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Energy and regularity dependent stability estimates for the Gel'fand inverse problem in multidimensions

We prove new global Hölder-logarithmic stability estimates for the Gel'fand inverse problem at fixed energy in dimension d ≥ 3. Our estimates are given in uniform norm for coefficient difference and related stability efficiently increases with increasing energy and/or coefficient regularity. Comparisons with preceeding results in this direction are given.

Introduction

We consider the Schrödinger equation for all sufficiently regular solutions ψ of (1.1) in D = D ∪ ∂D, where ν is the outward normal to ∂D. Here we assume also that E is not a Dirichlet eigenvalue for operator -∆ + v in D.

-∆ψ + v(x)ψ = Eψ, x ∈ D, (1.1) 
(1.5)

The map Φ = Φ(E) is called the Dirichlet-to-Neumann map and is considered as boundary measurements.

We consider the following inverse boundary value problem for equation (1.1):

Problem 1.1. Given Φ for some fixed E, find v.

This problem can be considered as the Gelfand inverse boundary value problem for the Schrödinger equation at fixed energy (see [START_REF] Gelfand | Some problems of functional analysis and algebra[END_REF], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0 Funkt[END_REF]). At zero energy this problem can be considered also as a generalization of the Calderon problem of the electrical impedance tomography (see [START_REF] Calderón | On an inverse boundary problem[END_REF], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0 Funkt[END_REF]). Problem 1.1 can be also considered as an example of ill-posed problem: see [START_REF] Lavrentev | Ill-posed problems of mathematical physics and analysis[END_REF], [START_REF] Beilina | Approximate global convergence and adaptivity for coefficient inverse problems[END_REF] for an introduction to this theory.

Problem 1.1 includes, in particular, the following questions: (a) uniqueness, (b) reconstruction, (c) stability.

Global uniqueness results and global reconstruction methods for Problem 1.1 were given for the first time in [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0 Funkt[END_REF] in dimension d ≥ 3 and in [START_REF] Buckhgeim | Recovering a potential from Cauchy data in the twodimensional case[END_REF] 

in dimension d = 2.
Global logarithmic stability estimates for Problem 1.1 were given for the first time in [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF] in dimension d ≥ 3 and in [START_REF] Novikov | A global stability estimate for the Gelfand-Calderon inverse problem in two dimensions[END_REF] in dimension d = 2. A principal improvement of the result of [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF] was given recently in [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF] (for the zero energy case): stability of [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF] optimally increases with increasing regularity of v.

For the Calderon problem (of the electrical impedance tomography) in its initial formulation the global uniqueness was firstly proved in [START_REF] Sylvester | A global uniqueness theorem for an inverse boundary value problem[END_REF] for d ≥ 3 and in [START_REF] Nachman | Global uniqueness for a two-dimensional inverse boundary value problem[END_REF] for d = 2. Global logarithmic stability estimates for this problem were given for the first time in [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF] for d ≥ 3 and [START_REF] Liu | Stability Estimates for the Two-Dimensional Inverse Conductivity Problem[END_REF] for d = 2. Principal increasing of global stability of [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF], [START_REF] Liu | Stability Estimates for the Two-Dimensional Inverse Conductivity Problem[END_REF] for the regular coefficient case was found in [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF] for d ≥ 3 and [START_REF] Santacesaria | New global stability estimates for the Calderon inverse problem in two dimensions[END_REF] for d = 2.

In addition, for the case of piecewise constant or piecewise real analytic conductivity the first uniqueness results for the Calderon problem in dimension d ≥ 2 were given in [START_REF] Druskin | The unique solution of the inverse problem in electrical surveying and electrical well logging for piecewise-constant conductivity[END_REF], [START_REF] Kohn | Determining conductivity by boundary measurements II, Interior results[END_REF]. Lipschitz stability estimate for the case of piecewise constant conductivity was proved in [START_REF] Alessandrini | Lipschitz stability for the inverse conductivity problem[END_REF] and additional studies in this direction were fulfilled in [START_REF] Rondi | A remark on a paper by[END_REF].

Due to [START_REF] Mandache | Exponential instability in an inverse problem for the Schrödinger equation[END_REF] the logarithmic stability results of [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF], [START_REF] Liu | Stability Estimates for the Two-Dimensional Inverse Conductivity Problem[END_REF] with their principal effectivization of [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF], [START_REF] Santacesaria | New global stability estimates for the Calderon inverse problem in two dimensions[END_REF] are optimal (up to the value of the exponent). An extention of the instability estimates of [START_REF] Mandache | Exponential instability in an inverse problem for the Schrödinger equation[END_REF] to the case of the non-zero energy as well as to the case of Dirichlet-to-Neumann map given on the energy intervals was given in [START_REF] Isaev | Exponential instability in the Gelfand inverse problem on the energy intervals[END_REF].

On the other hand, it was found in [START_REF] Novikov | Rapidly converging approximation in inverse quantum scattering in dimension 2[END_REF], [START_REF] Novikov | The ∂-approach to approximate inverse scattering at fixed energy in three dimensions[END_REF] (see also [START_REF] Novikov | The ∂-approach to monochromatic inverse scattering in three dimensions[END_REF], [START_REF] Novikov | Monochromatic Reconstruction Algorithms for Two-dimensional Multi-channel Inverse Problems[END_REF]) that for inverse problems for the Schrödinger equation at fixed energy E in dimension d ≥ 2 (like Problem 1.1) there is a Hölder stability modulo an error term rapidly decaying as E → +∞ (at least for the regular coefficient case). In addition, for Problem 1.1 for d = 3, global energy dependent stability estimates changing from logarithmic type to Hölder type for high energies were given in [START_REF] Isakov | Increasing stability for the Schrödinger potential from the Dirichlet-to-Neumann map[END_REF]. However, there is no efficient stability increasing with respect to increasing coefficient regularity in these results of [START_REF] Isakov | Increasing stability for the Schrödinger potential from the Dirichlet-to-Neumann map[END_REF]. An additional study, motivated by [START_REF] Isakov | Increasing stability for the Schrödinger potential from the Dirichlet-to-Neumann map[END_REF], [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF], was given in [START_REF] Nagayasu | Increasing stability in an inverse problem for the acoustic equation[END_REF].

In the present work we give new global Hölder-logarithmic stability estimates for Problem 1.1 in dimension d ≥ 3 for the regular coefficient case, see Theorem 2.1 and Remark 2.6. Our estimates are given in uniform norm for coefficient difference and related stability efficiently increases with increasing energy and/or coefficient regularity. In particular cases, our new estimates become coherent (although less strong) with respect to results of [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF], [START_REF] Novikov | The ∂-approach to approximate inverse scattering at fixed energy in three dimensions[END_REF], see Remarks 2.2, 2.3. In general, our new estimates give some synthesis of several important preceeding results.

Stability estimates

In this section we assume for simplicity that

v ∈ W m,1 (R d ) for some m > d, supp v ⊂ D, (2.1) 
where

W m,1 (R d ) = {v : ∂ J v ∈ L 1 (R d ), |J| ≤ m}, m ∈ N ∪ 0, (2.2) 
where

J ∈ (N ∪ 0) d , |J| = d i=1 J i , ∂ J v(x) = ∂ |J| v(x) ∂x J1 1 . . . ∂x J d d . (2.3) Let ||v|| m,1 = max |J|≤m ||∂ J v|| L 1 (R d ) .
(2.4)

Let

||A|| denote the norm of an operator

A : L ∞ (∂D) → L ∞ (∂D). (2.5) We recall that if v 1 , v 2 are potentials satisfying (1.3), (1.5) for some fixed E, then Φ2 (E) -Φ1 (E) is a compact operator in L ∞ (∂D), (2.6) 
where Φ1 , Φ2 are the DtN maps for v 1 , v 2 , respectively, see [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0 Funkt[END_REF], [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichlet-to-Neumann map with nonzero background potential[END_REF]. Note also that (2.1)

⇒ (1.3). Let s 0 = m -d m , s 1 = m -d d , s 2 = m -d. (2.7) Theorem 2.1. Let D satisfy (1.2), where d ≥ 3. Let v 1 , v 2 satisfy (2.1) and (1.5) for some fixed real E. Let ||v j || m,1 ≤ N, j = 1, 2, for some N > 0. Let Φ1 (E)
and Φ2 (E) denote the DtN maps for v 1 and v 2 , respectively. Then

||v 2 -v 1 || L ∞ (D) ≤ C 1 ln 3 + δ -1 -s , 0 < s ≤ s 1 , (2.8) 
where

C 1 = C 1 (N, D, m, s, E) > 0, δ = || Φ2 (E) -Φ1 (E)
|| is defined according to (2.5). In addition, for E ≥ 0, τ ∈ (0, 1) and any s ∈ [0, s 1 ],

||v 2 -v 1 || L ∞ (D) ≤ C 2 (1 + √ E)δ τ + C 3 (1 + √ E) s-s1 ln 3 + δ -1 -s , (2.9)
where

C 2 = C 2 (N, D, m, τ ) > 0 and C 3 = C 3 (N, D, m, τ ) > 0.
Remark 2.1. Estimate (2.8) for s = s 0 is a variation of the result of [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF] (see also [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF], [START_REF] Isaev | Stability estimates for determination of potential from the impedance boundary map[END_REF]). One can see that estimate (2.8), s = s 1 , of Theorem 2.1 is more strong (as much as s 1 is greater than s 0 ) than the aforementioned result going back to [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF].

Remark 2.2. Estimate (2.8) for s = s 2 , E = 0, d = 3 was proved in [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF]. One can see that this estimate of [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF] is more strong (as much as s 2 is greater than

s 1 ) than estimate (2.8), s = s 1 , of Theorem 2.1 for E = 0, d = 3.
Remark 2.3. Using results of [START_REF] Novikov | The ∂-approach to approximate inverse scattering at fixed energy in three dimensions[END_REF] one can obtain estimate (2.9) for s = 0, d = 3, with s 2 in place of s 1 , for sufficiently great E with respect to N . One can see that for this particular case the aforementioned corollary of [START_REF] Novikov | The ∂-approach to approximate inverse scattering at fixed energy in three dimensions[END_REF] is more strong (as much as s 2 is greater than s 1 ) than estimate (2.9) of Theorem 2.1.

Remark 2.4. In a similar way with results of [START_REF] Isaev | Stability estimates for determination of potential from the impedance boundary map[END_REF], [START_REF] Isaev | Reconstruction of a potential from the impedance boundary map[END_REF], estimates (2.8), (2.9) can be extended to the case when we do not assume that condition (1.5) is fulfiled and consider an appropriate impedance boundary map instead of the Dirichlet-to-Neumann map.

Remark 2.5. Concerning two-dimensional analogs of results of Theorem 2.1, see [START_REF] Novikov | Rapidly converging approximation in inverse quantum scattering in dimension 2[END_REF], [START_REF] Novikov | Monochromatic Reconstruction Algorithms for Two-dimensional Multi-channel Inverse Problems[END_REF], [START_REF] Santacesaria | New global stability estimates for the Calderon inverse problem in two dimensions[END_REF], [START_REF] Santacesaria | Stability estimates for an inverse problem for the Schrödinger equation at negative energy in two dimensions[END_REF].

Remark 2.6. Actually, in the proof of Theorem 2.1 we obtain the following estimate (see formula (4.19)):

v 1 -v 2 L ∞ (D) ≤ C 4 E + ρ 2 e 2ρL δ + C 5 (E + ρ 2 ) -s1/2 , (2.10) 
where

L = max x∈∂D |x|, C 4 = C 4 (N, D, m) > 0, C 5 = C 5 (N, D, m) > 0 and parameter ρ > 0 is such that E + ρ 2 is sufficiently large: E + ρ 2 ≥ C 6 (N, D, m).
Estimates of Theorem 2.1 follow from estimate (2.10).

The proof of Theorem 2.1 and estimate (2.10) is given in Section 4 and is based on results recalled in Section 3. Actually, this proof is technically very similar to the proof of estimate (2.8) for s = s 0 , see [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF], [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF], [START_REF] Isaev | Stability estimates for determination of potential from the impedance boundary map[END_REF]. Possibility of such a proof of estimate (2.8) for s = s 1 , E = 0 was mentioned, in particular, in [32].

Faddeev functions

We consider the Faddeev functions G, ψ, h (see [START_REF] Faddeev | Growing solutions of the Schrödinger equation[END_REF], [START_REF] Faddeev | The inverse problem in the quantum theory of scattering[END_REF], [START_REF] Henkin | The ∂-equation in the multidimensional inverse scattering problem[END_REF], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0 Funkt[END_REF]):

G(x, k) = e ikx g(x, k), g(x, k) = -(2π) -d R d e iξx dξ ξ 2 + 2kξ , (3.1) 
ψ(x, k) = e ikx + R d G(x -y, k)v(y)ψ(y, k)dy, (3.2) 
where

x ∈ R d , k ∈ C d , Im k = 0, d ≥ 3, h(k, l) = (2π) -d R d e -ilx v(x)ψ(x, k)dx, (3.3) 
where We recall that (see [START_REF] Faddeev | Growing solutions of the Schrödinger equation[END_REF], [START_REF] Faddeev | The inverse problem in the quantum theory of scattering[END_REF], [START_REF] Henkin | The ∂-equation in the multidimensional inverse scattering problem[END_REF], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0 Funkt[END_REF]):

k, l ∈ C d , k 2 = l 2 , Im k = Im l = 0. ( 3 
• The function G satisfies the equation

(∆ + k 2 )G(x, k) = δ(x), x ∈ R d , k ∈ C d \ R d ; (3.7)
• Formula (3.2) at fixed k is considered as an equation for

ψ = e ikx µ(x, k), (3.8) 
where µ is sought in L ∞ (R d );

• As a corollary of (3.2), (3.1), (3.7), ψ satisfies (1.1) for E = k 2 ;

• The Faddeev functions G, ψ, h are (non-analytic) continuation to the complex domain of functions of the classical scattering theory for the Schrödinger equation (in particular, h is a generalized "'scattering"' amplitude).

In addition, G, ψ, h in their zero energy restriction, that is for E = 0, were considered for the first time in [START_REF] Beals | Multidimensional inverse scattering and nonlinear partial differential equations[END_REF]. The Faddeev functions G, ψ, h were, actually, rediscovered in [START_REF] Beals | Multidimensional inverse scattering and nonlinear partial differential equations[END_REF].

Let

Σ E = k ∈ C d : k 2 = k 2 1 + . . . + k 2 d = E , Θ E = {k ∈ Σ E , l ∈ Σ E : Im k = Im l} , |k| = (|Re k| 2 + |Im k| 2 ) 1/2 . (3.9)
Under the assumptions of Theorem 2.1, we have that:

µ(x, k) → 1 as |k| → ∞ (3.10)
and, for any σ > 1,

|µ(x, k)| ≤ σ for |k| ≥ r 1 (N, D, m, σ), (3.11) 
where

x ∈ R d , k ∈ Σ E ; v(p) = lim (k, l) ∈ Θ E , k -l = p |Im k| = |Im l| → ∞ h(k, l) for any p ∈ R d , (3.12) |v(p) -h(k, l)| ≤ c 1 (D, m)N 2 (E + ρ 2 ) 1/2 for (k, l) ∈ Θ E , p = k -l, |Im k| = |Im l| = ρ, E + ρ 2 ≥ r 2 (N, D, m), p 2 ≤ 4(E + ρ 2 ), (3.13) where v(p) = (2π) -d R d e ipx v(x)dx, p ∈ R d . (3.14)
Results of the type (3.10), (3.11) go back to [START_REF] Beals | Multidimensional inverse scattering and nonlinear partial differential equations[END_REF]. For more information concerning (3.11) see estimate (4.11) of [START_REF] Isaev | Stability estimates for determination of potential from the impedance boundary map[END_REF]. Results of the type (3.12), (3.13) (with less precise right-hand side in (3.13)) go back to [START_REF] Henkin | The ∂-equation in the multidimensional inverse scattering problem[END_REF]. Estimate (3.13) follows, for example, from formulas (3.2), (3.3) and the estimate

Λ -s g(k)Λ -s L 2 (R d )→L 2 (R d ) = O(|k| -1 ) as |k| → ∞, k ∈ C d \ R d , (3.15) 
for s > 1/2, where g(k) denotes the integral operator with the Schwartz kernel g(x-y, k) and Λ denotes the multiplication operator by the function (1+|x| 2 ) 1/2 . Estimate (3.15) was formulated, first, in [START_REF] Lavine | On the inverse scattering transform of the n-dimensional Schrödinger operator Topics in Soliton Theory and Exactly Solvable Nonlinear Equations[END_REF] for d ≥ 3. Concerning proof of (3.15), see [START_REF] Weder | Generalized limiting absorption method and multidimensional inverse scattering theory[END_REF].

In addition, we have that:

h 2 (k, l) -h 1 (k, l) = (2π) -d R d ψ 1 (x, -l)(v 2 (x) -v 1 (x))ψ 2 (x, k)dx for (k, l) ∈ Θ E , |Im k| = |Im l| = 0, and v 1 , v 2 satisfying (3.5), (3.16 
)

h 2 (k, l) -h 1 (k, l) = (2π) -d ∂D ψ 1 (x, -l) Φ2 -Φ1 ψ 2 (•, k) (x)dx for (k, l) ∈ Θ E , |Im k| = |Im l| = 0, and v 1 , v 2 satisfying (1.5), (3.6), (3.17) 
and, under assumtions of Theorem 2.1,

|v 1 (p) -v2 (p) -h 1 (k, l) + h 2 (k, l)| ≤ c 2 (D, m)N v 1 -v 2 L ∞ (D) (E ρ 2 ) 1/2 for (k, l) ∈ Θ E , p = k -l, |Im k| = |Im l| = ρ, E + ρ 2 ≥ r 3 (N, D, m), p 2 ≤ 4(E + ρ 2 ), (3.18) 
where h j , ψ j denote h and ψ of (3.3) and (3.2) for v = v j , and Φj denotes the Dirichlet-to-Neumann map for v = v j , where j = 1, 2.

Formulas (3.16), (3.17) were given in [START_REF] Novikov | ∂-method with nonzero background potential. Application to inverse scattering for the two-dimensional acoustic equation[END_REF], [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichlet-to-Neumann map with nonzero background potential[END_REF]. Estimate (3.18) follows from (3.2), (3.15), (3.16) in a similar way as estimate (3.13) follows from (3.2), (3.3), (3.15).

4 Proof of Theorem 2.1 Let L ∞ µ (R d ) = {u ∈ L ∞ (R d ) : u µ < +∞}, u µ = ess sup p∈R d (1 + |p|) µ |u(p)|, µ > 0. (4.1) Note that w ∈ W m,1 (R d ) =⇒ ŵ ∈ L ∞ µ (R d ) ∩ C(R d ), ŵ µ ≤ c 3 (m, d) w m,1 for µ = m, (4.2) 
where W m,1 , L ∞ µ are the spaces of (2.2), (

= (2π) -d R d e ipx w(x)dx, p ∈ R d . 4.1), ŵ(p) 
Using the inverse Fourier transform formula

w(x) = R d e -ipx ŵ(p)dp, x ∈ R d , (4.4) 
we have that Due to (3.18), we have that

v 1 -v 2 L ∞ (D) ≤ sup x∈ D | R d e -ipx (v 2 (p) -v1 (p)) dp| ≤ ≤ I 1 (r) + I 2 (
|v 2 (p) -v1 (p)| ≤ |h 2 (k, l) -h 1 (k, l)| + c 2 (D, m)N v 1 -v 2 L ∞ (D) (E + ρ 2 ) 1/2 , for (k, l) ∈ Θ E , p = k -l, |Im k| = |Im l| = ρ, E + ρ 2 ≥ r 3 (N, D, m), p 2 ≤ 4(E + ρ 2 ). (4.8) 
Let

c 4 = (2π) -d ∂D dx, L = max x∈∂D |x|, δ = Φ2 (E) -Φ1 (E) , (4.9) 
where Φ2 (E) -Φ1 (E) is defined according to (2.5). Due to (3.17), we have that

|h 2 (k, l) -h 1 (k, l)| ≤ c 4 ψ 1 (•, -l) L ∞ (∂D) δ ψ 2 (•, k) L ∞ (∂D) , (k, l) ∈ Θ E , |Im k| = |Im l| = 0. ( 4.10) 
Using (3.11), we find that

ψ(•, k) L ∞ (∂D) ≤ σ exp |Im k|L , k ∈ Σ E , |k| ≥ r 1 (N, D, m, σ). (4.11) 
Here and bellow in this section the constant σ is the same that in (3.11). Combining (4.10) and (4.11), we obtain that

|h 2 (k, l) -h 1 (k, l)| ≤ c 4 σ 2 e 2ρL δ, for (k, l) ∈ Θ E , ρ = |Im k| = |Im l|, E + ρ 2 ≥ r 2 1 (N, D, m, σ).
(4.12)

Using (4.8), (4.12), we get that

|v 2 (p) -v1 (p)| ≤ c 4 σ 2 e 2ρL δ + c 2 (D, m)N v 1 -v 2 L ∞ (D) (E + ρ 2 ) 1/2 , p ∈ R d , p 2 ≤ 4(E + ρ 2 ), E + ρ 2 ≥ max{r 2 1 , r 3 }. (4.13) Let ε = 1 2c 2 (D, m)N c 5 1/d , c 5 = p∈R d ,|p|≤1 dp, (4.14) 
and r 4 (N, D, m, σ) > 0 be such that Using (4.6), (4.13), we get that

E + ρ 2 ≥ r 4 (N, D, m, σ) =⇒        E + ρ 2 ≥ r 2 1 (N, D, m, σ), E + ρ 2 ≥ r 3 (N, D, m), ε(E + ρ 2 ) 1 2d 2 ≤ 4(E + ρ 2 ).
I 1 (r) ≤ c 5 r d c 4 σ 2 e 2ρL δ + c 2 (D, m)N v 1 -v 2 L ∞ (D) (E + ρ 2 ) 1/2 , r > 0, r 2 ≤ 4(E + ρ 2 ), E + ρ 2 ≥ r 4 (N, D, m, σ).
(4.17)

Using (4.6), (4.7), we find that, for any r > 0,

I 2 (r) 2c 3 (m, d)N c 6 +∞ r dt t m-d+1 ≤ 2c 3 (m, D)N c 6 m -d 1 r m-d . (4.18) 
Combining (4.5), (4.17), (4.18) for r = ε(E + ρ 2 ) 1 2d and (4.15), we get that

v 1 -v 2 L ∞ (D) ≤ c 7 (N, D, m, σ) E + ρ 2 e 2ρL δ+ +c 8 (N, D, m)(E + ρ 2 ) -m-d 2d + 1 2 v 1 -v 2 L ∞ (D) , E + ρ 2 ≥ r 4 (N, D, m, σ). (4.19) 
Let τ ∈ (0, 1) and

β = 1 -τ 2L , ρ = β ln 3 + δ -1 , (4.20) 
where δ is so small that E + ρ 2 ≥ r 4 (N, D, m, σ). Then due to (4.19), we have that This completes the proof of (2.9)

1 2 v 1 -v 2 L ∞ (D) ≤ ≤ c 7 (N,D, m, σ) E + β ln 3 + δ -1 2 1/2 3 + δ -1 2βL δ+ + c 8 (N, D, m) E + β ln 3 + δ -1 2 -m-d 2d = = c 7 (N,D, m, σ) E + β ln 3 + δ -1

  whereD is an open bounded domain inR d , d ≥ 2, with ∂D ∈ C 2 , (1.2) v ∈ L ∞ (D). (1.3) Consider the map Φ = Φ(E) such that Φ(E)(ψ| ∂D ) = ∂ψ ∂ν | ∂D (1.4)

. 4 )

 4 One can consider (3.2), (3.3) assuming that v is a sufficiently regular function on R d with suffucient decay at infinity. (3.5) For example, in connection with Problem 1.1, one can consider (3.2), (3.3) assuming that v ∈ L ∞ (D), v ≡ 0 on R \ D. (3.6)

2

 2 (p) -v1 (p)|dp, I 2 (r) = |p|≥r |v 2 (p) -v1 (p)|dp.(4.6) Using (4.2), we obtain that |v 2 (p) -v1 (p)| ≤ 2c 3 (m, d)N (1 + |p|) -m , p ∈ R d . (4.7)

E

  δ τ + + c 8 (N, D, m) E + β ln 3 + δ -1 2 -m-d 2d ,(4.21)where τ , β and δ are the same as in(4.20). Using (4.21), we obtain thatv 1 -v 2 L ∞ (D) ≤ c 9 (N, D, E, m, σ, τ ) ln 3 + δ -1 -m-d d (4.22)for δ = Φ2 -Φ1 ≤ δ 1 (N, D, E, m, σ, τ ), where δ 1 is a sufficiently small positive constant. Estimate(4.22) in the general case (with modified c 9 ) follows from (4.22) for δ ≤ δ 1 (N, D, E, m, σ, τ ) the property thatv j L ∞ (D) ≤ c 10 (D, m)N. (4.23)This completes the proof of (2.8).If E ≥ 0 then there is a constantδ 2 = δ 2 (N, D, m, σ, τ ) > 0 such that δ ∈ (0, δ 2 ) =⇒ + β ln 3 + δ -1 2 ≥ r 4 (N, D, m, σ), E + β ln 3 + δ -1 2 ≤ (1 + √ E)β ln 3 + δ -1 2 , β ln 3 + δ -1 ≥ 1, (4.24)where β is the same as in(4.20). Combining (4.21), (4.24), we obtain that for s ∈ [0, (m -d)/d], τ ∈ (0, τ ) and δ ∈ (0, δ 2 ) the following estimate holds:||v 2 -v 1 || L ∞ (D) ≤ c 11 (1 + √ E)δ τ + c 12 (1 + √ E) s-m-d d ln 3 + δ -1 -s ,(4.25)where constants c 11 , c 12 > 0 depend only on N , D, m, σ, τ and τ . Estimate (4.25) in the general case (with modified c 11 and c 12 ) follows from (4.25) for δ ≤ δ 2 (N, D, m, σ, τ ) and (4.23).
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