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Abstract. This paper deals with the experimental identification of the probabilistic representation of a random field mod-

eling the Young modulus of a non homogeneous isotropic elastic medium by experimental vibration tests. The random field

representation is based on the polynomial chaos decomposition. The coefficients of the polynomial chaos are identified

setting an inverse problem and then in solving an optimization problem related to the maximum likelihood principle.
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1. Introduction

For elastic random media, a fundamental question concerns the experimental identification of the probabilistic model

of the elastic properties. In a recent work proposed by Desceliers, Ghanem and Soize (2004), this problem addressed :

(1) A polynomial chaos representation of random fields to be identified is used. (2) An estimation of the coefficients of

the chaos representation is performed by using the maximum likelihood method. (3) The experimental test is assumed to

be static which generally requires a lot of experimental measurements for a very heterogeneous random medium. In this

paper, we present an extension of this method in the context of experimental vibrational tests. The objective is (1) to use

the mesurements of the response in a frequency band which allows the quality of the construction to be increased with

respect to static measurements and (2) to have a method based on the use of vibrational tests instead of static tests.

2. Presentation of the method

The proposed method is presented through a simple example related to the experimental identification of the random

field modeling the Young modulus of a random linear isotropic heterogeneous medium by vibrational tests. The data

used for the identification correspond to experimental measurements of the frequency response functions related to the

displacement field on the boundary of the specimen. In a first step, the proposed method consists in estimating the Young

modulus field of each specimen. For this, the elastodynamic problem is written for the specimen and is discretized by

the finite element method. The random Young modulus field is then projected on the finite element basis for which the

random coefficients have to be identified. For each specimen the realization of the random coefficients are calculated

by solving a first optimization problem allowing the norm between the measured and the calculated response functions

of the specimen to be minimized. In a second step, these random coefficients whose realizations have been constructed,

are then represented by using the polynomial chaos representation (see for instance Wiener, 1938, Ghanem and Spanos,

1991, Soize and Ghanem, 2003). In a last step, a second optimization problem allows the coefficients to be calculated

by using the maximum likelihood method. Consequently, the probabilistic model of the random Young modulus field is

completely defined.

3. Construction of an "experimental database" by Monte Carlo numerical simulation of the direct problem

In this paper, the «experimental database» is constructed by numerical simulation. The specimen is constituted of a

non-homogeneous isotropic linear elastic medium occupying a three-dimensional bounded domain D with boundary ∂D
given in a Cartesian system Ox1x2x3. The geometry of domain D is a slender rectangular box shown in Fig. 1 whose

dimensions along x1, x2 and x3 are L1 = 1.3 × 10−1m, L2 = 2 × 10−2m and L3 = 2 × 10−2m. The structure is fixed

on the part Γ0 of ∂D for which the displacement field is zero.

The structure is subjected to an external point force denoted as b(t) and applied to the node A along x1-axis (see

Fig. 1). The Fourier transform b̂ of b is the constant vector (1, 0, 0) in the frequency band [0, 50] kHz. The elastic

medium is random. It is assumed that the Young modulus is random while the Poisson coefficient is deterministic. This

assumption is introduced in order to simplify the presentation. The randomYoung modulus field is modeled by a positive-

valued second-order random field Y (x) defined by

Y (x) = c0 g(c1, c2 V (x)) , ∀x ∈ D (1)
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Figure 1. Definition of the specimen

in which c0 = 1.6663× 1010 N.m−2, c1 = 1.5625 and c2 = 0.2. The function θ 7→ g(α, θ) from
 
into ]0 ,+∞[ is such

that, for all θ in
 
,

h(α, θ) = F−1
Γα

(FΘ(θ)) ,

in which θ 7→ FΘ(θ) = P (Θ ≤ θ) is the cumulative distribution function of the normalized Gaussian random variable

Θ and where the function p 7→ F−1
Γα

(p) from ]0 , 1[ into ]0 ,+∞[ is the reciprocal function of the cumulative distribution
function γ 7→ FΓα

(γ) = P (Γα ≤ γ)) of the gamma random variable Γα with parameter α. In the right-hand side of
Eq. (1) , {V (x), x ∈ D} is a second-order random field such that E{V (x)} = 0 and E{V (x)2} = 1, defined by

V (x) =

3∑

| ! |=1

H ! (Z1, Z2, Z3, Z4)
√
γ ! ψ ! (x/2) , (2)

in which {Z1, Z2, Z3, Z4} are independent normalized Gaussian random variables, ! is a multi-index (α1, α2, α3, α4) ∈" 4, | ! | = α1 + α2 + α3 + α4 and where H ! (z1, z2, z3, z4) = Hα1
(z1) × Hα2

(z2) × Hα3
(z3) × Hα4

(z4) in which
Hαk

(zk) is the normalized Hermite polynomial of order αk such that

∫
# Hαk

(w)Hαj
(w)

1√
2π
e−

1

2
w2

dw = δαkαj
.

In the right-hand side of Eq. (2) , {γ ! }1≤| ! |≤3 and {ψ ! }1≤| ! |≤3 are defined as the eigenvalues and the eigeinfunc-

tions of the the integral linear operator C defined by the kernel C(x, x′) = exp (−|x1 − x′1|/L) in which L = L1/40 and
where x = (x1, x2, x3) and x

′ = (x′1, x
′
2, x

′
3) belong to D. This means that the correlation length of the random field is

much smaller than the length L1 of the specimen. The eigenvalue problem related to operator C is then written as

∫

D

C(x, x′)ψ ! (x′)dx′ = γ ! ψ ! (x) . (3)

It should be noted that, Y (x) = Y (x1) and consequently, Y (x) is independent of x2 and x3. Figure 2 shows the mean

value x 7→ E{Y (x)} whereE{} denotes the mathematical expectation. Figure 3 shows the graph of the normalized auto-
correlation function (x, x′) 7→ E{Y (x)Y (x′)}/(E{Y (x)}E{Y (x′)}). Finally, it is assumed that the Poisson coefficient
µ = 0.3 and the mass density ρ = 2.7 × 103Kg/m3 are deterministic real constants.

The finite element mesh of the structure is shown in Fig. 1 and consists of 8-node isoparametric 3D solid finite

elements. There are Nd = 1620 degrees of freedom. Let Z = (Z1, Z2, Z3, Z4) be the
 4-valued random variable

constituted of the 4 independent random variables in Eq. (2) (the random germ of uncertainties). Let [K(Z)] be the
random stiffness matrix with values in the set of all the positive-definite symmetric (Nd × Nd) real matrices. Let [M ]
and [D] be the mass and the damping matrices such that [D] = a [M ] with a = 103 s−1. Matrices [M ] and [D] are



Procedings of COBEM 2005

Copyright c© 2005 by ABCM

18th International Congress of Mechanical Engineering

November 6-11, 2005, Ouro Preto, MG

0 0.02 0.04 0.06 0.08 0.1 0.12

2

2.02

2.04

2.06

2.08

2.1

2.12

2.14

2.16

2.18

2.2
x 10

10

Figure 2. Graph of the function x 7→ E{Y (x)} where x = (x1, x2, x3) with x2 = x3 = 0. Horizontal axis: x1. Vertical

axis: E{Y (x)}.
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Figure 3. Graph of the function (x, x′) 7→ E{Y (x)Y (x′)}/(E{Y (x)}E{Y (x′)}) where x = (x1, x2, x3) and

x′ = (x′1, x
′
2, x

′
3) with x2 = x3 = 0 and x′2 = x′3 = 0. Horizontal axis: x1 and x′1. Vertical axis:

E{Y (x)Y (x′)}/(E{Y (x)}E{Y (x′)}).

deterministic positive-definite symmetric (Nd ×Nd) real matrices. The
 

Nd-valued random-frequency-response function

ω 7→ U(ω) related to the nodal displacements is such that

[A(ω;Z)]U(ω) = f(ω) ,

in which [A(ω;Z)] = −ω2 [M ] + i ω [D] + [K(Z)] is the dynamic stiffness matrix and where f(ω) is the
  !

d-vector of

the external forces. Let UΓ(ω) be the vector corresponding to the Nb = 60 nodes belonging to ∂D which can be written

as UΓ(ω) =
"
(U(ω)) in which

"
is a linear mapping from

 #!
d into

 $!
b . The experimental database is constituted of

m = 100 realizations of random vector UΓ(ω) which are denoted by u1
Γ(ω) = UΓ(ω, θ1), . . . ,u

m
Γ (ω) = UΓ(ω, θm)

corresponding to the specimens and for ω running through the frequency band of analysis.
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4. Identification of the random field modeling the Young modulus by solving an inverse problem

The finite element approximation Ỹ of random field Y indexed by D is written as Ỹ (x) =
∑N

k=1Rkhk(x1) in

which h1(x1), . . . , hN (x1) are the usual linear interpolation functions related to the finite element mesh of domain D,
where N = 60 is the degree of this approximation and where R1, . . . RN are the random coefficients. We introduce the

 
N -valued random variable R such that R = (R1, . . . , RN ). Let [Ã(ω;R)] be the random dynamical stiffness matrix

constructed by using the finite element approximation Ỹ (x) of the Young modulus. For each realization uj
Γ(ω) belonging

to the experimental database, the realization rj = R(θj) of the random variableR are constructed by solving the nonlinear

optimization problem

min
rj

ℓdyn(rj , uj
Γ) , (4)

in which

ℓdyn(rj , uj
Γ) =

Nband∑

k=1

∫

Bk

∥∥∥
 

(
[Ã(ω; rj)]−1f(ω)

)
− u

j
Γ(ω)

∥∥∥
2

dω . (5)

In the right-hand side of Eq. (5) , Bk = [ωmin,k, ωmax,k] with ωmin,k = ωk −Beq,k/2 and ωmax,k = ωk +Beq,k/2where
Beq,k is an equivalent bandwidth related to the eigenfrequency ωk of the mean model of the specimens and where Nband

is the number of bands considered for the identification. It should be noted that the optimization problem introduced

(Desceliers, Ghanem and Soize, 2004) in order to solve the inverse problem to calculate the realizations r1, . . . , rm of

random vector R is based on an elastostatic problem. In this case, the experimental database is constituted of static

measurements and the optimisation problem is

min
rj

ℓstat(r
j , uj

Γ) , (6)

in which

ℓstat(r
j , uj

Γ) =
∥∥∥

 
(
[Ã(0; rj)]−1f(0)

)
− u

j
Γ(0)

∥∥∥
2

.

The optimization problems defined by Eqs. (4) and (6) are solved by using a least-squares estimation of nonlinear pa-

rameters (see, Marquardt, 1963). Finally, for all x fixed inD, the realizations ỹ1(x) = Ỹ (x; θ1), . . . , ỹ
m(x) = Ỹ (x; θm) of

random variable Ỹ (x) are constructed by using the relation ỹj(x) = h(x1)
T rj in which h(x1) = (h1(x1), . . . , hN (x1)).

Figure 4 shows the graph of realization x1 7→ ỹ1(x) with x2 = x3 = 0 constructed by solving Eq. (4) ( «dynamic inverse
problem») and Eq. (6) («static inverse problem»). It can be seen that the dynamical inverse problem gives more accurate

results than the static inverse problem. This can be explained by considering the dynamical inverse problem as the set of

a large number of static inverse problems with different loading cases {f(ω), ω ∈ ∪Nband

k=1 Bk}.
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Figure 4. Graph of x1 7→ Y (x; θ1) (thick solid line) and graph of realization x1 7→ ỹ1(x) with x2 = x3 = 0 constructed
by solving the «dynamic inverse problem» (dash line) with Nband = 5 and the «static inverse problem» (thin solid line).

Horizontal axis: x1. Vertical axis: Y (x; θ1) and Ỹ
1(x)
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5. Statistical reduction

The size of the random vector R can be reduced. Let λ1 ≥ . . . ≥ λN be the eigenvalues of the covariance matrix [CR]
of random vectorR. The normalized eigenvectors associated with the eigenvalues λ1, . . . , λN are denoted by  1, . . . ,  N .

Consequently, the random vector R can be written as

R = R +

N∑

k=1

Qk

√
λk  k ,

in whichQ1, . . . , QN areN centered real-valued random variables defined by
√
λkQk =  T

k (R−R) where R = E{R}
such that for all k and ℓ, E{Qk} = 0 and E{QkQℓ} = δkℓ. Figure 5 displays the graph of the function n 7→ ∑n

k=1 λ
2
k.

It can be deduced that random vector R can be approximated by the random vector R + [Φ] [Λ]Qµ with µ = 15 < N
in which the (µ × µ) matrix [Λ] and the (N × µ) matrix [Φ] are such that [Λ]ℓk = δℓk

√
λℓ and [Φ]ℓk = [  k]ℓ and

where Qµ = (Q1, . . . , Qµ). For all j = 1, . . . ,m, the realization qj = Qµ(θj) of random vector Qµ is calculated by

qj = [Λ]−1[Φ]T (rj − R).
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Figure 5. Convergence analysis of the statistical reduction : graph of function n 7→ ∑n
k=1 λ

2
k. Horizontal axis n, vertical

axis
∑n

k=1 λ
2
k.

6. Chaos decomposition

LetWν = (W1, . . . ,Wν) be the normalized Gaussian random vector such thatE{WiWj} = δij . The truncated Chaos
representation of the

 
µ-valued random variableQµ in terms ofWν is written as

Qµ,ν =

+∞∑

! ,| ! |=1

a ! H ! (Wν) , (7)

where ! is a multi-index belonging to
"

ν and where H ! (Wν) is the multi-indexed Hermite polynomials (see sec-

tion 3). The coefficients a ! belonging to
 

µ are such that
∑+∞

! ,| ! |=1 a ! aT
! = [ Iµ] in which [ Iµ] is the (µ × µ)

unit matrix. The truncated Chaos representation of random vector Qµ,ν is denoted by Qµ,ν,d and is such that Qµ,ν,d =∑d
! ,| ! |=1 a ! H ! (Wν). Consequently, for all x ∈ D, the random Young modulus Ỹ (x) can be approximated by the

random variable Ỹ µ,ν,d(x) = h(x1)
T ([Φ] [Λ]Qµ,ν,d + R).

The maximum likelihood method (see for instance Serfling, 1980) is used to estimate parameters a ! from realizations

q1, . . . ,qm. We then have to solve the following problem of optizimation: find ! = {a ! , | ! | = 1, . . . , d} such that

max" L(q1, . . . ,qm; ! ) , with

d∑

! ,| ! |=1

a ! aT
! = [ Iµ] (8)

where L(q1, . . . ,qm; ! ) = pQµ,ν,d(q1, ! ) × . . .× pQµ,ν,d(qm, ! ) is the likelihood function associated with observations
q1, . . . ,qm and where pQµ,ν,d is the probability density function of Qµ,ν,d. However, the optimization problem defined
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by Eq. (8) yields a very high computational cost induced by the estimation of the joint probability density functions

pQµ,ν,d(qj ,  ) (even for reasonable values of the length µ of random vector Qµ,ν,d). Consequently, it is proposed to

substitute the usual likelihood function by the pseudo-likelihood function

L̃(q1, . . . ,qm;  ) =

µ∏

k=1

p
Q

µ,ν,d

k

(q1k,  ) × . . .×
µ∏

k=1

p
Q

µ,ν,d

k

(qm
k ,  ) (9)

where qj = (qj
1, . . . , q

j
µ) and Qµ,ν,d = (Qµ,ν,d

1 , . . . , Qµ,ν,d
µ ) and where p

Q
µ,ν,d

k

is the probability density function of

random variableQµ,ν,d
k . Finally, the following problem of optimization is substituted to the problem defined by Eq. (8) .

Find  = {a  , |  | = 1, . . . , d} such that

max! L̃(q1, . . . ,qm;  ) , with

d∑

 ,|  |=1

a  aT
 = [ Iµ] . (10)

7. Convergence Analysis

In order to perform a convergence analysis of the method proposed in this paper, the normalized random variablesY(x)

and Ỹµ,ν,d(x) defined by Y(x) = Y (x)/E{Y (x)} and Ỹµ,ν,d(x) = Ỹ µ,ν,d(x)/E{Ỹ µ,ν,d(x)}, for all x ∈ D, are intro-
duced. Figure 6 shows the graphs of functions x 7→ E{Y(x)Y(x′)} (thick dashed line) and x 7→ E{Ỹµ,ν,d(x)Ỹµ,ν,d(x′)}
where x = (x1, x2, x3) and x

′ = (x′1, x
′
2, x

′
3) with x2 = x3 = 0 and x′2 = x′3 = 0, for x′1 = 0.0888 and with d = 5,

µ = 15, ν = 2, 3 (thin dashed lines) and ν = 4, 5, 6, 7, 8 (thin solid lines). It can be seen that the probabilistic model is
converged for ν = 4. The remaining error is due to the truncating of the statistical reduction defined in Section 5.
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Figure 6. Graphs of functions x 7→ E{Y(x)Y(x′)} (thick dashed line) and x 7→ E{Ỹµ,ν,d(x)Ỹµ,ν,d(x′)} where x =
(x1, x2, x3) and x′ = (x′1, x

′
2, x

′
3) with x1 = 0.0520, x2 = x3 = 0 and x′2 = x′3 = 0 with d = 5, µ = 15, ν =

2, 3 (thin dashed lines) and ν = 4, 5, 6, 7 (thin solid lines). Horizontal axis: x1. Vertical axis: E{Y(x)Y(x′)} and

E{Ỹµ,ν,d(x)Ỹµ,ν,d(x′)}

8. Identification of the probabilistic model

Each Fig. 7 shows the graphs of x 7→ E{Y(x)Y(x′)} (thick dashed line) and x 7→ E{Ỹµ,ν,d(x)Ỹµ,ν,d(x′)} (thin solid
line) where x = (x1, x2, x3) and x

′ = (x′1, x
′
2, x

′
3) with x2 = x3 = 0 and x′2 = x′3 = 0, for x′1 = 0.0173 (Fig. 7a),

x′1 = 0.0520 (Fig. 7b), x′1 = 0.0888 (Fig. 7c), x′1 = 0.1105 (Fig. 7d) and with d = 5, µ = 15, ν = 4 .
For all x ∈ D, let y 7→ pY(x)(y; x) and y 7→ p

Ỹµ,ν,d(x)
(y; x) be the probability density functions of the random

variables Y(x) and Ỹµ,ν,d(x). Each Fig. 8 shows the graphs of y 7→ log10(pY(x)(y; x)) (thick solid line) and y 7→
log10(pỸµ,ν,d(x)

(y; x)) (thin solid line) where x = (x1, x2, x3)with x2 = x3 = 0 and x1 = 0.0152 (Fig. 8a), x1 = 0.1018

(Fig. 8b) and with d = 5, µ = 15 and ν = 4. It can be seen that the probabily density function is accurately identified.

9. Conclusion

A method for solving the stochastic inverse problem using chaos representation of the stochastic field to be identified

and an experimental database is proposed. This method extends the method proposed in (Desceliers, Ghanem and Soize,
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Figure 7. Graphs of x 7→ E{Y(x)Y(x′)} (thick dashed line) and x 7→ E{Ỹµ,ν,d(x)Ỹµ,ν,d(x′)} (thin solid line) where
x = (x1, x2, x3) and x

′ = (x′1, x
′
2, x

′
3) with x2 = x3 = 0 and x′2 = x′3 = 0, for x′1 = 0.0173 (Fig. 7a), x′1 = 0.0520 (Fig.

7b), x′1 = 0.0888 (Fig. 7c), x′1 = 0.1105 (Fig. 7d) and with q = 5, µ = 15, ν = 4. Horizontal axis: x1. Vertical axis:

E{Y(x)Y(x′)} and E{Ỹµ,ν,d(x)Ỹµ,ν,d(x′)}
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Figure 8. Graphs of y 7→ log10(pY(x)(y; x)) (thick solid line) and y 7→ log10(pỸµ,ν,d(x)
(y; x)) (thin solid line) where

x = (x1, x2, x3) with x2 = x3 = 0 and x1 = 0.0152 (Fig. 8a), x1 = 0.1018 (Fig. 8b) and with d = 5, µ = 15 and ν = 4.
Horizontal axis: y. Vertical axis: log10(pY(x)(y; x)) and log10(pỸµ,ν,d(x)

(y; x)).

2004) to the case of experimental vibrational tests. The proposed method uses the maximum likelihood principle to

identify the coefficients of the chaos representation. For presented example, this method allows any probabilistic quantities

to be identified such as the autocorrelation function of the random field and the marginal probability density functions.
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