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ABSTRACT 

For the enterprises organized in several distributed production sites, usually, production 

scheduling models presume either an instantaneous delivery of products or an unlimited 

number of available vehicles for transporting products. However, the transportation of the 

intermediate products to the sites is an important activity within the whole process of 

manufacturing, and the efficient coordination of production and transportation becomes a 

challenging problem in the actual higher collaborative and competitive environments. This 

work focuses on the integrated production and transportation scheduling properly managing 

the resources capacity, material flows and temporal interdependencies between sites. A case-

study is reported and the industrial problem under consideration is modeled as a Constraint 

Satisfaction Problem (CSP). Besides scheduling under resource constraints, the model 

presented in this paper expands the packing problem to the area of transportation operations 

scheduling. It is implemented under the constraint programming language CHIP V5. The 

provided solutions determine values for the various variables associated to the production and 

transportation operations realized on the whole multi-site, as well as the curves with the 

profile of the total consumption of resources in time. 

Keywords: Production and transportation scheduling, constraint programming, cumulative 

resource, packing problem. 
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1. INTRODUCTION 

A multi-site enterprise is a company with several distributed production sites, where sites are 

using the intermediate products of other sites to manufacture the products of the enterprise 

(Sauer and Appelrath, 2000). The scheduling problem is the temporal assignment of activities 

to resources where a number of goals and constraints have to be regarded.  

For production scheduling, numerous researches have been proposed in the literature to 

address the problem in process industries. Various types of methods have been employed such 

as the mathematical programming approaches, heuristic and rule-based procedures. Extensive 

reviews of planning and scheduling methodologies, as well as contributions reported in the 

field, can be found in (Shah, 1998), (Pekny and Reklaitis, 1998), (Reklaitis, 2000), (Floudas 

and Lin, 2004) and (Méndez et al., 2006). 

Usually, production scheduling models presume either an instantaneous delivery of products 

or an unlimited number of available vehicles for transporting products. However, the problem 

in which a limited number of vehicles available in a site can be found in most of the 

production sites, involving assignment, routing and timing decisions in a multi-site scheduling 

framework.  

Thus, interacting production and transportation activities requires the consideration of 

additional features and constraints. Departure times of vehicles depend on the availability of 

products in site tied to the production scheduling defined, as well as on the availability of the 

assigned vehicle and on the capacities production of sites. The efficient coordination of 

production and transportation operations remains an open area for research (Erengüç et al., 

1999; Sarmiento and Nagi, 1999; Chen, 2004; ElMaraghy and Mahmoudi, 2009). In general, 

literature related to the production–transport scheduling problems focuses mainly on the 

integration in strategic and tactical levels of analysis; the start times of transportation and 

production operations, the allocation of vehicles, the resource capacities in site and the 

products to be delivered, are issues rarely addressed jointly. 

This work focuses on the integrated scheduling of the production and transportation 

operations, consuming resources (respectively machines and vehicles) with limited capacities. 

We propose a multi-site scheduling approach optimizing the end date of the production, while 

satisfying at the same time the constraints between operations and the resource constraints, 
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that is, at every time, the sum of the resource consumptions for the operations should not 

exceed the production and the transportation capacities in sites. We model the problem in the 

CSP (Constraint Satisfaction Problem) form. The constraint programming paradigm consists 

in finding among the possible values of a set of variables those which satisfy all the 

constraints simultaneously. We are principally interested in the respect of the capacity 

resources and the synchronization operations, for jointly production and transportation 

scheduling in the multi-site. Besides scheduling under resource constraints, the model 

presented in this paper expands the packing problem to the area of transportation operations 

scheduling. Analogous to placing rectangular box onto a 3D space, we model the 

transportation multi-site scheduling by placing the transportation operations onto a space with 

three dimensions temporal, geographical and assignment. For solving, we implement the 

cumulative and packing global constraints concept, which provides a compact and concise 

description of the problem. 

The remainder of the paper is organized as follows. The industrial problem considered is 

defined in Section 2. Section 3 recalls the basic principles of constraint programming and 

presents the cumulative and packing global constraints concept. Section 4 defines the 

parameters, variables and constraints of the industrial problem and formulates the multi-site 

scheduling model under production and transportation constraints. In Section 5, the proposed 

approach is implemented under the constraint programming language CHIP V5; some results 

are presented. Finally, Section 6 is devoted to the concluding remarks and some future 

research directions. 

 

2. INDUSTRIAL PROBLEM STATEMENT 

The industrial problem handled in this work appears as follows: 5 production sites 

appertaining to the same company, and realizing 11 types of products (Table 1). The 

manufacturing of a product requires a succession of production operations, realized each 

on a given site. The transfer between sites is provided by transportation operations 

(Figure 1). The term "operation" is employed to characterize a "workload". 
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Product Quantity Qx Site 1 Site 2 Site 3 Site 4 Site 5 

A 180 X  X X X 

B 120 X    X 

C 150 X     

D 130 X  X X X 

E 140  X X X X 

F 150  X   X 

G 20 X     

M 70  X X X X 

N 180 X  X X  

O 100  X X X X 

K 30  X X X X 

Table 1: Quantity and process production of products  

 

 

 

 

	  

Site	  1	  

Site	  3	  

Site	  2	  

Site	  4	   Site	  5	  

A,	  D,	  N	  

	  

E,	  M,	  K	  

	  

A,	  D,	  E,	  M	  

	  
N,	  O,	  K	  

	  

A,	  D,	  E,	  M	  

	  
O,	  K	  

	  

B	  

	  

F	  

	    

Figure 1: The multi-site company 

A site is defined by its production capacity and its transportation capacity. The number of 

resources (i.e. of machines) in a site limits the production capacity (Table 2).  

Site Maximal number of 
machines 

Maximal number of 
trailers 

ST1 4 5 

ST2 5 4 

ST3 3 5 

ST4 3 5 

ST5 3 - 

Table 2: Production and transportation capacity of sites 
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The transportation is realized by vehicles composed by two types of resources: tractors 

and trailers (Figure 2). Trailers, properties of the company, are defined by their 

incorporation bases (sites), their availability over the planning period, and their maximal 

number in every site (Table 2). Every trailer can contain a maximal number of 40 

products. A subcontracting transport company, supplying tractors to deliver trailers 

loaded from a site to the other one, ensures the transportation operations. The 

subcontractor can guarantee a simultaneous availability of 10 tractors at most. A tractor 

trip consists in towing a loaded trailer from its incorporation site to the delivery site 

followed by its delivery to the departure site (Table 3). The deliveries are realized by 

product. 

	  

Figure 2: The transportation vehicle [Tractor + Trailer] 

	  

Origin 
Site 

Destination 
site 

Duration 
(h) 

ST1 ST3 8 

ST1 ST5 12 

ST2 ST3 5 

ST3 ST4 5 

ST2 ST5 10 

ST4 ST5 6 

Table 3: Transportation duration inter-site (round trip) 

The elaboration of production plans of the 11 products for all the 5 sites supposes a horizontal 

synchronization of all the sites to assure the manufacturing and the provision of products in 

due course. This entails that the scheduling decisions integrate strictly the production 

constraints and the transportation constraints. In this treated problem, the decisions to make 

consist:  
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- To determine for every site, the start dates of the production operations while respecting the 

limitation of the production resources capacity (number of machines in site) 

- To determine for every site, the start dates of the transportation operations while respecting 

the limitation of the transportation resources capacity (number of trailers in site) 

- To allocate tractors to the transportation operations within the limits of the simultaneous 

availability of 10 tractors, and by considering the geographical disparity of sites. 

Thus, it is a matter of finding a solution that minimizes the production end date of all the 

products, by respecting at the same time precedence, cumulative and assignment constraints. 

This multi-site scheduling problem is approached by considering the case of a company 

within which there is a central logistic department. It is a matter of distributing and 

coordinating production and transportation between sites while leaving to every site autonomy 

at the local scheduling level. 

 

3. CONSTRAINT PROGRAMMING 

Many decision problems in industry can be viewed as satisfiability or optimization problems. 

Different formulations (models) can be associated with the problem under study, and several 

criteria could be considered to evaluate a formulation. Two paradigms have reached a high 

degree of sophistication from the viewpoint of both theory and implementation: Constraint 

Programming (CP) and Mixed Integer Programming (MIP). The CP and MIP paradigms have 

strengths and weaknesses that can complement each other. The major difference between both 

techniques is the inference method. Inference is the act of revealing implicit constraints from 

the existing ones, in order to reduce the search space. On the one hand, CP, through the use of 

sophisticated propagation techniques, privileges primal inference. On the other hand, MIP, 

through the techniques of relaxation and strengthening through cutting planes, privileges dual 

inference (Salvagnin, 2009). 

In the last years, several researchers from the CP and MIP communities have investigated the 

possibility to integrate the methodologies proper to these paradigms (Hooker, 2006; Milano, 

2003). Such an integration has the potential to yield important benefits, and the literature on 

this topic is recent but growing. 
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In this work, we privileged the Constraint Programming approach, and particularly the use of 

the cumulative and packing global constraints, because it provides a relatively high level of 

abstraction and expressivity in the modelling phase. Moreover, CP offers a concise and 

integrated modelling of the presented scheduling problem and closer to natural language of 

the case study (straightforward and intuitive variables and constraints). 

Constraint programming refers to the techniques dealing with constraint representation and 

exploitation. This paradigm potentially combines methods of operations research (e.g., graph 

theory, mathematical programming, combinatorial optimization methods) with tools resulting 

from artificial intelligence (e.g., filtering algorithms, instantiation heuristics, search schemes). 

Research carried out on constraint satisfaction problems (CSPs) has resulted in the 

development of effective models which are now widely used in various domains such as 

computer vision, robot or agent planning, scheduling, human resources management, supply 

chain, agronomy, diagnosis, or others (Gyssens et al., 1994; Van Hentenryck et al., 1992; 

Vargas, 1995; Chan and Chan, 2006). 

3.1. The CSP formalism 

A CSP is defined as a triplet (X, D, C) (Montanari, 1974; Dechter, 2003) with:  

• X = (X1, X2, ..., Xn) is the set of variables of the problem; 

• (D = D1, D2, ..., Dn) is the set of domains. Each variable Xi 

! 

"X, 1 ≤ i ≤ n, is associated 

with one domain Di

! 

"  D which represents all the possible values for Xi. These domains 

are finite, but of any kind, symbolic or numerical; 

• C = (C1, C2, ..., Ck) is the set of constraints. Each constraint Cj is a relation between 

some variables of X. These constraints are of any kind, linear (e.g., X1 + X2 ≤ 4) or non-

linear (e.g., X3 ≠ X4).  

Given a CSP (X, D, C), a feasible solution is an instantiation of all the variables, so that all the 

constraints are simultaneously satisfied.  

3.2. CSP solving 

General CSPs belong to the class of NP-complete problems. Their solving is based on the 

application of constraint propagation techniques (filtering phase) and on tree search (decision-

making phase). 
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Filtering phase: It consists in removing the values of the variables that have no chance to be 

among a solution. Within the filtering algorithms, the arc-consistency (AC) is probably the 

most used. This algorithm checks the consistency of a constraint between two variables of a 

CSP. Since the seminal AC-3 (Mackworth, 1977), many more powerful versions have been 

proposed (Mohr and Henderson, 1986; Bessière, 1994). However, the easy implementation of 

AC-3, its adaptability to broader frameworks than the classical CSP, as well as recent 

improvements of the basic version (Zhang and Yap, 2001; Bessière et al., 2005; Arangu et al., 

2009) make this algorithm a widely used filtering technique.  

Decision-making phase: It consists in finding a complete instantiation (a solution) satisfying 

all the constraints. Such an instantiation is carried out by means of various algorithms based 

on tree search, e.g., Backtrack (Bitner and Reingold, 1975), Limited Discrepancy Search 

(Harvey and Ginsberg, 1995), Randomization & Restart (Gomes et al., 1998). Some of them 

are hybrid algorithms in the sense they perform a certain level of filtering on each variable 

instantiation in the tree expansion (Forward-Checking, Real-Full-Look-Ahead (Nadel, 1989), 

Maintaining Arc-Consistency (Sabin and Freuder, 1994)).  

Last, let us mention that scanning the search space can be improved by ordering heuristics 

(order of the variable instantiations and choice of a value for a given variable).  

3.3. Global constraint  

Combinatorial problems generally present independent substructures easily identifiable, all of 

which being formulated by a group of constraints. This is the reason for introducing the 

concept of “global constraint”. A global constraint is a subset of constraints, corresponding to 

a substructure of the original problem. Several types of global constraints have been 

developed: alldifferent, diffn, cycle, sequence, cumulative, etc. In the example of the global 

constraint “alldifferent (X1, ...., Xn)”, each of the variables X1, ..., Xn must take a different 

value, i.e., X1 ≠ X2 ≠… ≠ Xn. To each global constraint, at least one specific filtering 

algorithm is associated. A global constraint takes into account the group of constraints as a 

whole, in a more effective manner than standard propagation techniques applied to separate 

constraints.  
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3.3.1. Cumulative constraint 

Scheduling under resource constraints handles the problem taking, on the one hand, a set of 

tasks i in which every task is defined by a start time Si, a processing time pi as well as the 

quantity of resource consumption ri,k , and, on the other hand, a limit of resource not 

exceeding Rk. This capacity limitation of resource k imposes that at every time, the sum of the 

resource consumptions for the tasks in process should not exceed the resource capacity. It 

yields: 

Rk
k
ki,   
(t)T  i        

r ≤
∈
∑

	  

 

 

with Tk(t) = {i}i=1..n with t ∈ [Si, Si + pi) . 

This problem can be classified in the category of RCPSPs (Resource-Constrained Project 

Scheduling Problems), for which a variety of methods were employed for its resolution: linear 

programming, constraint programming, heuristics and metaheuristics, and tree search 

((Baptiste and Le Pape, 1997; Beldiceanu et al., 1996; Dorndorf et al., 1999, Brucker et al., 

1999; GOThA, 2006; Özdamar and Ulusoy, 1995) and more recently and very promisingly 

satisfiability-based solving (Coelha and Vanchoucke, 2011). In constraint programming, the 

cumulative global constraint (Aggoun and Beldiceanu, 1993) found in the RCPSP a 

particularly favourable field of application. 

Form: Cumulative ([S1, ..., Sn], [p1, ..., pn], [E1,k, ..., En,k], [r1,k, ..., rn,k], Rk, Zk). 

In the cumulative global constraint, a set of n tasks has to be planned on resource k; Ei,k 

corresponds to the energy required and Zk the calculation of the completion time of the tasks 

on resource k (Figure 3). It consists in the evaluation, for a given interval, of the sum of the 

resource consumptions required to perform the tasks; if this number exceeds the resource 

capacity then a contradiction is detected. 

(1) 
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Time 
1 2 3

 2  
4 5 

1 

2 

3
 2  

Resource consumption k 

 
Resource capacity Rk = 4 

4 

    Task j 

Task i 

Si 

pi 
r i,k

 
 

Zk  

       
Task m 

 
Figure 3: Example of a cumulative resource k 

The first filtering algorithms were related to the notion of compulsory part of a task (Lahrichi, 

1982). They compute a cumulated resource profile of all the compulsory parts of the tasks and 

prune the origins of the tasks with respect to this profile in order to not exceed the resource 

capacity. These methods are sometimes called timetabling. Even if these methods are quite 

local, i.e., a task has a non-empty compulsory part only when the difference between its latest 

start and its earliest start is strictly less than its duration, it scales well and is therefore widely 

used. Later on, more global algorithms based on the resource consumption of the tasks on 

specific intervals were introduced: energetic reasoning (Erschler and Lopez 1990), task-

interval (Caseau and Laburthe, 1996), cores-times (Klein and Scholl, 1999), etc. 

3.3.2. Packing constraint 

Given a set of components and one container (an available space area), a packing problem 

consists in finding the position variables of components in the container in effort to minimize 

a set of objectives, while respecting certain constraints. Every packing problem presents at 

least non-overlapping constraints between components and, in most of the cases, appertaining 

constraints to the container. They define the packing constraint.  

Consider a list of m rectangular boxes of dimension n of which the sides are parallel to n axes 

of a limited space [End1,…, Endn]. Every box is defined by the Cartesian coordinates Oik of its 

origin and its lengths Lik (i∈ [1,m], k ∈ [1,n]). The non-overlapping and appertaining 

constraints are respectively expressed by the formulas (2 and 3): 

∀ i ∈ [1,m], ∀ j ∈ [1,m], i≠j, ∃ k ∈ [1,n] such as Oik ≥ Ojk + Ljk  ∨ Ojk ≥ Oik + Lik  (2) 

∀ k ∈ [1,n], i ∈ [1,m] Maximum (Oik + Lik) ≤ Endk    (3) 
       i ∈ 1..m 
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Generally, components (boxes) are physical objects. In the literature, certain authors also 

consider abstract objects, presenting a direct analogy with the problem at hand (Dyckhoff, 

1990). State of the art on packing problems shows that all types of optimization techniques 

(mathematical programming, constraint programming, heuristics and metaheuristics, etc.) 

were used for their resolution (Cagan et al., 2002; Dowsland, 1991). 

In constraint programming, the packing global constraint noted “diffn” (Beldiceanu and 

Contejean, 1994) imposes the non-overlapping of a set of multidimensional rectangular boxes 

(Equation 2) and their appertaining in a limited space (Equation 3). The global constraint 

“diffn” imposes simultaneously these two types of constraints and then offers a more concise 

and integrated modelling of the packing problem. 

Form: diffn([[O11,…,O1n,L11,…,L1n],…,[Om1,…,Omn,Lm1,…,Lmn]], [End1,..,Endn]) 

 

1 2 3
 2  

4 5 

1 

2 

3
 2  

4 

 
3 

1 

2 
Task 

m 
6 7 8 9 

5 

 
diffn([[1,3,2,2], [3,1,2,1], [6,1,3,3]], [9,5]) 

Figure 4: Illustration of the packing global constraint “diffn” (2 dimensions) 

Checking whether a diffn constraint for which all variables are fixed is satisfied or not is 

related to the Klee's measure problem: given a collection of axis-aligned multi-dimensional 

boxes, how quickly can one compute the volume of their union. Then the diffn constraint 

holds if the volume of the union is equal to the sum of the volumes of the different boxes. 

A first possible method for filtering is to use constructive disjunction. The idea is to try out 

each alternative of a disjunction (e.g., given two boxes B1 and B2 that should not overlap, we 

successively assume for each dimension that B1 finishes before B2, and that B2 finishes before 

B1) and to remove values that were pruned in all alternatives. For the two-dimensional case of 

diffn a second possible solution used in (Du Verdier, 1992) is to represent explicitly the two-

dimensional domain of the origin of each rectangle by a quadtree (Samet, 1989) and to 

accumulate all forbidden regions within this data structure. As for conventional domain 
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variables, a failure occurs when a two-dimensional domain get empty. A third possible 

filtering algorithm based on sweep is described in (Beldiceanu and Carlsson, 2001). 

 

4. MULTI-SITE SCHEDULING MODEL  

In Section 2, we posed the industrial problem. In the sequel, we propose the associated multi-

site scheduling model in the form of a constraint satisfaction problem.  

The proposed model is based around the definition of the parameters, the variables and the 

constraints translating the various characteristics related on times, the products and the 

logistical system. A solution consists in assigning a start time to each production and 

transportation operation by satisfying all the constraints. 

4.1. Parameters 

The data of the multi-site scheduling problem are represented by the following 

parameters:  

• Elementary period of time t: It is the unit of time in terms of scheduling,  

• Decision horizon H, t∈[1, H]: It is the period over which the scheduling decisions are 

made, 

• The set of production sites STi : ST = (ST1, ST2, ST3, ST4, ST5), 

• The set of products: X = (A, B, C, D, E, F, G, M, N, O, K), 

• The set of production operations xi: T = (A1, A3, A4, A5, B1, B5, C1, D1, D3, D4, D5, E2, 

E3, E4, E5, F2, F5, G1, M2, M3, M4, M5, N1, N3, N4, O2, O3, O4, O5, K2, K3, K4, K5), 

• The set of transportation operations xii’: TT = (A13, A34, A45, B15, D13, D34, D45, E23, 

E34, E45, F25, M23, M34, M45, N13, N34, O23, O34, O45, K23, K34, K45). 

 The achievement of each product requires the processing of a set of operations xi and xii’. 

Each operation is performed on a different site. Example: Product B requires the 

realization of 3 operations: (B1, B15, B5). B1 and B5, production operations, are 

respectively carried out on site 1 and site 5. B15 corresponds to the transportation 

operation from site 1 to site 5. 
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• Production and transport capacity, Rk et RT
k: They represent for each production site, 

respectively the maximal number of resources k (machines), and the maximal number 

of resources kT (trailers) being able to be used during various periods T (Table 2), 

 R1 = 4; R2 = 5; R3= 3; R4= 3; R5= 3; R1
T = 5; RT

2 = 4; RT
3 = 5; RT

4 = 5, 

• Energy required Ex
i : It denotes the energy required to perform the production operation xi 

on unit resource k, 

• Energy required Ex
ii’: It denotes the energy required to perform the transportation operation 

xii’ on unit resource kT, 

• Transport unit duration Dii’: It corresponds to the time of one transportation operation 

xii’ (round trip) between a site STi and a site STi ' (Table 3), 

• Limit β: It corresponds to the maximal number of tractors exploitable simultaneously. 

This value agreed suited with the subcontracting transport company corresponds to 

10. 

4.2. Variables  

The various variables that intervene in the scheduling model are the following: 

• Start time Sxi : variable corresponding to the start time of the production operation xi, 

• Start time Sxii’: variable corresponding to the start time of the transportation operation 

xii’, 

• Consumption rx
i : number of machines allocated to the production operation xi,  

• Consumption rx
ii’ : number of trailers allocated to the transportation operation xii’, 

• Duration pxi : duration of the production operation xi, 

• Duration pxii’ : duration of the transportation operation xii’ , 

• Completion time Zi
 : completion time of all production operations xi on site STi, 

Zi = max (Sxi + pxi ) for i ∈ {1, 2, 3, 4, 5}, x ∈ {A, B, C, D, E, F, G, M, W, O, K} (4) 

Example: Z1=max(SA1 + pA1, SB1 + pB1 , SC1 + pC1 , SD1 + pD1 , SG1 + pG1 , SW1 + pW1 ) 

• Completion time Zi
T: completion time of all transportation operations xii’ from site STi 

to sites STi’, 

Zi
T = max (Sxii’ + pxii’) for i ∈ {1, 2, 3, 4}, i’ ∈ {2, 3, 4, 5},                         (5) 
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and x ∈ {A, B, C, D, E, F, G, M, W, O, K} with i ≠ i’ 

Example: Z1
T=max(SA13 + pA13 , SB15 + pB15 , SC13 + pC13 , SN13 + pN13 ) 

• Total completion time: completion time of all production and transportation operations 

on all sites,  

 Z = max(Z1, Z2, Z3, Z4, Z5, Z1
T, Z2

T, Z3
T, Z4

T)                                            (6) 

• Txii’: number of tractors transporting the trailers allocated to the transportation 

operation xii’, 

Txii’= rx
ii’                                                                            (7) 

• Lxii’: index of the first tractor in the list of tractors allocated to the transportation 

operation xii’,  

 Lxii’ ∈ {1, 2,…,10}                                                                                                         (8) 

• Wxii’: number of round trips realized by tractors to assure the transportation operation 

xii’,  

 Wxii’ ∈ {1, 2,…,20}                                                           (9) 

4.3. Constraints 

The problem is subject to five types of constraints: the energy constraints, the resource 

capacity constraints, the precedence constraints, the synchronization constraints, and the 

packing constraints. 

• Energy constraints:  

This corresponds to the energy consumption of an operation on a resource (Lopez et al., 

1992). It expresses the existing relation between the variation of the operation duration pxi 

(respectively pxii’) according to the number of resources rx
i (resp. rx

ii’) allocated for its 

processing. 

For production operations  Ex
i = pxi * rx

i = constant                                 (10) 

For transportation operations  Ex
ii’ = pxii’ * rx

ii’ = constant                           (11) 

Figure 5 shows an example of a production operation A1 with Ex
i = 6. In this case, the 

possible values of pxi and rx
i
, are: ((2.3), (3.2), (6.1)). The solution (2.3) means that 

production operation A1 requires 3 resources during 2 time units. 
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Time 
1 2 3

 2  
4 5 

1 

2 

3
 2  

Resource consumption 1 

 
Resource capacity R1 = 4 

4 

A1 

SA1 

pA1 
rA

1  
 

Z1  	  

Figure 5: Example of a production operation A1 (EA 
1

 = 6, pA1
 = 2, rA

1
 = 3) 

• Capacity resource constraints:  

For each resource k (respectively kT), they express the fact that, at every time, the total 

number of machines (resp. trailers) used by a set of operations xi (resp. xii’) processed at time 

t, Sxi ≤ t ≤ Sxi + pxi (resp. Sxii’ ≤ t ≤ Sxii’ + pxii’) does not exceed a certain capacity Rk (resp. 

Rk
T). They are used to model the cumulative resource constraints. 

For production operations  For i ∈ {1, 2, 3, 4, 5}, k ∈ (1, 2, 3, 4, 5), x ∈ {A, B, C, D, E, F, 

G, M, W, O, K}, ∀ t ∈ [min (Sxi), max (Sxi + pxi)] 

Rk
px  Sx  t    Sx          

x   r
 iii

i ≤∑
+<<

                                                       (12) 

For transportation operations For i = {1, 2, 3, 4}, i’ = {2, 3, 4, 5}, k = (1, 2, 3, 4), x ∈ {A, 

B, C, D, E, F, G, M, W, O, K} with i ≠ i’, ∀ t ∈ [min(Sxii’), max(Sxii’ + pxii’)] 

RT
k

px  Sx  t    Sx          
x   r

 ii'ii'ii'

'ii ≤∑
+<<

                                                 (13) 

• Precedence constraints: 

The precedence constraints between production operations are of two types; those 

corresponding to the process plan of a product and those imposed by the production manager. 

They have the form i → j, prohibiting the start of the second operation, j, before the end of the 

first, i.  

- Process plan constraints: for each product a process plan sets a sequence of production 

operations necessary for its realization.  
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 Sx j ≥ Sxi
 + pxi

                                                                                                                                                                    (14) 

For example, the process plan of product A is: (A1, A3, A4, A5). The associated 

precedence constraint states: A4 → A5 is SA5 ≥ SA4 + pA4.  

- Production constraints: some products must be processed before others (constraints 

imposed by the manager production). These inter-products constraints are expressed as 

follows:  

G → E: SE3 ≥ SG1 + pG1
                                                                                                                                               (15) 

• Synchronization constraints:  

These constraints concern the synchronization of the production and transportation. 

Indeed, the transportation of every product x from the departure site STi to the following 

site STi’ cannot begin before the end of production operation xi in the site STi. Also, the 

production of a product x on a site i' can begin only after the delivery of all the quantity of 

Product x coming from Site i, and given that every trailer can contain only a maximal number 

of products (40), it means that the delivery of the total quantity of a product can require 

several successive round trips. Constraint (16) constitutes a coordination rule in the definition 

of the master planning of the multi-site company.  

∀ i = {1, 2, 3, 4}, i’ = {2, 3, 4, 5} et x ∈ {A, B, C, D, E, F, G, M, W, O, K} with i ≠ i’ 

Sxii’ ≥ S xi + pxi Λ Sxi’ ≥ Sxii’ + pxii’                                                 (16) 

Furthermore, the duration of a transportation operation of a product x must be multiplied 

by the associated transport unit duration. This means that it must be equal to the round 

trips Wxii’ multiplied by the transport unit duration Dii’.  

pxii’ = Dii’ * Wxii’                                                                 (17) 

For example, the transportation duration of Product B from the production site ST1 

towards ST5 is equal to WB15 (number of round trips) multiplied by 12 hours (transport 

unit duration): pB15 = WB15 * 12. 

• Packing constraints: 
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In a not conventional way, we exploit the packing constraints to model the scheduling of the 

transportation operations on the production sites. Concretely, the transportation operations 

correspond to rectangular boxes to position in a limited three-dimensional space (Figure 6):  

-  A geographical dimension allowing the localization of the departure site of a 

transportation operation, 

-  A temporal dimension allowing the localization of a transportation operation in the 

time, 

-  An assignment dimension indicating to which tractor(s) is assigned a transportation 

operation. 

	  

Allocated tractor(s) 

Departure site 

Site 1 

Site 2 

Site 3 

Site 4 

Time x 
1i’

 

H 

δ	  

β	  

x 3 j’ 

 
Figure 6: Positioning of transportation operations in the limited three dimensional space 

In Figure 6, the transportation operation x1i’ begins in a date Sx1i’ from the site ST1 to the site 

STi’ with one tractor (and rx
1i’= 1 , Lx1i’ = 5). The transportation operation x3j’ begins in a date 

Sx3j’ from the site ST3 to the site STj’ with 2 tractors (and rx
3j’ = 2,  Lx3j’ = 1). By combining the 

three dimensions, the objective is to place in the time every transportation operation, and on 

the other hand to assign to each a number of tractor(s), this without overlapping the 

operations, and within the limits of a space (δ: departure sites; H: scheduling horizon and β: 

maximal number of tractors). 

The non-overlapping and appertaining constraints (2 and 3) are translated in this model by the 

following equations:  

- Non-overlapping constraints: 
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∀ x ii’ ∈ TT, ∀    x jj’ ∈ TT, x ii’ ≠ x jj’ with i and j ∈ {1, 2, 3, 4} 

Sx jj’ ≥ Sx ii’ + px ii’  ∨ Sx ii’ ≥ Sx jj’ + px jj’  ∨ Lx jj’ ≥  Lx ii’ + rx
ii’ ∨  Lx ii’ ≥  Lx jj’ + rx 

jj’       (18) 

- Appertaining constraints: 

∀ x ii’ ∈ TT  

Maximum (Sx ii’ + px ii’ ) ≤ H                                                                                                (19) 

Maximum (Lx ii’ + rx
ii’  ) ≤ β                                                                                                  (20) 

Maximum (Q ii’) ≤ δ                                                                                                               (21) 

Find a multi-site scheduling plan solution consists in determining the start time and the 

allocation of resources of each production and transportation operation, which satisfy 

simultaneously all the presented constraints: energy constraints, resource capacity 

constraints, precedence constraints, synchronization constraints, and packing constraints. 

The objective function of the proposed model is to find an optimal multi-site scheduling plan 

that minimizes the Total completion time (completion time of all production and 

transportation operations on all sites),  

  Min [Z = max(Z1, Z2, Z3, Z4, Z5, Z1
T, Z2

T, Z3
T, Z4

T)]                             (22) 

5. EXPERIMENTS 

Various propagation and solving algorithms of CSPs have been integrated into Constraint 

Programming languages. Many environments have been developed and distributed. Among 

these environments, some were developed in a commercial perspective (e.g., CHIP, ILOG-

Solver), other are pure academic tools (e.g., Oz, Gnu-Prolog, CIAO SICStus). The scheduling 

model we developed was implemented with CHIP V5. The solving is based on the application 

of constraint propagation techniques (AC-3 arc-consistency filtering algorithm) and on tree 

search (Forward-Checking in the decision-making phase). For the ordering heuristics, we used 

the most_constrained and mindomain rules (most_constrained chooses the variable which has 

the smallest ratio of the number of values in its domain over the variable degree; mindomain 

fixes the variable with the smallest value in its domain).  
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5.1. Model implementation 

The implementation consists to declare the domain variables (decision), to post the 

constraints, and finally to enumerate and/or optimize the solutions. The variables are declared 

as domain variables that take their values in finite sets of integers. The constraints 

implemented are of two types. The constraints of the first type are written in form of 

arithmetic linear constraints. The second type uses the concept of global constraints. 

Therefore, the cumulative global constraint was used to integrate two specific constraints: the 

cumulative constraints and the energy consumptions, in turn, the packing global constraint 

was used to integrate two other particular constraints: the non-overlapping constraints and the 

appertaining constraints. 

5.1.1. Cumulative global constraints 

The cumulative constraint imposes that at each time t, if we consider all the present 

operations, the accumulation of their consumed resources quantity should not exceed the limit 

of available resources. It is expressed in CHIP V5 by the following predicate: 

Cumulative (+Starts, +Durations, +Surfaces, +Resources, +High, +End) 

Thus, we associated, in every production site, two cumulative constraints, the first 

relative to the production capacity and the second relative to the transportation capacity. 

We present, below, that relative to the limitation of the production capacity on site ST1. 

Cumulative (Sx1, px1, Ex
1, rx

1, R1, Z1) 

The variables Sx1 = [SA1, SB1, SC1, SD1, SG1, SN1], px1 = [pA1, pB1, pC1, pD1, pG1, pN1], 

rx
1 = [rA1, rB1, rC1, rD1, rG1, rN1] and Z1 correspond respectively to start times Sx1, 

durations px1, number of machines allocated rx
1 of the production operations A1, B1, C1, 

D1, G1, N1, and to the completion time Z1 of these six operations on site ST1. The constants 

Ex
1

 = [EA1, EB1, EC1, ED1, EG1, EN1] and R1 correspond respectively to the energy 

required Ex
1 for the realization of each operation A1, B1, C1, D1, G1, N1, and to the 

production capacity R1 in number of machines on site ST1. The rest of the cumulative 

constraints relative to the production capacities of sites ST2, ST3, ST4 and ST5 take the same 

form. 

We present below the cumulative constraint relative to the capacity of the transportation 

products from the production site ST1. 
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Cumulative (Sx1i’, px1i’, Ex
1i’, rx

1i’, RT1, ZT1) 

The variables Sx1i’ = [SA13, SB15, SD13, SN13], px1i’ = [pA13, pB15, pD13, pN13], 

rx
1i’= [rA13, rB15, rD13, rN13] and ZT1 correspond respectively to start times Sx1i’, 

durations px1i’, number of trailers allocated rx
1i’ of the transportation operations A13, B15, 

D13, N13 and the completion time ZT1 of these four operations from site ST1. The constants 

Ex
1i’ = [EA13, EB15, ED13, EN13] and RT1 correspond respectively to the energy 

required Ex
1i’ for the realization of each operation A13, B15, D13, N13 and the transportation 

capacity RT1 in number of trailers on the site ST1. The rest of the cumulative constraints 

relative to the transportation capacities of sites ST2, ST3 and ST4 take the same form. 

According to its commercial description, the processing of cumulative global constraints in 

CHIP V5 is performed by about twenty of methods. Among the known and effective methods, 

we can particularly note the energy reasoning and the timetable constraints. The first allows, 

on the basis of balance between the consumptions of a resource by activities over a time 

interval and the energy offered by this resource on the same interval, to determine a lower 

bound on the amount of the resource that can be used (Lopez et al., 1992). The second has the 

same goal, but it gets on the basis of constraints called timetable, based on the concept of 

compulsory part (Lahrichi, 1982), interval of time over which the task is necessarily 

processed. 

5.1.2. Packing global constraints 

The packing constraint imposes that, at each time t, the transportation operations 

(rectangular boxes) do not overlap, and do not exceed the limited three-dimensional 

space. It is expressed in CHIP V5 by the following predicate:  

diffn(+Rectangles, +End) 

Therefore we associated to all the transportation operations the following packing global 

constraint: 

diffn([[Sx ii’, Q ii’, Lx ii’, px ii’ , 1, rx
ii’]],[H, δ, β]) 

In the three-dimensional space (temporal, geographical and tractors allocation), the 

position elements of every transportation operation x ii’ are its origins and its lengths. The 

origins are: the variable Sx ii’ (start operation), the parameter Q ii’ (departure site, Qii’ = i) 

and the variable Lx ii’ (tractor index), and the lengths of the transportation operation are: 
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the variable px ii’ (operation duration), the value 1 (a single site of departure) and the 

variable rx
ii’ (number of tractors allocated to the operation). The space domain is limited 

by the scheduling horizon H, the number of sites δ and the number of tractors exploitable 

simultaneously β. The filtering algorithm applied for the diffn constraint is based on 

sweep, and it is described in (Beldiceanu & Carlsson, 2001). 

5.2. Results 

The visualization of the consumption on each resource is information making it possible to 

undergo the satisfaction of all constraints of the problem, and particularly the packing and 

cumulative global constraints. The presentation of the results wants to be didactic; we then 

present as an example only the cumulative production and transportation curve of site ST1, 

and the three-dimensional Gantt chart of the total transportation operations. The curve and 

analysis presented in this section relate to the optimal solution. 

5.2.1. Production operations 

The production capacity of site ST1 is equal to 4. It realizes the 6 production operations: A1, 

B1, C1, D1, G1, and N1. The following table presents the solution values of the operations x1 

realized on site ST1. 

Operation 

x 1 

Energy 
required 

Ex
1 

Start 
times 

Sx1 

Operation 
duration 

px1 

Machine 
number 

rx
1 

A1 24 6 8 3 

B1 19 14 19 1 

C1 24 14 24 1 

D1 29 6 29 1 

G1 15 1 5 3 

N1 30 14 30 1 

Table 4: Values of the variables production operations realized on site ST1  

The production cumulative curve of site ST1 is presented in Figure 7. The X-axis presents the 

time (in hours) and the Y-axis the number of machines. The profile visualizes the evolution of 

resource consumption over time. The red horizontal line indicates the maximum capacity of 

site ST1 (R1=4). The curve is composed by stacked rectangles associated to operations A1, B1, 

C1, D1, G1, and N1. Each rectangle is characterized by one duration px1 and a number of 
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consumed resource rx
1. The combination of these rectangles gives the profile of the total 

machine consumption over time. 

A1

B1

C1

D1

N1G1

1

1

2

3

4

33 44386 3514 	  

Machines	  consumed	  

Time	  (h)	  

 

Figure 7: Cumulative production curve on site ST1 (R1 = 4) 

5.2.2. Transportation operations 

The transportation capacity of site ST1 is equal to 5 trailers. They are used for the 4 

transportation operations: A13, B15, D13 and N13. The following table presents the solutions 

values of the operations x 1i’. 

Operation 

x 1i’ 

Energy required 

Ex
1i’ 

Start times 

Sx1i’ 

Operation duration 

px1i’ 

Trailer number 

rx
1i’ 

A13 40 14 8 5 

B15 36 33 36 1 

D13 32 35 16 2 

N13 40 69 8 5 

Table 5: Values of the variables transportation operations from site ST1  

The transportation cumulative curve of site ST1 is presented in Figure 8. The X-axis 

presents the time (in hours) and the Y-axis the number of trailers used by each transportation 

operation. The red horizontal line indicates the maximum number of trailers in site ST1 

(RT
1=5).  
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Figure 8: Cumulative transport curve of site ST1 (RT
1 = 5) 

5.2.3. Three-dimensional packing 

The transportation operations are assured by sets (trailer + tractor). The cumulative 

constraint allows in particular calculating schedules according to the limitation and 

availability of the resources (machines and trailers). On the other hand, it does not 

determine how to specify the assignment of trailers to shared tractors. Hence, the 

implementation of the packing constraint allows us to provide this complementarity and 

to assure the position without overlapping of the transportation operations in the three-

dimensional space (time, sites, and tractors). 

The 3D space is limited by the values H=100, δ=5 and β=10, corresponding to the 

scheduling horizon, number of sites and number of tractors, respectively. Table 6 presents 

the values solutions of the transportation operations x ii’  for the 11 products between the 5 

production sites. 

Transportation 
operation 

x ii’ 

Operation origins x ii’ Operation dimensions x ii’ 

Start 

S p, ii’ 

Site 

Q ii’ 

Tractor 
index 

Lx ii’ 

Duration 

px ii’ 

Number of 
sites 

(const = 1) 

Number of 
tractors 

rx
ii’ 

A13 14 1 1 8 1 5 

B15 33 1 6 36 1 1 

D13 35 1 7 16 1 2 

N13 69 1 1 8 1 5 

E23 45 2 1 5 1 4 
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F25 52 2 7 10 1 4 

M23 15 2 6 10 1 1 

O23 6 2 7 15 1 1 

K23 6 2 1 5 1 1 

A34 32 3 1 5 1 5 

D34 56 3 1 10 1 2 

E34 56 3 3 10 1 2 

M34 37 3 5 10 1 1 

N34 82 3 1 5 1 5 

O34 37 3 9 15 1 1 

K34 21 3 7 5 1 1 

A45 50 4 1 6 1 5 

D45 78 4 6 12 1 2 

E45 72 4 6 6 1 4 

M45 57 4 5 12 1 1 

O45 62 4 10 18 1 1 

K45 37 4 1 6 1 1 

Table 6: Values of the variables transportation operations between the five production sites 

We present in Figure 9 a geometrical representation of the solution. The coordinates of 

the transportation operations on the 3 axes (Table 6) reflect their positions. 
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Figure 9: 3D view of the transportation operations between the sites production 
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Figure 10: 2D view of the transportation operations between the sites production 

These two figures (9 and 10) show, for every operation, which tractor(s) is allocated, 

from which date and site, and on how long. As an example, Operation F25 is assured by 4 

tractors simultaneously, from the hour 52 and the site 2. Its duration is 10 hours. The 

respect for the capacity limitation of trailers on every site, the sharing of the 10 tractors 

and the non-overlapping of the transportation operations are satisfied. 

 

6. CONCLUSIONS 

The proposed multi-site scheduling model is based on a constraint satisfaction approach. It 

formalizes a set of decision variables to be managed and a set of constraints to be satisfied. In 

this framework, we have developed an integrated production/transportation operations model 

and implemented the associated cumulative and packing global constraints. The model takes 

into account the existing alternatives to the duration of an operation according to the number 

of resources used for its realization, while respecting the capacity of production and 

transportation resources in each site. The solving provides the optimal solution that 

determines the minimum time required to complete producing and delivering all the 

considered products over all sites. It integrates the production/transportation operations and 

schedules them jointly in a coordinated way. The different elements presented in the model 

were implemented through the constraint programming system CHIP V5. The results are 

delivered in numerical form and in the form of curves tracing, for a given site, the profile of 
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the total consumption of resources over time. 2D and 3D view of transportation operations 

scheduling over all sites are also presented. 

Further works plan to take account of the dynamic features of scheduling. That leads us to 

adopt an approach which is based on the Dynamic Constraint Satisfaction Problem 

formalism. The objective is to avoid starting again research from scratch after each change in 

the problem definition. Moreover, the more or less precise knowledge of the decision 

variables implies their controllability. This leads us to consider Conditional Constraint 

Satisfaction Problem with variables and constraints dependent on a situation and having 

conditions of presence. 
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