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Abstract

Heuristics are often used to solve complex problems.
Indeed, such problem-specific knowledge, when pertinent,
helps to efficiency find good solutions to complex problems.
Unfortunately, acquiring and maintaining a heuristic set
can be fastidious. In order to face this problem, a approach
consists in revising the heuristic sets by means of experi-
ments. In this paper, we are interested in a specific revision
method of this type based on the exploration of the heuristic
space. The principle of this method is to revise the heuris-
tic set by searching among all possible heuristics the ones
that maximise an evaluation function. In this context, we
propose a revision approach, dedicated to heuristics repre-
sented by production rules, based on the reduction of the
search space and on a filtered local search. We present an
experiment we carried out in an application domain where
heuristics are widely used: cartographic generalisation.

1. Introduction

Since the beginning of artificial intelligence, problem
solving is among the central topics. Thereby, the first arti-
ficial intelligence program, the logic theorist [10], was ded-
icated to the proving of mathematical theorem. This pro-
gram uses heuristics, i.e. problem-specific knowledge, in
order to guide the search for a solution.

Nowadays, heuristics are widely used in problem solver
systems. When pertinent, they allow to find with effi-
ciency a good solution to the problems. However, defin-
ing problem-specific knowledge can be complex. Edward
Feigenbaum formulated this problem in 1977 as the knowl-
edge acquisition bottleneck problem. This definition prob-
lem arises from the fact that expert knowledge is rarely for-
malised and is not easily translatable into a formalism us-
able by computers. Another drawback of problem solver
systems based on heuristics concerns the evolution of the
systems. Indeed, the heuristics have to be readapted at each

evolution of the system, in particular when new elements
(e.g. new actions to apply to find the solution) are inte-
grated in the system. Thus, it is interesting to integrate, in
the system, methods allowing the system to revise itself the
heuristics by means of experiments. Several works were in-
terested in the development of such methods [6, 9]. Some
of them proposed to revise the heuristics by exploring the
heuristic space [13]. In this context, the revision problem
can be formalised as a search problem in which the objec-
tive is to find the heuristic set that maximises an evaluation
function.

The work presented in this paper deals with the problem
of exploration of the heuristic space, i.e. of the whole pos-
sible definable heuristics. We propose a search approach
based on the reduction of the search space and on a filtered
local search.In Section 2, we introduce the general context
in which our work takes place. Section 3 is devoted to the
presentation of our approach. Section 4 describes an ap-
plication of our approach to cartographic generalisation. In
this context, we present a real case study that we carried out
as well as its results. Section 5 concludes and presents the
perspectives of this work.

2. Context

2.1. Problem solver system

Many real world problems can be expressed as optimi-
sation problems. The goal, in this kind of problems, is to
find, among all possible solutions, the one that maximises
an evaluation function. In this paper, we are interested in
a family of optimisation problems that consists in finding,
by action application, the state of an entity that maximises
an evaluation function. Many approaches were proposed to
solve problems of this kind. Our work is dedicated to sys-
tems that solve it by exploring a state tree with the help of
heuristics. The passage from a state to another corresponds
to the application of an action. Such systems are often used



Figure 1. Action cycle

for real world problems thanks to their efficiency. In Fig-
ure 1, we present a classical action cycle for these systems
based on informed (i.e. utilisation of heuristics) depth-first
exploration of state trees.

The action cycle begins with the characterisation of the
current state of the entity and its evaluation. Then, the sys-
tem tests if the current state is good enough or if it is nec-
essary to continue the exploration towards others states. If
the system decides to continue the exploration, it tests if
the current state is valid or not; a valid state is a state from
which it is interesting to continue the exploration. If the
state is not valid, the entity backtracks to its previous state;
otherwise the system constructs a list of actions to try. If
the actions list is empty the entity backtracks to its previous
state; otherwise the system chooses the best action, and ap-
plies it. Then it goes back to the first step. The action cycle
ends when the stopping criterion is met or when all actions
have been applied for all valid states.

In this paper, we are interested in the heuristics used to
construct the action list. We impose that these heuristics are
expressed by production rules. Indeed, in many real world
applications, heuristics are expressed by production rules.
The interest of this kind of heuristic representation is to be
easily interpretable by domain experts and thus to facilitate
the heuristic validation and update. For each action, a set of
production rules is defined. The set of rules allows to de-
termine, for each possible state, if the action has to be tried
and if so, with which weight. The higher the weight, the
higher priority the action has (and thus will be tried first).
The weight is an integer between 0 and WEIGHT MAX (0:
the action is not proposed for the state, WEIGHT MAX: the
action is applied first). A measure set is defined per action.
Several actions can depend of the same measure set.

2.2. Automatic revision of heuristics

The question of automatic revision of heuristics has al-
ready been studied in the literature, in particular in the con-
text of the speedup learning. The speedup learning seeks to
improve the efficiency of problem solving systems by using
experience.

Among speedup learning works, many propose to use
domain knowledge in order to facilitate the learning [6, 8,
7]. This knowledge, called domain theory, allows to learn
from very few examples. However, this approach has some
limitations. The major one is that the quality of the learnt
knowledge is dependant of the quality of the domain theory.
Thus, an incomplete or incorrect domain theory can cause
numerous problems. In this paper, we make the assump-
tion that we do not have a strong domain theory, just initial
heuristics of uncertain quality. Thus, it will not be possible
to directly use these works.

Other speedup learning works propose to revise heuris-
tics without using domain theory. The most famous is the
LEX system [9]. This system learns the application condi-
tions of actions by analysing previously solved problem in-
stances. The LEX system has some limitations, especially
concerning the management of noisy data and the learning
of disjunctive concepts.

In [13], we proposed a revision approach taking place
in the continuity of the latter work. We proposed to revise
the action application domains, represented by production
rules, by exploring the space of the action application rules.

This approach is composed of two stages:

• Exploration stage: this stage consists in logging the
process while the system solves a sample of problem
instances.

• Analysis stage: this stage consists in analysing the logs
obtained during the previous stage and in using them
to revise the heuristics.

In this paper, we are interested in the analysis stage. We
assume that a sample of problem instances has already been
solved. We propose an approach, aiming at revising the
heuristic set, based on the exploration of the heuristic space
by using this sample of problem instances.

3. Proposed Approach

3.1. General approach

A difficulty of the heuristic space exploration is the size
of the search space. In order to limit this size, we proposed
in [13] to use experience (sample of resolved instances of
the problem) to partition the measure sets associated to each
action, into areas admitting a priori a same behaviour. An
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Figure 2. Revision approach

area corresponds to the premise of a rule (a set of condi-
tions concerning the measures), and the behaviour associ-
ated to this area corresponds to the conclusion of the rule
(the weight of the action). Thus, the exploring problem
consists in assigning the best conclusion to each obtained
areas. As illustrated Figure 2, the approach proposed in
[13] is composed of two steps: the first one consists, for
each action, in partitioning the measures set linked to it in
areas that admit a priori a homogenous behaviour (conclu-
sion of the rule); the second step consists in searching the
best conclusion to assign to each area.

In this paper, we propose to use the same general ap-
proach. In this context, we propose a new conclusion as-
signment method. This method is based on the use of ex-
ample sets in order to extract information from experience.
In the next section, we describe the process used to build
these example sets. Section 3.3 is dedicated to the descrip-
tion of our conclusion assignment search method.

3.2. Construction of the example sets

In order to extract information from experience, we pro-
pose to build an example set describing the ”ideal” be-
haviour of the actions. An example corresponds to one state
of a state tree. It is composed of n predictors and a label.
The predictors are the measures associated to the actions.
The label is the behaviour assessed as the good one for this
experienced state, i.e. is the action that should be tested in
priority.

The construction of the example sets is achieved by
analysing the state trees obtained during the exploration

Figure 3. Example of a built example set

stage (each state tree resulting from the resolution of one
sample instance). The method used for the construction of
the example sets has been described in [12]. It first consists
in extracting the best paths from each state tree. A best path
is a sequence of at least two states, which has the root of a
tree (or of a sub-tree) for initial state and the best state of
this tree (or sub-tree) for final state. The next step consists
in analysing each state of each best path. If a state belongs
to a best path and if the application of an action leads to an-
other state of the same best path, the ideal behaviour is ”this
action should have priority”. Figure 3 gives a simplified
example of example sets.

3.3. Weight assignment problem

3.3.1 Problematic of the weight assignment space ex-
ploration

As stated in Section 3.1, the last step of our revision ap-
proach consists in searching the conclusion assignment set
that maximises an evaluation function. This evaluation
function translates the user needs toward the problem res-
olution system. In particular, this function defines the bal-
ance between the efficiency (speed to carry out the resolu-
tion of a problem instance) and the effectiveness (quality
of the found problem instance solution) of the system. The
definition of this function is a key point of our approach.
Thus, it is essential that this one is in adequacy with the
user needs. We note Perf(SH , I) the function that is used
to estimate the performance of the system S when using a
heuristic set H for the resolution of a sample of problem
instance I . There is no generic Perf(SH , I) performance
function. This one has to be specifically defined for each
application.

Let us remind that we deal with the revision of the ac-
tion application domains. Each action has a rule set, which
defines the weight of the action for each value of its mea-
sure set (see Section 2.1). The difficulty of the knowledge
revision process comes from the distributed nature of this
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knowledge. Actually, if the application rule sets of each
action are not dependent on each other in their expression
(each action has a rule set which only depends on its own
measure set), the results (the weight) can only be analysed
if compared to the weight of the other actions. Therefore,
it is not possible to search the best assignment of weights
of each action independently: we have to take into account
all actions at the same time. The size of the search space
is then equals to (WEIGHT MAX +1)total nb of areas.
Thus, the size of the search space is most of time too high
to carry out a complete search.

3.3.2 Filtered Local search

In order to face the exploration problem, we propose to
use a local search approach. The principle of these search
methods is to start the search from an initial solution and to
try to improve it by successive movements in the solution
space. The movement in the solution space corresponds
to a transition from a solution to another one belonging to
the neighbourhood of the former one. The interest to use
a local search in our context is to take advantage of the
initial heuristics that constitutes, most of the time, a good
initial solution. In the literature, many local search methods
were proposed [5, 4]. In this paper, we proposed to use
one of these local search methods but as well to improve
its efficiency by using information contains in the example
set. Thus, we proposed to use this information to filter the
considered neighbourhood at each search step. Our filtering
method is composed of four steps that are detailed hereafter.

Step 1
This step is the classical movement list building of the

local search. The building of the movement list depends of
the used local search method.

Step 2
This step consists in characterising the state of each

area. The goal of this characterisation is to use the local
information to detect the conflicts between the ideal
behaviour of the actions (given in the example set) and
their real behaviour (the current weight assignments). We
propose to characterise the state of each area by the number
of false positives, of false negatives, of true positives, and
of true negatives. Figure 4 illustrates how these numbers
are computed: for each example of the example set (here,
Ea and Eb), the ideal behaviour of the actions (for Ea,
Act2 should have priority; for Eb, Act1 should has priority)
is compared to their current behaviour (for Ea, Act2 has
priority; for Eb, Act2 has priority). If an action has priority
and should have priority, the area that allows the action to
have priority meets one true positive. If this action should
not have priority, the area that allows the action to have

Figure 4. Area state characterisation

priority meets one false positive. In the same way, if an
action does not have priority and should not have priority,
the area that allows the action to have priority meets one
true negative. If this action should have priority, the area
that allows the action to have priority meets one false
negative.

Step 3
This step consists in computing the quality a priori of the

possible movements from the local information computed
in the last step.

Each area that is directly or indirectly concerned by a
movement gives a mark to it. An area is directly concerned
by a movement if this one implies to modify the weight as-
signed to the area. An area is indirectly concerned by a
movement if the area shares examples with an area directly
concerned by the movement. Two areas share an example if
the example state is situated in the two areas. For example,
in Figure 5, the areas (Act1, 3 < M1 < 8 AND M2 < 6)
and (Act2, 3 < M1 < 8 AND 3 < M2 < 6) share the
examples Ea (the triangle).

The mark given by an area is a real between 0 and 1
(0: the area strongly advises against the movement; 1: the
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area strongly recommends the movement). It depends on
the presumed evolution of the success and failures that the
area could meet if the movement is carried out.

If a movement implies to increase the weight of an area,
the number of false negatives met by this one should de-
crease. An area, which shared examples with the area,
should see its number of false positives decrease but could
also see its number of true positives decrease. In the same
way, if a movement implies to decrease the weight of an
area, the number of false positives met by this one should
decrease. An area, which shared examples with the area,
should see its number of false negatives decreasing but
could also see its number of true negatives decreasing.

The quality a priori of a movement is equal to the mean
of the marks given by the areas weighted by their impor-
tance.

Let area be an area, we note fneg(area), its num-
ber of false positives, fpos(area) its number of false
negatives, tneg(area) its number of true negatives, and
tpos(area) its number of true positives. We note, as well,
weight(area) the current weight assigned to the area and
weight(area,mvt) the weight assigned to the area after
the application of the movement mvt. The marks and the
importance given by the areas to the movements are the fol-
lowing:

• Mark given by an area aread directly concerned by a
movement mvt:

• Mark given by an area areai indirectly concerned by
a movement mvt and sharing examples with an area
aread directly concerned by mvt:

Once each concerned area has given its mark to a move-
ment, the quality a priori of the movement is computed.

Figure 5. Cartographic Generalisation

Step 4
This last step consists in filtering the movements accord-

ing to their quality a priori. If the quality a priori of a move-
ment computed during the last step is higher than the value
of a filtering coefficient the movement is kept; otherwise, it
is removed from the movement list. The filtering coefficient
is a real between 0 and 1. This filtering allows to limit the
number of tested solutions. The lower the value of this fil-
tering coefficient, the less solutions will be tested, thus the
faster the system will converge towards a solution. How-
ever, a high value for the filtering coefficient can have for
consequence to miss good solutions.

4. Application to cartographic generalisation

4.1. Automatic cartographic generalisation

We apply our heuristic space exploration approach in the
domain of cartographic generalisation. Cartographic gener-
alisation is the process that aims at simplifying vector geo-
graphic data to suit the scale and purpose of a map. Figure
5 gives an example of cartographic generalisation.

The automation of the generalisation process is an inter-
esting industrial application context which is far from being
solved. Moreover, it directly interests the mapping agencies
that wish to improve their map production lines. At last, the
multiplication of web sites allowing creating one’s own map
increases the needs of reliable and effective automatic gen-
eralisation processes. One classical approach to automate
the generalisation process is to use a local, step-by-step and
knowledge-based method [2, 14]: each vector object of the
database (representing a building, a road segment, etc.) is
transformed by application of a sequence of generalisation
algorithms realising atomic transformations. The choice of
the applied sequence of algorithms is not predetermined but
built on the fly for each object according to heuristics and
to its characteristic.

4.2. The generalisation system

The generalisation system that we used for our experi-
ment is based on the AGENT model [1, 11]. It follows the
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specification presented in Section 2.1. It generalises a geo-
graphic object or a group of geographic objects by means of
an informed tree search strategy. Each state represents the
geometric state of the considered geographic objects and is
evaluated by a satisfaction function, which translates the re-
spect of cartographic constraints by the geographic objects.
The actions cycle used is the one presented in Figure 1. The
weight of the actions is ranged between 0 and 5.

4.3. Case study

The actual case study that we carried out concerned the
generalisation of geographic object of the type ”building
group” [3]. A building group is a space composed of a set
of ”close” buildings belonging to the same building block
(space surrounded by a minimum cycle of roads). The
building group generalisation is an interesting case study
because it is not yet well mastered and because it is very
time consuming.

We defined five actions for the building group generalisa-
tion as well as two heuristic sets. The first one was defined
by a generalisation expert (Hexpert). The second one cor-
responds to the ”basic” case where all actions are proposed
for all states (Hbasic). The revision of the ”expert” heuristic
set corresponds to the classical scenario of knowledge revi-
sion where we have a good initial rule base that we want to
refine. The revision of the ”basic” heuristic set corresponds
to the scenario where we have no knowledge on the gener-
alisation of the considered type of object.

50 building groups from the French city of Orthez were
automatically selected among more than 300 available for
the revision process.

Concerning the algorithm used for the local search, we
used the well-established tabu search algorithm [4].

For the Perf(SH , I), we defined a function favouring
the effectiveness of the system (computed according to the
mean satisfaction) over its efficiency (computed according
to the mean number of visited states).

Concerning the test protocol, we tested the initial and
the revised knowledge on a different area (the French city of
Salies-de-Barn) than the one used for the revision. This area
was composed of 200 building groups. In order to evaluate
our filtering approach, we tested the local search method
with and without the filtering method. Concerning the fil-
tering method, two values of the filtering coefficient were
tested: 0.1 (weak filtering) and 0.5 (strong filtering).

4.4. Results

Table 1 shows the results on the test area with the dif-
ferent heuristic sets. The two heuristic sets were improved,
even the expert knowledge set that was already good. In-
deed, concerning Hbasic, we obtain close results in terms

Table 1. System performances on the test
area

Heuristic set Perf(SH , I)
Initial Revised

Hbasic 0.761 0.784
Hexpert 0.783 0.788

Figure 6. Revision results

of effectiveness (slightly less good for the revised version),
but far better results in terms of efficiency for the revised
version: the revision allowed to divide the mean number of
visited states per generalisation by a factor 10.

Considering Hexpert, the initial and the revised versions
obtained equivalent results in terms of effectiveness, but the
revised version obtained better results in terms of efficiency:
the revision allowed to divide the mean number of visited
states per generalisation by a factor 2.

An interesting point concerns the way the initial heuristic
set is taken into account. The revised heuristic set obtained
from the revision of Hexpert obtained better results than the
one obtained from the revision of Hbasic. This result shows
the interest of taking into consideration the initial heuristic
set for the revision process.

Concerning the contribution of the neighbourhood filter-
ing, the results (cf. Figure 6) show that the introduction
of the filtering phase with the filtering coefficient equals to
0.1 allowed to converge more quickly toward a good solu-
tion for both heuristic sets. Concerning the results obtained
with the filtering coefficient equals to 0.5, they shows that
it allowed to find a better solution for the Hbasic but not for
Hexpert. Indeed, for this last heuristic set, the filtering had
for consequence a high deterioration of the quality of the
best found solution. Thus, it is important to pay intention to
the filtering coefficient used. A high value of it can have for
consequence to miss good solutions.
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5. Conclusion

In this paper, we propose a revision approach, dedicated
to heuristics represented by production rules, based on the
reduction of the search space and on a filtered local search.
We showed the efficiency of our revision approach as well
as the interest of the neighbourhood filtering on a actual
case study.

If we revised the action application knowledge, we did
not try to revise others pieces of knowledge like the validity
criterion or the actions cycle ending criterion. Some adap-
tation of our approach could be proposed to revise as well
this kind of knowledge. In the same way, adaptations could
be proposed to revise knowledge expressed in others for-
malisms than production rules.

A key point of our approach is the Perf(SH , I) func-
tion used to evaluate the performance of the system. De-
signing such a performance function to translate the system
user needs can be very complex. Thus, an interesting fu-
ture work will consist in developing methods to help users
design this function.
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