not.

More generally, some optimization algorithms are known

to depend massively on the tuning of a key parameter.

For instance, [6] proposes an algorithm to optimize radio

ressources in a 802.11 network, based on Gibbs sampler. The

”temperature parameter” of the sampler has to be tuned very

carefully, so that the optimizer can react quicklier than the

typical time of evolution of the system itself. More concretely,

in our case, supposing that we want to take users mobility into

account in a 802.11 network, if we can anticipate a scattering,

we are able to adapt the optimizer in a suitable manner.

Also in the case of a genetic algorithm, it can be interesting

to adapt the cross-over and the mutation rates of the optimizer

to react to a sudden evolution of the system. Indeed, the higher

these rates, the stronger the diversity of the genetic population.

In our case, a scattering is likely to modify drastically the

system to optimize. Thus it is useful broaden preventatively

the variety of solutions that are explored.

B. Data Caching in Dense Ad-hoc Networks

In a dense data ad-hoc network, it can be useful to add

some fixed servers which keep the most frequently asked data

in cache memories. Various algorithms already exist on this

subject (see for instance [5][15]). The question is where and

when should we cache memory ?

The idea is to select some strategic places where people

usually clump together. These are our K zones. Suppose that,

using section V, we have previously evaluated α over the study

area, possibly for a different number of users and zones. Then,

measuring in real-time the actual number N of users and

computing the corresponding scattering times, as soon as a

zone exhibits clumping, one knows how long on average this

will last. In other words, one knows if it is worth caching data

at that place.

Conversely, if a zone is almost empty, one knows, using

”filling times”, if there is a risk that we will soon encounter a

peak of population and have to rush to cache memory there.
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APPENDIX

A. Resolution of Equation (1)
∑

0<i<N qmih(i,N−i) = −1 can be rewritten as :







2h(1,N−1) − h(2,N−2) =
N

µ(N−1)

2h(N−1,1) − h(N−2,2) =
N

µ(N−1)

2hn − h
n+(−1,1) − h

n+(1,−1) =
N

µi(N−i) otherwise.

Thus we have to invert the (N − 1) × (N − 1) matrix

U = (ui,j) with ui,i = 2, ui,i−1 = ui−1,i = −1, ui,j = 0 oth-

erwise. One can easily check that U−1 is given by V/N , where

the elements of V are :

vij =

{

j(N − i) if i ≥ j

i(N − j) if i ≤ j.

Equation (2) follows immediately.

Let us now give an asymptotic estimate of this expression.

We introduce x = n1/N , t = i/N and dt = 1/N . We have :

µ hn = Nx

N∑

i=n1+1

1

N
·
1

i
+N(1− x)

N∑

i=n2+1

1

N
·
1

i
.

Both sums of the right handside can be interpreted as Riemann

integrals on [x, 1] and [1− x, 1]. Let us work out the first one

for example :

∫ 1+1/N

x+1/N

1

t
dt ≤

N∑

i=n1+1

1

N
·
1

i
≤

∫ 1

x

1

t
dt

A fortiori :

− log(x) −
1

Nx
≤

N∑

i=n1+1

1

N
·
1

i
≤ − log(x).

We would obtain the same inequality replacing x by 1 − x.

Defining the remainder :

rn =

∣
∣
∣
∣
hn +

N

µ

(
x log(x) + (1− x) log(1− x)

)
∣
∣
∣
∣
,

we have µrn ≤ 2. Thus, our estimate is

−
N

µ

(
x log(x) + (1− x) log(1− x)

)
,

and the error is uniformly bounded by 2/µ.

B. Proof of equation (6)

We are now looking for a solution of equation (1) in K
dimensions. First, let us start from equation (6), in order to

prove it satisfies the equation.

First remark : is one of the nks is zero, then we can remove

zone k without changing the sum in (6), since the subsum

indexed over 0 ≤ i < nk is empty. Furthermore, this will not

change (1) either, since transitions towards empty zones are

forbidden. Thus, without loss of generality we assume that all

nks are nonzero.

If K = 1, we are in an absorbing state and equation

(6) holds. Otherwise, following equation (5), let us introduce

ǫnn′ = hn
′ − hn. We have :

∀n,
∑

n
′

qnn′hn
′ = hn

∑

n
′

qnn′

︸ ︷︷ ︸

=0

+
∑

n
′

qnn′ǫnn′

=
∑

n
′ 6=n

qnn′ǫnn′ ,

and :

µhn
′ =

∑

l 6=k,k′

∑

0≤i<nl

N − nl

N − i

+
∑

0≤i<nk−1

N − nk + 1

N − i
+

∑

0≤i<n
k′+1

N − nk′ − 1

N − i

=
∑

l

∑

0≤i<nl

N − nl

N − i
−

N − nk

N − nk + 1
+

N − nk′

N − nk′

+
∑

0≤i<nk−1

1

N − i
−

∑

0≤i<n
k′+1

1

N − i

= µhn +
1

N − nk + 1

+
∑

0≤i<nk−1

1

N − i
−

∑

0≤i<n
k′+1

1

N − i
,

whence :

ǫnn′ =
1

µ




∑

0≤i<nk

1

N − i
−

∑

0≤i≤n
k′

1

N − i



 .

Note that the second sum is well-defined, because nk 6= 0 and

K > 1, so that nk′ < N and N − i cannot be zero. Now, we

can prove that (6) verifies equation (1) :

∑

n
′ 6=n

qnn′ǫnn′ =

6=
∑

(k,k′)

nknk′

N




∑

0≤i<nk

1

N−i
−

∑

0≤i≤n
k′

1

N−i





=

6=
∑

(k,k′)

nknk′

N




∑

0≤i<nk

1

N − i
−

∑

0≤i<n
k′

1

N − i





︸ ︷︷ ︸

0 by symmetry

−

6=
∑

(k,k′)

nknk′

N
·

1

N − nk′

= −
∑

k′

nk′

N(N − nk′)
· (N − nk′) = −1.

We still have to prove that in our case, there is no other

solution of (1). In other words, we have to prove that the only

solution of :
{

∀n absorbing, hn = 0

∀n non-absorbing,
∑

n
′ non-absorbing qnn′hn

′ = 0
(11)

is the zero-vector. As usual, we introduce qnn = −λn,

and qnn′ = λnpnn′ if n 6= n
′ (where the pnn′s are the
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transition probabilities). If there exists a transition n → n
′

with probability > 0, then pnn′ > 0, and pnn′ = 0 otherwise.

Since hn
′ = 0 if n

′ is absorbing, the second line of (11)

can be rewritten as :
∑

n
′

qnn′hn
′ = 0 ⇔

∑

n
′ 6=n

n→n
′ existe

pnn′hn
′ = hn.

Consider n such that hn is maximal. Then by convexity, since

all coefficients pnn′ are nonnegative, we see that necessarily

all hn
′s such that n → n

′ exists with probability > 0 are equal

to hn. Step by step, since we can reach at least one absorbing

state starting from n, this proves hn = 0.

Finally, changing h in −h and applying the same result, we

see that the minimum of the hns is zero too, which achieves

the proof.

C. Steady-state Computation

In this section, we will explain in several steps how to prove

(8). First let us take K = 2 and keep notations of section III-B.

We are facing with a birth and death process, which is time-

reversible, so that we can directly try to satisfy local balance

equations :

∀m ∈ J0, N − 1K, π(m)qm,m+1 = π(m+ 1)qm+1,m.

We deduce at once :

π(m) = π(0)

m∏

i=1

(N − i+ 1)(Nβ + i− 1)

i(Nβ +N − i)
.

In order to generalize this formula, we would like to rewrite

it in a symmetric manner w.r.t. n1 and n2. In fact, we have :

π(m) = π(0)

∏n1

i=1
Nβ+i−1

i

∏n2

i=1
Nβ+i−1

i
∏N

i=1
Nβ+i−1

i

.

This is equation (8) in case K = 2. Now we can reasonably

suppose that (8) still holds in the general case. In fact, this is

quite immediate. Indeed, thanks to the product form of (8),

we know by the same calculation that in the general case, the

partial balance equations are still satisfied. This completes the

proof.

D. Proof of equation (9)

As previously, let us begin with the case K = 2. We are in

state (m,N −m) and we are looking for the hitting time hm

of {n/n1 < Ninf}.

We want to obtain an analytical formula of hm (let us

say for Ninf ≤ m ≤ N , since otherwise hm = 0). If we in-

troduce um = hm − hm−1, we have the following recursion

(Ninf + 1 ≤ m ≤ N − 1) :

um+1 =
m(Nβ +N −m)

(N −m)(Nβ +m)
um

−
N

µ(1− α)(N −m)(Nβ +m)
.

Then the idea is to introduce :

δ(i) =
(N − i)(Nβ + i)

i(Nβ +N − i)
and vm =

um
∏N−1

i=m δ(i)
.

We obtain the following value of vm − vm+1 :

N

µ(1− α)m(Nβ +N −m)
∏N−1

i=m δ(i)
,

so that, for Ninf + 1 ≤ m ≤ N , vm is equal to :

vN +
N

µ(1− α)

N−1∑

j=m

1

j(Nβ +N − j)
∏N−1

i=j δ(i)
.

Since qN,NhN + qN,N−1hN−1 = −1, we also have :

uN = −1/qN,N = 2/µαN = vN . Finally :

vm =
N

µ(1− α)

N∑

j=m

1

j(Nβ +N − j)
∏N−1

i=j δ(i)
,

and :

um =
N

µ(1− α)

N∑

j=m

∏

m≤i<j δ(i)

j(Nβ +N − j)
.

To determine the hms, we still miss an equation. This is the

last one before reaching {n/n1 < Ninf} :

qNinf ,Ninf
hNinf

+ qNinf ,Ninf+1hNinf+1 = −1.

Together with hNinf+1 − hNinf
= uNinf+1, this leads suc-

cessively to :

hNinf
=

N

µ(1 − α)

N∑

j=Ninf

∏

Ninf≤i<j δ(i)

j(Nβ +N − j)
,

and, more generally, to :

hm =
N

µ(1 − α)

m∑

l=Ninf

N∑

j=l

∏

l≤i<j δ(i)

j(Nβ +N − j)
.

In particular, for m = Nsup + 1, we obtain the claimed

formula. Now suppose we are in the general case. It is

perfectly correct to consider the union of the K − 1 last

zones as one big zone. A sheep will stay in this ”macro-zone”

with probability n2+...+nk

N , and a maverick will stay with

probability K−1
K . This last probability is the only adaptation

we have to make in the previous calculation. Introducing

β′ = (K − 1)β, we obtain the following new recursion :

um+1 =
m(Nβ′ +N −m)

(N −m)(Nβ +m)
um

−
N

µ(1− α)(N −m)(Nβ +m)
,

The rest of the calculation is exactly the same. In particular,

for a fixed n, the result is the same for each n such that

n1 = n.
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