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SOME REMARKS

ON BARYCENTRIC-SUM PROBLEMS OVER CYCLIC GROUPS

O. ORDAZ, A. PLAGNE, AND W. A. SCHMID

To the memory of Yahya Ould Hamidoune

Abstract. We derive some new results on the k-th barycentric Olson con-
stants of abelian groups (mainly cyclic). This quantity, for a finite abelian
(additive) group (G,+), is defined as the smallest integer ℓ such that each
subset A of G with at least ℓ elements contains a subset with k elements
{g1, . . . , gk} satisfying g1 + · · ·+ gk = k gj for some 1 ≤ j ≤ k.

1. Introduction

It is a classical problem of Additive Combinatorics to find size conditions on
subsets of (or sequences over) additive abelian (semi-)groups which guarantee that
the subsets contain a certain ‘arithmetic pattern’; two classical ‘patterns’ are arith-
metic progressions (of a certain fixed length) and zero-sum sets or sequences (of
a certain cardinality or length). Since we only consider finite structures, our size
condition is always the cardinality of the set or the length of the sequence.

Motivated among others by results of Y. Ould Hamidoune, such as [9], systematic
investigations related to the following ‘pattern’ have been started in [4, 5] and
continued for instance in [13, 16]; for a survey see [15]. A very closely related
problem also appears in some work of Alon [1], and special cases are classical
(cf. below).

We fix a positive integer k; to exclude trivial corner cases one often imposes
k ≥ 3. A set {g1, . . . , gk}, assuming the gi’s are distinct, or a sequence (g1, . . . , gk)
in a finite abelian (additive) group (G,+) is called barycentric if

k
∑

i=1

gi = k gj

for some 1 ≤ j ≤ k; this equality is also used in the sometimes more convenient
form

k
∑

i=1, i6=j

gi = (k − 1) gj.

For brevity, we refer to barycentric sets (resp. sequences) of size k as k-barycentric.
In the present paper, we obtain several results, mainly for G prime cyclic, related

to the problem of determining, for a given value of k, a minimal size above which any
set (resp. sequence) in G has to contain a k-barycentric subset (resp. subsequence).
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no 27155TH; the one of W. A. Schmid by the Austrian Science Fund (FWF): J 2907-N18, and
the PHC Amadeus 2012: projet no 27155TH.
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We point out that a set is 3-barycentric if and only if its elements form an
arithmetic progression; for sequences, this is also true (if one does not insist that
the elements of an arithmetic progression are distinct, in other words if one allows
the difference to be an element of order strictly less than the number of terms).
And, for n being (a multiple of) the exponent of the group, being n-barycentric
is equivalent to being a zero-sum of size n. So, the above questions contain the
problem of guaranteeing the existence of 3-term arithmetic progressions — its finite
abelian group version — as well as the Erdős–Ginzburg–Ziv problem and some of
its variants [8]. Thus, hoping for explicit and complete answers seems by far too
optimistic. Indeed, the above questions, for values of k between 3 and the exponent
of G, can be seen as an interpolation between these two classical problems. An aim
of this paper is to highlight a certain ‘phase-transition’ that the problem undergoes
when, for some fixed cyclic group G, the parameter k is varied. In this article, we
focus on the version of the question for sets.

The constants we study are the so-called, for k a positive integer, k-th barycentric

Olson constants of a finite abelian group G, denoted by BO(k,G) and defined as
the smallest integer ℓ such that each set A with at least ℓ elements contains a
k-barycentric subset. We note that this is always well-defined as for ℓ > |G| the
condition becomes vacuously true; in other words we have BO(k,G) ≤ |G| + 1.
Another possibility is to only define the constant if a k-barycentric set exists at
all; indeed, that convention is used in various earlier work on the problem. Yet, by
analogy with work on other constants, see e.g. [8], we use the former convention.

The name is derived from that of the Olson constant, the present constant is the
barycentric analog of that zero-sum constant (see, e.g., [8]).

2. Notation and preliminaries

In this article, the main structures we study are cyclic (and sometimes other
finite) abelian groups, denoted additively. In some of our arguments it will be
convenient to consider Z/nZ, the integers modulo n instead of an abstract cyclic
group of order n, in order to have a natural notion of multiplication available as
well. Typically, we do not make any notational distinction between integers and
their residue classes; in the present work there seems little risk for confusion so that
this notational simplification seems justified.

Let (G,+) be an abelian group. The (Minkowski) sumset of two subsets A and
B of G will be denoted by

A+B = {a+ b : a ∈ A, b ∈ B}.
We denote the sum of the elements of a subset S of G by σ(S). Furthermore, for k
an integer, let

Σk(A) = {σ(S) : S ⊂ A, |S| = k}.
Finally, for t an integer, we denote by t · A the set of multiples {ta : a ∈ A}.

Recall that each finite abelian group G is isomorphic to a product

Z/n1Z× Z/n2Z× · · · × Z/nrZ,

with integers 1 < n1|n2| · · · |nr that are uniquely determined. The integer r is
called the rank of G, denoted r(G). For a prime p, the p-rank of G, denoted rp(G),
is defined as the number of i such that ni is divisible by p. Moreover, nr is called
the exponent of G, denoted exp(G).
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Recall that the multiplicative order of s, an integer coprime to n, in Z/nZ is the
smallest positive integer t such that st ≡ 1 (mod n).

3. Some general results

While our main object of study is BO(k,G) for G a cyclic group (of prime order),
we start by summarizing and establishing some results valid for general finite abelian
groups. In particular we treat various corner cases; to be able to exclude them is
convenient in our consideration for cyclic groups as well. In special cases, mainly
cyclic groups, some of them were known, and others are more or less direct and
included for definiteness only, yet in particular the case of k = |G| − 2, in general,
is new and seems to be of some interest in its own right.

Let (G,+) be a finite abelian group. The first observations are direct conse-
quences of the definition. For every k we have that BO(k,G) ≤ |G| + 1, as the
conditions becomes trivially true; for k > |G| we of course have BO(k,G) = |G|+1,
since the group G cannot contain a k-barycentric subset (this is however not the
only case where this happens, compare below). Conversely, for k ≤ |G| we have
BO(k,G) ≥ k.

Since any singleton is 1-barycentric and since no 2-barycentric set can exist, we
have

BO(1, G) = 1 and BO(2, G) = |G|+ 1.

Yet, as mentioned in the introduction the case k = 3 is, by contrast, a very chal-
lenging problem. We now turn to large values of k.

For k = |G|, one has to decide whether the full group is |G|-barycentric or not,
that is whether σ(G) = 0. It can be seen that only in case when r2(G) = 1, the
sum σ(G) is non-zero. More precisely (cf. [7] for a detailed argument) the following
is true.

Lemma 3.1. Let G be a finite abelian group. We have

σ(G) =

{

b, if r2(G) = 1 and b denotes the unique element of order 2,

0, otherwise.

As a consequence, one gets that

BO(|G|, G) =

{

|G|+ 1, for r2(G) = 1,

|G|, otherwise.

We may also compute BO(k,G) in the cases k = |G| − 1 and |G| − 2. The values
of these constants are given by the following proposition.

Proposition 3.2. Let G be a finite abelian group. We have, for |G| ≥ 2,

BO(|G| − 1, G) =

{

|G| − 1, if r2(G) = 1,

|G|+ 1, otherwise,

and, for |G| ≥ 3,

BO(|G| − 2, G) =











|G| − 2, if |G| is odd,

|G|+ 1, if exp(G) = 2 or |G| = 4,

|G| − 1, otherwise.
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Proof. Let us first consider the case k = |G| − 1. Let A = G \ {a} be a set of
cardinality |G|−1. The only b in G for which σ(A) = (|G|−1)b is −σ(A) = a−σ(G),
which is, by Lemma 3.1, different from a (and thus an element of A) if and only if
the 2-rank of G is equal to 1 (and thus σ(G) 6= 0). That is, if the 2-rank of G is 1
every set of cardinality |G|−1 is barycentric while otherwise no (|G|−1)-barycentric
set exists.

We now consider the case k = |G|−2; recall |G| ≥ 3. Let A = G\{a, a′} be a set
of cardinality |G| − 2 (that is, a 6= a′). We distinguish two main cases, according
to whether r2(G) = 1 or not.

For r2(G) not equal to 1, again by Lemma 3.1, we get that σ(A) = −a − a′.
Since (|G| − 2)b = −2b for each b ∈ G, we get that if σ(A) = kb for some b ∈ G,
then b /∈ {a, a′}. This implies that A is barycentric if and only if σ(A) ∈ k · G =
−2 ·G = 2 ·G.

Thus BO(|G| − 2, G) = |G| − 2 for r2(G) = 0, since in this case 2 · G = G. In
case r2(G) > 1, we observe that BO(|G| − 2, G) > |G| − 2, as for suitable a, a′ we
can make it so that a+ a′ /∈ 2 ·G; indeed, note that Σ2(G) = G for exp(G) > 2 and
Σ2(G) = G \ {0} for exp(G) = 2. Moreover, this last observation already implies
that for exp(G) = 2 one has BO(|G| − 2, G) = |G|+ 1, as 2 ·G = {0} and therefore
no (|G| − 2)-barycentric set can exist.

We suppose the exponent of G is not 2, that is |2 ·G| > 1 and consider a subset
B = G\{a∗} of cardinality |G|−1. Due to the translation invariance of the problem
we may assume a∗ = 0. In order to show that BO(|G| − 2, G) = |G| − 1 it suffices
to find some subset A of B that is k-barycentric. This is equivalent to finding an A
of cardinality k whose sum is in 2 ·G. Yet for A = B \ {c} we have σ(A) = −c and
it thus suffices to choose some c ∈ 2 ·G \ {0}, which is non-empty by assumption.

For r2(G) equal to 1, Lemma 3.1 implies that σ(A) = b − a− a′ where b is the
element of G of order 2. Again, for A to be barycentric, a necessary condition
is that σ(A) ∈ 2 · G. Since in this case 2 · G is not the full group, we get that
BO(|G| − 2, G) > |G| − 2 as each element of G can be written as b − a − a′ for
suitable distinct a and a′. Yet in this case the condition σ(A) ∈ 2 ·G might not be
sufficient, since b− a− a′ = −2c does not necessarily imply that c is neither a nor
a′. Indeed, we observe that in case b + a = a′ we have b − a − a′ = −2a = −2a′,
and a and a′ are the only solutions of the equation b− a− a′ = −2c for c ∈ G.

Similarly as above we consider a subset B = G \ {a∗} of cardinality |G| − 1, and
again assume a∗ = 0. We seek to find a c ∈ B such that A = B \ {c} is barycentric.
For this to happen we need on the one hand that σ(A) = b− c ∈ 2 ·G and that c is
not the element of order 2. That is we need that b+(2 ·G \ {0})∩B is non-empty,
that is (b + (2 · G \ {0})) \ {0} is non-empty. This is the case if |2 · G| > 2. Since
r2(G) = 1, we have |2 ·G| > 2 except for G being a cyclic group of order 4. Indeed,
for a cyclic group of order 4, the result is different, and it follows by the observation
for k = 2, mentioned before. �

From now on, we shall therefore assume that

3 ≤ k ≤ |G| − 3,

and thus we can also assume that |G| ≥ 6. In the following, we are mainly interested
in the case G = Z/pZ (with p a prime), and can restrict to considering primes
p ≥ 7. We impose these restrictions consistently, even if in some results they are
not needed.
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4. Results on cyclic groups

We now consider specifically the case of cyclic groups starting from the following
result which is contained in [5] (see Theorem 4 there).

Theorem A. Let p ≥ 7 be a prime and k be an integer such that 3 ≤ k ≤ p − 3.
The following bounds hold

k ≤ BO(k,Z/pZ) ≤
⌈

p− 1

k − 1

⌉

+ k.

The Theorem of Dias da Silva–Hamidoune [6], which we recall here as Theo-
rem B, is a crucial tool in its proof.

Theorem B. Let p be a prime and let A be a subset of Z/pZ. For k a positive

integer, one has

|Σk(A)| ≥ min{p, k(|A| − k) + 1}.
For the convenience of the reader and since it of some relevance for the subsequent

discussion, we include a proof of the upper bound in Theorem A (the lower bound
being trivial).

Proof of Theorem A. Notice first that the upper bound satisfies always
⌈

p− 1

k − 1

⌉

+ k ≤ p.

We may therefore consider a set A ⊂ Z/pZ with |A| =
⌈

p−1
k−1

⌉

+ k and choose an

a ∈ A. By Theorem B, we have

|Σk−1(A \ {a})| ≥ min{p, (k − 1)(|A \ {a}| − k + 1) + 1}
= min{p, (k − 1)(|A| − k) + 1} = p.

Hence Σk−1(A \ {a}) = Z/pZ which implies that there exists U ⊂ A \ {a} with
|U | = k − 1 such that σ(U) = a(k − 1). Consequently U ∪ {a} is a k-barycentric
subset of A. �

The quality of the bounds in the above results depends significantly on the
relative size of k and p. We discuss this in detail below, mentioning the respective
known and new results.

For large values of k, say if k ≥ cp for c a fixed real number (0 < c < 1), the
preceding result shows that

k ≤ BO(k,Z/pZ) ≤ k +
1

c
+O(p−1)

and the value of BO(k,Z/pZ) is known asymptotically up to an additive constant.
More precisely, in the range (p+ 1)/2 ≤ k ≤ p− 3, Theorem A gives

k ≤ BO(k,Z/pZ) ≤ k + 2.

We shall improve this and, indeed, we obtain the precise value for BO(k,Z/pZ) for
k fulfilling this condition. In fact, we prove the following somewhat more general
technical result.

Proposition 4.1. Let n ≥ 6 be an integer and k be an integer such that (n +
1)/2 ≤ k ≤ n − 3. Assuming that n is coprime to both k and k + 1, one has

BO(k,Z/nZ) = k + 1.
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Of course this result yields the following result as a special case, establishing
what we announced just above.

Theorem 4.2. Let p ≥ 7 be a prime and k be an integer such that (p+1)/2 ≤ k ≤
p− 3, then BO(k,Z/pZ) = k + 1.

In a certain sense k = (p+ 1)/2 is an actual threshold. We discuss in detail the
value just below, that is the case k = (p− 1)/2, where Theorem A gives

k ≤ BO(k,Z/pZ) ≤ k + 3.

Here we see that the value of BO(k,Z/pZ) starts to depend on ‘number theoretic’
properties of p. And, the proof indicates that this is not an isolated phenomenon
but related phenomena are to be expected for other k somewhat below p/2.

The precise result we obtain is the following.

Theorem 4.3. Let p ≥ 7 be a prime and k = (p− 1)/2. Then,

BO(k,Z/pZ) =

{

k + 1, if the multiplicative order of 2 modulo p is odd,

k + 2, if it is even.

Just the bounds in this theorem can be extended to further values of k.

Theorem 4.4. Let p ≥ 7 be a prime and k be an integer such that (p+2)/3 ≤ k ≤
p− 3. One has

k + 1 ≤ BO(k,Z/pZ) ≤ k + 2.

The lower bound is obtained by a direct construction (see Lemma 5.1), the upper
bound is obtained via an application of the polynomial method in its classical form
by Alon, Nathanson, and Ruzsa [2]. It would not be difficult to derive some (incom-
plete) criteria when equality at the upper or lower bound holds; we do however not
address this problem. By contrast, giving a full and meaningful characterization
seems difficult.

For ever smaller values of k, the problem seems to become increasingly difficult.
We however note that, as a consequence of Theorem A, we get that if k/p1/2 tends
to infinity then

BO(k,Z/pZ) ∼ k

as p (and k) tends to infinity. And, if we only assume that k/p1/2 is bounded
away from 0, then BO(k,Z/pZ)/k remains bounded and therefore the order of
BO(k,Z/pZ) is still k.

It is not clear to us what the precise or, more realistically, only more precise
values should be; we thus refrain from detailed speculations but still include some
remarks. It seems likely that for k in this range the upper bound in Theorem A
is not that close to the true value. On the one hand, before one applies Theorem
B, the Theorem of Dias da Silva–Hamidoune, there is already some loss (roughly
speaking, avoiding this loss is what we do to obtain the upper bound in Theorem
4.4). On the other hand, it is generally believed that near extremal cases in the
Theorem of Dias da Silva–Hamidoune arise from sets being close to arithmetic
progressions; for such results for the case k = 2 see, e.g., [10, 11]. And, a set being
close to an arithmetic progression should contain large barycentric subsets; see just
below for some details.
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It was noted in [12] that, for k fixed, for cyclic groups of sufficiently large order,
upper bounds for BO(k,G) can be obtained from Szemerédi’s theorem and its quan-
titative refinements. To avoid potential confusion we add the following explanation.
While Szemerédi’s theorem and its refinements are typically stated as results on
subsets of integers (as opposed to subsets of cyclic groups), one can of course use
them to derive analog results on subsets of cyclic groups. In fact this would be
sufficient for our purpose, yet, to put this in context we mention in addition that
under suitable assumptions, also the converse is true, that is a result established
for cyclic groups implies one for subsets of the integers; in fact, to pass to cyclic
groups, to establish a result for cyclic groups, and to reinterpret it for integers is the
common general framework for (recent) results around Szemerédi’s theorem. So,
conversely, one cannot expect (substantially) better results for cyclic groups than
those known for the integers.

We mention how Szemerédi’s theorem is applicable to this problem. It can be
shown that an arithmetic progression of odd length is barycentric and an arithmetic
progression of even length contains a barycentric subset of cardinality smaller by
two. Thus, to obtain an upper bound for the k-th barycentric Olson constant of a
cyclic group of large order, one can invoke Szemerédi’s theorem or a refined version
thereof, to argue that a set of sufficiently large cardinality contains an arithmetic
progression of length k or k+2, depending on whether k is odd or even, respectively;
this then implies the existence of a k-barycentric subset of the set. In particular,
Szemerédi’s theorem implies that for fixed k the linear (in the order of the group)
upper bound provided by Theorem A does not yield the correct order anymore (see
[12]).

As mentioned in the introduction, for k = 3 the two problems, barycentric
Olson constant and quantitative version of Szemerédi’s theorem, are particularly
closely related as for three elements (the case k = 3) being barycentric and being
in arithmetic progression are equivalent. Specifically, we recall that a recent result
of Sanders [17] asserts (using the equivalence mentioned above), for some c > 0,

BO(3,Z/nZ) ≤ cn
(log logn)5

logn
.

However, for other k, being barycentric and being in arithmetic progression are
not equivalent; for example as indicated above, for k ≥ 5 odd, being barycentric is
a (strictly) weaker propery than being in arithmetic progression. So, one can hope
to get upper bounds for BO(k,Z/nZ) that are better than those following from
results establishing the existence of arithmetic progressions. Indeed, for k ≥ 6 fixed
and n sufficiently large, results of Schoen and Shkredov [18] yield an upper bound
of the form

BO(k,Z/nZ) ≤ c′n exp

(

−c

(

logn

log logn

)1/6
)

,

with c, c′ > 0. To avoid a potential confusion, we point out that we need at
least k = 6; the closely related example given in the quoted paper [18] that could
suggest that k = 5 is sufficient is not exactly what we need, as there one has an
additional/different variable in the equation.

Based on the classical construction of Behrend [3] a lower bound of this general
form can be obtained. More concretely, Alon [1] showed that for k ≥ 2 there exists
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a subset of the integers {1, . . . , n} of size at least

n exp(−10
√

log k log n)

such that the equation (in the integers)

x1 + · · ·+ xk = kxk+1

has no solution in this set except for the trivial ones where all xi’s are equal.
For fixed k and large n this could be translated quite directly into a lower bound

for BO(k,Z/nZ), where we need to avoid solutions not only in the integers but mod-
ulo n. However, we also wish to consider the case that k grows with n (as opposed
to k being fixed). Thus, we carry out a more detailed analysis focusing on this
aspect not so common in the various investigations of Behrend-like constructions.

We shall first prove the following technical result.

Theorem 4.5. Let n ≥ 6 and k be two integers such that 3 ≤ k ≤ n− 3. One has

BO(k,Z/nZ) ≥ max
m∈N

{

1

m

(

(n/k)1/m − k

k − 1

)m−2
}

.

The following corollary is of special interest since it shows that Behrend’s ap-
proach is valid as long as log k/ logn tends towards 0 when n goes to infinity.

Corollary 4.6. When n tends to infinity, if k ≥ 3 satisfies log k = o(log n), then

BO(k,Z/nZ) ≥ n exp(−5
√

log k log n).

5. Proofs

We start with a direct constructive lower bound, needed in some of our argu-
ments. Indeed as we will see this bound is actually sharp in not too few cases.

Lemma 5.1. Let n ≥ 6 and k be two coprime integers such that 3 ≤ k ≤ n − 3.
Then BO(k,Z/nZ) ≥ k + 1.

Proof. It suffices to give an example of a subset of Z/nZ of cardinality k that is not
barycentric. We distinguish two cases based on the parity of k. Suppose k is even.
We consider the set A = {0, . . . , k − 1}. Then, σ(A) = k(k − 1)/2. Multiplication
by k being an isomorphism, it suffices to decide whether (k − 1)/2 is in A (note
that we know that n is odd). This is not the case as the smallest nonnegative
representative of (k − 1)/2 is (k − 1 + n)/2, which is greater than k − 1.

Suppose k is odd. For k = 3, the set {0, 1, 3} is not barycentric and we assume
k ≥ 5. We consider the set

A =

{

0, · · · , k − 1

2
,
k + 5

2
, · · · , k, k + 2

}

.

We get σ(A) = k(k+1)/2, and as above, since (k+1)/2 /∈ A the claim follows. �

5.1. Proof of Theorem 4.2. We actually prove the technical Proposition 4.1.
By Lemma 5.1 it remains to establish the upper bound. Let A be any subset of
Z/nZ with k + 1 elements and let x be the sum of all elements of A. We have
Σk(A) = x− A, as in each sum of k distinct elements of A, exactly one element is
missing. It follows that |Σk(A)| = |A| = |k ·A| = k+1, where we use that k and n
are coprime.



BARYCENTRIC-SUM PROBLEMS OVER CYCLIC GROUPS 9

The intersection of Σk(A) and k ·A contains at least 2(k + 1)− n ≥ 3 elements,
where we used the lower bound on k. Let b be an element in the intersection
different from the element (k+1)−1kx; since k+1 and n are coprime the latter is a
unique well-defined element and the intersection contains more than one element.
By definition, there exist a, a′ ∈ A such that b = ka and b = x − a′ . Since
b 6= (k + 1)−1kx, we have a 6= a′. This implies that ka ∈ k · (A \ {a′}) is equal to
the sum of the elements of the set with k elements A \ {a′}, which is therefore a
k-barycentric set. This establishes the upper bound.

5.2. Proof of Theorem 4.3. In part the general strategy of the proof we give
is similar to parts of the proof of Theorem 4.2. The latter part, establishing the
upper bound k+2 is essentially [5, Theorem 8]; it is possible to replace this part by
invoking the more general result Theorem 4.4, obtained by quite different means,
yet we avoid to do this to illustrate the merits of the different methods. Indeed, we
did obtain an argument along the lines of [5, Theorem 8] for establishing the upper
bound of k+2 for k = (p−3)/2 as well, yet the details become quite tedious so that
we feel that to push this method too far further is infeasible, which necessitates an
other approach, whence we subsequently establish Theorem 4.4. In the present case
only parts of the argument would, under similar technical conditions as in Theorem
4.2, carry over to cyclic groups of composite order, so that we do not make this
explicit.

Let A ⊂ Z/pZ with |A| = k+ 1. We investigate under which conditions A has a
k-barycentric subset.

We may assume that the sum of the elements of A is 0; to see this recall that
the problem is invariant under translation. We note that Σk(A) = −A. As above,
an element of −A ∩ (k · A) yields a k-barycentric subset except if it is 0. Thus, it
follows that if A has no k-barycentric subset, then −A \ {0} and k ·A \ {0} do not
intersect. Since the sum of their cardinalities is 2|A| − 2 = 2k = p − 1, it follows
that (Z/pZ) \ {0} is the disjoint union of −A \ {0} and k ·A \ {0}. Moreover, note
that the converse is true as well (for A having the sum of its elements equal to 0).
Multiplying by −2 it follows that (Z/pZ) \ {0} is the disjoint union of A \ {0} and
2 ·A \ {0}.

Let g ∈ A \ {0}. Then 2g ∈ 2 ·A \ {0}. Thus 2g /∈ A \ {0} and so 4g /∈ 2 ·A \ {0}.
Hence 4g ∈ A\ {0}. Repeating this argument, we see that 2ig ∈ A\ {0} if and only
if i is even.

Let ℓ denote the multiplicative order of 2 modulo p. By the above reasoning it
follows that if ℓ is odd, then 2ℓg /∈ A \ {0}. Yet, 2ℓg = g ∈ A \ {0}, a contradiction.
Thus, if ℓ is odd then A contains a k-barycentric subset and hence in this case
BO(k,Z/pZ) ≤ k+1. Since by Lemma 5.1 we know BO(k,Z/pZ) ≥ k+1 our claim
follows in the case of odd ℓ.

From now on, we assume that ℓ is even. We now use the multiplicative structure
of Z/pZ as well; of course this does not make the argument inapplicable for an
abstract cyclic group of order p, one merely would have to define (non-canonically)
some multiplicative structure.

Let H be the multiplicative group generated by 2 and {h1, . . . , hm} a set of rep-
resentatives of the classes—with respect to the multiplicative structure—((Z/pZ) \
{0})/H . The set

B =
⋃

i

{22jhi : 0 ≤ j ≤ ℓ/2− 1}
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has k elements. And (Z/pZ) \ {0} is the disjoint union of B and 2 · B; also note
that σ(B) = 0. By the above reasoning it follows that {0}∪B has no k-barycentric
subset and thus BO(k,Z/pZ) > k + 1.

It remains to show that BO(k,Z/pZ) ≤ k + 2; the argument is essentially [5,
Theorem 8]. Let C ⊂ Z/pZ a set with k + 2 elements. We may assume that
σ(C) = 0. We note that Σk(C) = −Σ2(C) = Z/pZ, as 2|C| − 3 = p. For each
c ∈ C, we thus get kc = −u− v with distinct u, v ∈ C. This yields a k-barycentric
sequence except if c = u or c = v. Yet if kc = −c− v, then v = −(k + 1)c. Thus,
either we get a k-barycentric set, or for each c ∈ C it follows that −(k + 1)c ∈ C.

It follows that |C|, or |C| − 1 (in case 0 ∈ C), is divisible by the multiplicative
order of −(k + 1) modulo p, which we denote by t and which is a divisor of p− 1.

First, suppose t divides |C| = k + 2. Since 2(k + 2)− 4 = p − 1, it follows that
t | 4. Note that −(k+1) is −(p+1)/2 and thus (−2)−1 modulo p. A contradiction
to p ≥ 7.

Second, suppose t divides |C| − 1 = k + 1. Since 2(k + 1)− 2 = p− 1, it follows
that t | 2. Again, a contradiction to p ≥ 7.

5.3. Proof of Theorem 4.4. Since for p = 7 the result does not yield anything
not covered by earlier results, we assume p ≥ 11. The lower bound is again a
consequence of Lemma 5.1.

We now prove the upper bound. Let A be any subset of Z/pZ with cardinality
k + 2. As before, using a translation, we may assume that σ(A) = 0. We have to
show that there is a subset B of A with cardinality k and an element b in B such
that σ(B) = kb. Using |A \B| = 2 and the assumption σ(A) = 0, we observe that
what we have to prove is that there are three distinct elements a, a′ and b such that

−a− a′ = −σ(A \B) = σ(B) = kb

or, equivalently,

(1) a+ a′ + kb = 0.

This, in fact, will follow from the fact that if we denote

Sk(A) = {a1 + a2 + ka3 : a1, a2, a3 ∈ A pairwise distinct}
the assumption |A| = k + 2 ≥ (p+ 8)/3 implies |Sk(A)| = p, thus 0 ∈ S and there
is at least one solution to (1).

We are now reduced to prove this fact. We will in fact prove slightly more by
showing that the following lemma holds.

Lemma 5.2. Let p be a prime and k be an integer, 3 ≤ k ≤ p − 1, and A be a

subset of Z/pZ with cardinality at least k + 2. We have the following estimates.

(i) For |A| ≤ (p+ 6)/3, one has

|Sk(A)| ≥ 3|A| − 6.

(ii) For |A| = (p+ 7)/3, one has

|SkA)| ≥ p− 2.

(iii) For |A| ≥ (p+ 8)/3, one has

|Sk(A)| = p.
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Proof. The assertion being trivial otherwise, we may assume |A| ≥ 2. We use the
polynomial method [2] and change slightly our notation to ease the application of
the main result of [2]. Let

A1 ⊂ A, A2 ⊂ A, A3 ⊂ k · A
be non-empty sets and write c1 = |A1| − 1, c2 = |A2| − 1 and c3 = |A3| − 1. Since
|k ·A| = |A|, the three ci’s can take any value between 0 and |A| − 1.

We set

T =
{

u1 + u2 + u3 : u1 6= u2, u3 /∈ {ku1, ku2}, and ui ∈ Ai

}

and notice that this definition guarantees that T ⊂ S.
Let H be the polynomial of degree 3

H(X1, X2, X3) = (X1 −X2)(X3 − kX1)(X3 − kX2).

We put

m = c1 + c2 + c3 − deg(H) = c1 + c2 + c3 − 3.

Since T can be rewritten as

T = {u1 + u2 + u3 with ui ∈ Ai, H(u1, u2, u3) 6= 0},
the polynomial method (see the main theorem from [2]) gives

|T | ≥ m+ 1

as soon as we can prove that the coefficient χ of Xc1
1 Xc2

2 Xc3
3 in the polynomial

(X1 +X2 +X3)
mH(X1, X2, X3)

is different from 0. We are therefore reduced to computing this coefficient.
We compute first that

H(X1, X2, X3) = k2X1X2(X1 −X2) + kX3(X
2
2 −X2

1 ) +X2
3 (X1 −X2),

and then see that χ is the sum of six terms (each being a trinomial coefficient):

χ = k2
((

m

c1 − 2 c2 − 1 c3

)

−
(

m

c1 − 1 c2 − 2 c3

))

+k

((

m

c1 c2 − 2 c3 − 1

)

−
(

m

c1 − 2 c2 c3 − 1

))

+

((

m

c1 − 1 c2 c3 − 2

)

−
(

m

c1 c2 − 1 c3 − 2

))

,

which, after simplification, gives

(2) χ =
m!(c1 − c2)

c1!c2!c3!

(

k2c1c2 − kc3(c1 + c2 − 1) + c3(c3 − 1)
)

.

We first treat cases (i) and (ii) together and observe that in the case c1 = c3 = α
and c2 = α− 1, where α is a given integer such that 2 ≤ α ≤ |A| − 1 < p, we get

χ =
(3α− 4)!

α!2 (α− 1)!
α(α − 1)(k − 1)2 =

(3α− 4)!

α!(α− 1)!(α− 2)!
(k − 1)2.

Since k 6= 1, this is non-zero if 3α− 4 < p.
For assertion (i) in the lemma, we thus can choose α = |A| − 1 in the preceding

computation. This leads to the value m = 3|A| − 7, implying the claim. For (ii),
we choose α = |A| − 2, also implying the claim.
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It remains to consider assertion (iii). To simplify notations, we write c1 = a and
c2 = a− x with some integer 1 ≤ x ≤ a (implying c1 > c2). Finally, we put

c3 = p+ 2− 2a+ x;

this choice guarantees that m = p− 1, yet of course we need to choose a and x in
such a way that c3 ∈ [0, |A| − 1].

With this notation, χ 6= 0 if and only if

k2a(a− x)− k(p+ 2− 2a+ x)(2a− x− 1) + (p+ 2− 2a+ x)(p+ 1− 2a+ x) 6= 0.

We observe that for each a, there is an x in {1, 2, 3} such that this is non-zero;
to see this consider the left-hand side as a polynomial in x; it has degree two, the
leading coefficient is k + 1. Thus it has at most two roots.

The only thing that remains to be shown is that there is an integer 0 ≤ a ≤ |A|−1
such that p+2−2a+x ∈ [0, |A|−1]. Yet, indeed, for ⌈(p+5)/3⌉ this is the case. �

5.4. Proof of Theorem 4.5. We shall construct a set of integers in the interval
{0, 1, . . . , ⌊n/k⌋} with the property that it does not contain a k-barycentric sub-
set. It will imply the result by a Freiman isomorphism (we refer to [14, 19] for
background and the terminology).

Let us choose an arbitrary integer m. There is a unique integer d such that

(3) ((k − 1)(d− 1) + 1)m ≤ ⌊n/k⌋ ≤ ((k − 1)(d− 1) + k)m − 1.

Notice that this implies

(4) d ≥ 1 +
(⌊n/k⌋+ 1)1/m − k

k − 1
≥ (n/k)1/m − k

k − 1
.

Now any integer less than or equal to ((k − 1)(d − 1) + 1)m − 1 can be written
in a unique way in the form

a =

m−1
∑

i=0

ai((k − 1)(d− 1) + 1)i,

where the digits ai’s are integers subject to 0 ≤ ai ≤ (k − 1)(d − 1). We denote
φ(a) = (a0, a1, . . . , am−1) the vector of digits of a in the chosen basis. For an integer
a, we define its norm by

‖φ(a)‖ =
(

m−1
∑

i=0

a2i

)1/2

.

Let A denote the set of integers 0 ≤ a ≤ ((k − 1)(d− 1) + 1)m − 1 whose digits
are at most d− 1, that is

A = {a0 + a1((k − 1)(d− 1) + 1) + · · ·+ am−1((k − 1)(d− 1) + 1)m−1,

with 0 ≤ ai ≤ d− 1 for all 0 ≤ i ≤ m− 1}.
By Freiman isomorphism, one has for all x1, . . . , xk−1 ∈ A,

φ(x1 + · · ·+ xk−1) = φ(x1) + · · ·+ φ(xk−1) ∈ {0, 1, . . . , (k − 1)(d− 1)}.
Now, if r is an integer then the set

Ar =
{

a ∈ A : ‖φ(a)‖ =
√
r
}
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does not have a k-barycentric subset because if x1 + · · · + xk−1 = (k − 1)xk with
each of the xi’s in A, then one has

‖φ(x1)‖+ · · ·+ ‖φ(xk−1)‖ = (k − 1)
√
r

= (k − 1)‖φ(xk)‖
= ‖(k − 1)φ(xk)‖
= ‖φ((k − 1)xk)‖
= ‖φ(x1 + · · ·xk−1)‖
= ‖φ(x1) + · · ·+ φ(xk−1)‖,

so that all the vectors of digits in the chosen basis are proportional and, since they
have the same norm and non-negative coordinates, equal. By the uniqueness of the
writing in the chosen basis this implies equality of the xi’s and proves the statement.

Now, by the pigeonhole principle, at least one of the Ar’s is big. Indeed the
cardinality of A is equal to dm. The values taken by ‖φ(a)‖2, for a ∈ A \ {0}, are
integral and at most m(d− 1)2. Therefore there exists some r such that

|Ar| ≥
dm − 1

m(d− 1)2
>

dm−2

m
.

Thus, corresponding to this value of r, we have a set without a k-barycentric
subset with at least the following number of elements:

dm−2

m
≥ 1

m

(

(n/k)1/m − k

k − 1

)m−2

where we have used (4).

5.5. Proof of Corollary 4.6. Let εn denote the real number such that k = nεn .
We notice that k ≥ 3 implies

(5) εn >
1

logn
,

and log k = o(logn) yields that

lim
n→+∞

εn = 0.

We define

m0 =

⌊
√

2
log(n/k)

log(k − 1)

⌋

and observe that

m0 ≥
⌊

√

2
log(n/k)

log k

⌋

=

⌊
√

2
1− εn
εn

⌋

∼
√

2

εn
(n → +∞).

Thus m0 tends to infinity as n tends to infinity. Therefore, for n large enough, we
have

(6) m0 ≥
√

log(n/k)

log k
=

√

1− εn
εn

.

We now prove that the quantity

xn = m0 k

(

k

n

)1/m0
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tends to 0 when n tends to infinity. Indeed

m0 ≤
√

4
log(n/k)

log k
≤ 2√

εn
,

and we get (n large enough)

log xn . log

(

2√
εn

)

+ εn logn− 1

m0

(1− εn) logn

. log

(

2√
εn

)

+ εn logn−
√
εn
2

(1− εn) logn

. −1

2
log εn + εn logn−

√
εn
3

logn.

Since εn tends to 0, it follows

log xn . −1

2
log εn −

√
εn
4

logn.

Since, by (5),

| log εn| < log logn

while √
εn logn ≥

√

logn,

this second term is dominant and we obtain that

log xn . −1

4

√
εn logn . −1

4

√

logn

and xn tends to 0 as n goes to infinity which proves our assertion.
We are now ready to prove that

yn =

(

1− k

(

k

n

)1/m0

)m0−2

tends towards 1 as n tends to infinity. Indeed

log yn = (m0 − 2) log

(

1− k

(

k

n

)1/m0

)

= (m0 − 2) log

(

1− xn

m0

)

.

Since m0 is at least 1, xn/m0 itself goes to 0 as n tends to infinity and we obtain

log yn = (m0 − 2) log

(

1− xn

m0

)

∼ m0

(

− xn

m0

)

= −xn

which implies that yn tends towards 1 when n goes to infinity.
Applying Theorem 4.5, in which we plug m = m0, yields

BO(k,Z/nZ) ≥ 1

m0

( n

km0+1

)1−2/m0

(

1−
(

km0+1

n

)1/m0

)m0−2

=
1

m0

( n

km0+1

)1−2/m0

yn

∼ 1

m0

( n

km0+1

)1−2/m0

≥ n

n2/m0m0km0

.
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Now,

n2/m0m0k
m0 ≤ exp

(

2 logn
√

log(n/k)/ log k
+ log 2 + log logn+ 2

√

logn log k

)

≤ exp
(

(4 + ε)
√

log k logn
)

,

for any ε > 0, when n is large enough.
It follows

BO(k,Z/nZ) ≥ n exp
(

−5
√

log k log n
)

.
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