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ABSTRACT

In order to improve the robustness of vibroacoustic 
numerical predictions, one introduces a model of 
random uncertainties. The random uncertainty modelling 
relies on a nonparametric approach providing random 
system realizations with a maximum entropy. This 
approach only requires a few uncertainty parameters but 
takes into account data errors as well as model errors. It 
appears to be well adapted to study the variability of 
structural-acoustic systems; the implementation of the 
method for this class of problem is presented here for 
the first time. Practically, the paper deals with a classical 
low frequency vibroacoustic modelling such as used for 
booming noise predictions. The application of the 
nonparametric approach to vehicle uncertainties 
modelling shows the sensitivity of the vibroacoustic 
frequency responses to structural and cavity 
uncertainties as well as coupling interface uncertainties. 
Flexible parts appear to be more sensitive to random 
uncertainties than stiff parts. The sensitivity of the 
structural modes to structural random uncertainties is 
also shown in a stochastic MAC table.

INTRODUCTION

In the automotive industry, numerical simulation is 
intensively used to predict the dynamical behavior of 
vehicles. The problem of the predictability of the models 
is especially difficult, due to the over-sensitiveness of 
dynamical responses. This variability is induced by 
structural complexity as much as by uncertainties 
resulting from the industrial process or from vehicles 
diversity. This over-sensitiveness may be seen 
numerically when applying design changes, but also 
experimentally when monitoring vehicles dispersions 
[1,2,3,4].  In order to improve the robustness of the 
predictions, one has to account for these numerous 
uncertainties in numerical computations. Classically, 
parametric probabilistic approaches are used,  such as 
stochastic finite elements methods which constitute a 
very efficient tool in computational mechanics [5].

Uncertainties can be classified  into two classes:

(i) Data uncertainties concern the parameters of the 
mathematical-mechanical model such as geometrical 
parameters, boundary conditions, material behaviour  
etc. Data uncertainties can be described by a parametric 
probabilistic approach. Nevertheless, in the case of 
vehicles, such an approach requires a considerable 
amount of statistical data which makes it inappropriate to 
an industrial design process. 

 (ii) Model uncertainties are introduced during the 
construction of the mathematical-mechanical model: the 
constructed model cannot exactly represent a structure 
as complex as a car body due to the introduction of 
approximations and simplifications which make the 
modelling practicable. This class of uncertainties is not 
relevant to the parametric approach because, by 
definition, the model uncertainties cannot be taken into 
account by the parameters of the mathematical-
mechanical model under consideration. It has been seen 
many times that small design changes -that may be 
considered as model uncertainties- lead to much higher 
differences in dynamic responses than any observed 
probabilistic parametric responses. This high sensitivity 
leads to the conclusion that a large part of the lack of 
predictability is due to model uncertainties. 

 Recently, a  new approach, called the nonparametric 
approach, has been introduced to model random 
uncertainties in  linear and non-linear elastodynamic 
problems, using the maximum entropy principle 
[19,20,21]. This principle ensures that any possible 
change, within a given spread, will be covered by the 
random uncertainty model. Consequently, random data 
as well as random modelling changes are handled by 
the method. This paper is the first application of the non-
parametric method to the structural-acoustic problem. 

Considering the large number of small variations by 
which a vehicle may be affected -during the 
development process and later during the manufacturing 



process-, the modelling of uncertainties by a stochastic 
process seems convenient. The proposed approach 
allows the direct construction of a probabilistic model of 
matrices representing the mechanical behaviour. Only 
one parameter is required per matrix. It defines the 
range of random changes to be modelled. Of course the
value of the uncertainty parameters is an important 
issue, but it will not be discussed yet.

In this early paper, we will only present the numerical 
implementation of the method in the case of a 
vibroacoustic problem and show the sensitivity of a 
trimmed body model response to such random
uncertainties.

Structural uncertainties, acoustic cavity uncertainties
and coupling interface uncertainties are introduced. 
Vibroacoustic random responses to a known powertrain
excitation (booming noise) are computed at structural
points and at the driver’s ears. The associated
confidence regions are numerically constructed, 
following a Monte-Carlo process. Structural modes 
sensitivity to structural random uncertainties is also
plotted as a stochastic MAC table. 

But first, we will recall the statement of the structural 
acoustic problem, that is commonly solved in order to 
simulate the vibro-acoustic response of car bodies. Later
on, the construction of the stochastic structural acoustic 
problem, introducing the non-parametric modelling of 
uncertainties, will be explained. 

STATEMENT OF THE STRUCTURAL-ACOUSTIC 

PROBLEM IN THE FREQUENCY DOMAIN 

Let us consider linear vibrations of a damped structure 

 subjected to external loads, coupled with its internal 

cavity . We are interested in predicting the frequency

responses of the structural-acoustic system in the 

frequency band of analysis 
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GEOMETRY AND MECHANICAL ASSUMPTIONS

The physical space  is referred to a cartesian 

reference system and we denote the generic point of

as x =(x

3
R

3
R 1, x2, x3). We study the linear vibration of a 

structural-acoustic system around a static equilibrium 
state taken as natural state at rest.

Structural part 

The structural part occupies a three-dimensional

bounded domain  of   with a sufficiently smooth

boundary . The outward unit normal to 

S!
3

R

#$!% S S!%  is 

denoted as nS =( nS 1, nS 2, nS3). The   displacement field 

in is denoted as u(x, ") =(uS! 1(x,"), u2(x,"), u3(x,")).

The structure is assumed to be free, i.e. not attached on 

any part of its boundary .S!%

Figure1 Configuration of the structural-acoustic system

Internal acoustic cavity

The internal acoustic cavity  is the bounded domain 

filled with an internal acoustic dissipative fluid. The 

boundary

F!

F!%  of F!  is  again . The outward unit

normal to 

#

F!%  is denoted as nF =( nF1, nF2, nF3) and we 

have nS = - nF on F!% . We denote the pressure field in 

F!  as p(x, ").

BOUNDARY VALUE PROBLEM OF THE 
STRUCTURAL-ACOUSTIC SYSTEM –

The equation of the structural part occupying domain 

S! is written [6,7,8] 

vol
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in which S(  is the mass density, ij' is the stress tensor, 

u(x, ") =(u1(x,"), u2(x,"), u3(x,")) is the displacement 

field of the structure and g
vol
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 (x,"),
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 (x,")) is the body force field. 

The boundary conditions can be written as 

iS

surf
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where is the surface force field and p is the 

pressure at the fluid coupling interface. The material is
assumed to be linear viscoelactic without memory which 
allows the constitutive equations to be defined. 

surfg

Concerning the internal acoustic fluid, a formulation in 
terms of pressure is used. The equation governing the
dynamics of the fluid is written as [9,10,11,12]: 
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where F(  is the mass density of the fluid,  is  the

speed of sound , 

Fc

) represents the coefficient   due to 

the viscosity of the fluid, and ),( "xS  is the source term. 

FINITE ELEMENT DISCRETIZATION

The finite element method [13] is used to solve
numerically the above boundary value problem. We

consider a finite-element mesh of the structure S!  and 

of the internal fluid . Let F! . /SnsSS
UUU ,,1 !$  be the 

complex vector of the ns degrees of freedom (DOF) of 
the structure corresponding to the finite element

discretization  of the displacement field u. Let 

. /FnfFF
PPP ,,1 !$ be the complex vector of the nf DOF 

of the fluid corresponding to the finite element
discretization of the pressure field p. Therefore, the finite 
element discretization of the boundary value problem in 

terms of u and p [9, 12, 14], defined by Eqs.(1) to (4) 
yields the following matrix equation 

0
0
1

2

3
3
4

5
$0

1

2
3
4

5

)(

)(

)(

)(

)(²

)(

"
"

"
"

""
"

F

S

F

S

F

T

S

S

F

P

U

AC

CA
             (5) 

where )("SA  is the dynamical stiffness matrix of the 

structure such that
SSS

S KDiMA ++&$ """ ²)(  and 

where
SSS

KDM ,,  are respectively the mass, damping

and stiffness matrices of the structure in vacuo.

In Eq.(5), )("FA  is the dynamical stiffness matrix of the 

acoustic fluid such that 
FFF

F KDiMA ++&$ """ ²)(  in 

which
FFF

KDM ,, are the mass, damping and stiffness 

matrices of the cavity with fixed coupling interface. C is

the vibroacoustic coupling matrix.

Introducing the change of variable )(
~

)( """
FF
PiP $ ,

Eq.(5) can be rewritten as the following symmetric matrix
equation,
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Eq.(6) is a highly sparse linear system which size is the
total number of DOFs considered. 

REDUCED MATRIX MODEL OF THE STRUCTURAL-
ACOUSTIC SYSTEM 

The structural modes in vacuo and the acoustic modes 
of the cavity with fixed coupling interface are calculated
by solving the two generalized eigenvalue problems, 

676 SSS
MK $                 (7)

878 FFF
MK $                (8) 

The eigenvectors verify the usual orthogonal properties
[15, 16, 17, 18].The structure in vacuo has six rigid body 
modes corresponding to a zero eigenvalue and n-6 
elastic modes. Since we are only interested in the elastic
deformation of the structure, the structural displacement 
is written as 

9 : )()( "" SS
q;$U          (9) 

in which 9 :; is a matrix whose columns are constituted 

of the n elastic structural modes associated with the n 

first positive eigenvalues, and Sq is the vector of the

structural generalized coordinates. 

The internal acoustic cavity has one constant pressure 
mode and m-1 acoustic modes. The internal acoustic 
pressure is written as 

9 : )(~)( """ FF
i q<$P       (10) 

in which 9 :< is the matrix whose columns are 

constituted  (1) of the constant pressure mode 
associated with zero eigenvalue and (2) of the acoustic
modes associated with the positive eigenvalues (the m-1

first acoustical eigenfrequencies), and Fq~ is the vector 

of acoustic generalized coordinates. 
It should be noted that the constant pressure mode is 
kept in order to model the quasi-static variation of the 
internal fluid pressure induced by the deformation of the
coupling interface [9]. Using Eqs.(9) and (10), the 
projection of Eq.(6) yields the mean reduced matrix 
model of the structural-acoustic system, 
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The generalized dynamical stiffness matrix of the
structure is then written as 

SSSS
i KD MA ++&$ """ ²)(

The generalized dynamical stiffness matrix of the cavity 
is then written as 

FFFF
i KD MA ++&$ """ ²)(



Eq.(11) is a reduced size linear system; typically, a few 
thousands of modes are considered. Moreover,
generalized dynamical stiffness may be diagonal, when 
an appropriate damping model is chosen. It will be
shown later why these properties are of great 
importance regarding the implementation of the 
proposed method. 

CONSTRUCTION OF THE STOCHASTIC 

STRUCTURAL-ACOUSTIC PROBLEM WITH THE 

NONPARAMETRIC APPROACH OF 

UNCERTAINTIES

The uncertainties of predictions are induced by data 
errors and by modelling errors. Due to the presence of
model errors, the usual parametric probabilistic 
approach which is perfectly adapted to model data 
errors, cannot be used. Consequently, we proposed a 
non-parametric probabilistic model of random
uncertainties allowing data errors and model errors to be
taken into account. Such a non-parametric probabilistic 
model has been proposed in Refs. [19, 20, 21] by one of
the authors. Until now, it has only been applied to
vibration problems. This section present the extension of 
the theory to the case of a structural-acoustic problem. 
From this point, the structural-acoustic system, as 
described in the previous section will be named mean 
structural-acoustic system in opposition to the stochastic 
structural-acoustic system described below.

FACTORIZATION OF THE REDUCED MATRICES OF 
THE MEAN STRUCTURAL-ACOUSTIC SYSTEM 

In order to take into account random uncertainties with
the proposed method, one has to factorize the 
generalized matrices of the mean model. In a second 
step, random matrices will be constructed.

Factorization of the structural or cavity reduced matrices 
of the mean model

In this section, we consider structural stiffness 
uncertainties. The case of structural mass, structural
damping or acoustic cavity uncertainties will follow the
same modelling process, that is valid for any positive
definite matrix. 

One can factorize the real, symmetric stiffness matrix by 
the Cholesky factorization 

SS LL
TS

KKK $

Since this stiffness matrix is usually diagonal, SLK  is 

also a diagonal matrix which terms are the square root 

of diagonal terms of
S

K .

Factorization of the reduced vibroacoustic coupling 
matrix

Let C  be a the rectangular vibroacoustic coupling 

matrix. In any case, it can be written as:

TU$C

where U  has the same dimension as C  and IUU
T $

(see Ref. [21]). 

Let be the matrix of the singular values of 2/1= C , such 

that TT >=>$CC . Defining T  as TT >>=$ 2/1 ,  we have 

1&$ TU C .  Finally, the factorization of T , leads to the 

following factorization of C  : 

CCC LLUTU
T$$  where T

CL >=$ 4/1

Construction of the random matrices

The nonparametric probabilistic approach of
uncertainties consists in substituting the generalized 
matrices of the mean model by random matrices which 
construction laws are perfectly defined by the theory
(see Refs. [19, 20, 21]). The reduced random structural 
stiffness matrix is constructed as: 

SSS LL
TS

KKK GK $

The same procedure leads to the reduced random 
coupling matrix : 

CCC LLU
T
GC$

if  denotes  or  then G  is a random matrix 

which mathematical expectation  is the identity matrix:

G G S
K CG

. / IE G $ .

The variance of the random matrix , is controlled by

the parameter 

G

? , defined by:

@
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E
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where is the dimension of and where n G
F
. is the 

Frobenius norm. 

STOCHASTIC PROCESS IMPLEMENTATION

The basic available information in order to build a 
stochastic process, is constituted of the mean structural 
mass, the mean structural damping, the mean structural
stiffness, the mean vibro-acoustic coupling, the mean 



fluid mass, the mean fluid damping and the mean fluid 
stiffness.

For instance, 

. / SSE KK $ , . / CC $E

The following algebraic representation of a random 
matrix , allows  an easy construction of its random 

realizations. By definition, 

G

GGLLG T$

in which  is a random upper triangular real matrix

which random elements are independent random
variables defined as follows: 

GL

1. for , the real-valued random variable 

is written as  in which 

and where is a real-valued Gaussian random 

variable with zero mean and variance equal to 1.

jj FG jj'G]L[

jjnU F$'jj'G]L[
2/1)1( &+$ nn ?'

jjU F
?

is the uncertainty parameter that controls the actual

matrix variance, 

2. for ,  the positive-valued random variable 

jj'G is written as 
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]L[ jn V2'$jj'G]L[ in which jV  is a

positive-valued gamma random variable whose 

probability density function  with respect to is

written as 
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Eq.(11) is then replaced by the following random linear 
system
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where and are random matrices constructed

according to the process described above .

 AA ,, FS C

The random displacement field of the structure and the 
random pressure field inside the internal acoustic cavity
are then computed  by using the following equations,
derived from Eqs.(9) and (10)): 

9 : )() "" SS Q(U ;$

9 : )(
~

)( """ FF i QP <$

For each realization of the stochastic process, Eq.(12) is

solved for every ".

CONFIDENCE REGION OF A RANDOM FREQUENCY 
RESPONSE

Managing results of a random process is an important 
issue when a large number of results has to be
condensed  into an understandable data set. Individual
results will never be presented since they do not have 
any special interest: only statistics of the stochastic
process result are relevant. Since vibroacoustic
responses include resonances and anti-resonances 
random uncertainties may produce different kind of data
distributions. Therefore, the use of confidence intervals
is preferred  in order to describe any kind of results
distribution.

Let )("V  be the modulus of any observed frequency 

response -either the modulus of a displacement 
frequency response on the structural part or the modulus 
of an acoustic frequency  response in the cavity-. The 
confidence region associated  with the probability level 

 for the random function .CP /BV H""),(  is constructed 

using  quantiles. For fixed " in B, let be the 

cumulative distribution function (continuous from the

right) of random variable 

, -"VF

)("V  which is such that 

, - , -, -wVPwFV G$ "" )(  where P means probability. 

For 0<q<1, the q-th quantile or fractile of  is defined 

as

, -"VF

, -. /qwFwq V I$ )(:inf)( "J
The upper envelope  and the lower envelope , -"+v

, -"&v of the confidence region the probability level 

are defined by: 

CP

, - )( CPv J" $+ , , - )1( CPv &$& J"

The estimation of , -"+v  and is performed by 

using the sample quantiles [22].

, -"&v

Let , - , - , - , -
rr nn VvVv K""K"" ;,,.........; 11 $$  be the 

independent realizations of the random variable 

rn

)("V .

Let , - , -""
rn
vv ~.....~

1 GG  be the ordered statistics

associated with , - , -""
rn
vv ,....,1 . The estimations of the 

upper and lower envelopes of the confidence region are
then computed as: 

, - , - , -Crj
Pnjvv .fix,~ $$ ++

+ ""

, - , - , )1.(fix, -~
Crj
Pnjvv &$$ &&

& ""

in which fix(x) is the integer part of the real number x.

APPLICATION TO THE VIBROACOUSTIC 

RESPONSE OF A TRIMMED BODY 

MEAN MODEL OF THE TRIMMED BODY 

The mean model considered is a Finite Element Model 
of a trimmed body as currently built by PSA Peugeot-
Citroën engineers (see Figure2). The model consists in
a detailed Finite Element model of the Body In White, 
trimmed with either detailed or simplified models of  trim 
components (see Ref. [23]). This model is used to study



the frequency  response functions in the low-frequency 
range -B = [34,200]Hz-, for a given set of external loads 
induced by the powertrain (12 loaded structural DOF).
This load case simulates the main contributions to the 
booming noise. 
The finite element model of the structure has 712000
DOF. The internal acoustic cavity contains the seats. 
The finite element model of the internal acoustic cavity 
has 2686 DOF. It should be noted that the two meshes 
are highly incompatible on the fluid-structure coupling 
interface.
For practical reasons -such as availability of data-, part 
of the trimmed body, the cavity geometry or the 
fluid/structure interface are simplified. The degree of 
simplification may vary, depending on the time of the
design process when the model is used. These 
simplifications individually introduce errors, that, when
combined, seem to behave randomly.  Effect of
simplifications can then only be predicted through a
stochastic modelling.
The purpose of this section is to show, using the non-
parametric modelling, how the trimmed body model is 
sensitive to random uncertainties associated to the
structural part, to the cavity, and to the coupling
interface. But first the convergence of the numerical 
stochastic process has to be studied. 

Figure 2 Finite element model of the trimmed body

CONVERGENCE STUDY OF THE MONTE-CARLO 
SIMULATION

The random Eq.(12) is solved by a Monte Carlo
numerical simulation. The convergence of the simulation 
is studied here in the applicative context. Two
parameters have been investigated: the number of 

realizations , and the number of modes considered in

both structural part and cavity. Provided modal series
convergence is governed by eigenfrequencies, the 
number of modes in the series will be indicated by the
highest eigenfrequency considered. We indicate that
correction methods such as the residual vectors are not

suitable in the present case, and convergence is only 
due to the natural decrease of high order modes 
contributions.
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The convergence of the random solution is analyzed in 

studying the graph of the function  defined by: )( r
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This convergence indicator is in fact the mean energy of
either the structural part or the internal acoustic  cavity, 
in the frequency band B.
Various combinations of modal truncation for the
structural part and cavity have been considered. 

Figure3 displays the graph of the function  for 

the structure. Figure4 displays the graph of the function 

 for the internal acoustic cavity.
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From these two figures, it can be seen that a
reasonable mean-square convergence of the random 
structural-acoustic system is reached for : 

o 600$rn  realizations 

o n structural modes corresponding to a modal
truncation at 400 Hz

o m acoustic modes corresponding to a modal
truncation at 350 Hz 

These values will be used in what follows.
It may be noticed that the convergence is obtained  for a 
modal truncation frequency that is rather high. This is 
due to the fact that the modal basis of the mean model is 
used as a functional –non modal- basis to build the
response of  the random systems. High order terms are 
then required to fit the local modifications of the mean
modal shapes. 
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Figure 3 Graph of the function related to the 

convergence of the random structural generalized coordinates. 

)( rnSconvrn N

1

2

3



100 200 300 400 500 600 700 800 900 1000
1.4

1.6

1.8

2

2.2

2.4

2.6

x 10
13

Number of realizations

C
o

n
v
e
rg

e
n

c
e
 c

ri
te

ri
a

Modal Truncation
Struct 250 Hz Fluid 250 Hz

Struct 300 Hz Fluid 300 Hz

Struct 400 Hz Fluid 350 Hz

Struct 500 Hz Fluid 400 Hz

Figure 4 Graph of the function related to the 

convergence of the random acoustic generalized coordinates. 

)( rnconvrn
FN

RANDOM VIBROACOUSTIC FREQUENCY 
RESPONSES OF THE TRIMMED BODY MODEL 
SUBJECT TO  RANDOM UNCERTAINTIES 

In this section, we will examine separately the sensitivity 
of the dynamic responses to the individual causes of 
uncertainties we have modelled. The uncertainty 
parameters has been set to a value such as the order of 
magnitude of the results spread seems realistic.
Results are all presented in the same way. The thick
solid line is the graph of the response of the mean model 
(original model), the thick dashed line is the mean value
of the random frequency response and the grey region is 

the confidence region for a probability level .%95$CP

Effects of random structural uncertainties on frequency 
responses

As any real process, the manufacturing process causes 
deviations regarding the designed product. These 
deviations may be random like for example the structural
properties of foams, but they are often systematic such 
as thickness and curvature modifications imposed by the 
stamping process. In this case, the proposed method will 
be relevant if it is assumed that these modifications have 
no coherent effect on the structure behaviour.  Another 
cause of uncertainty when modeling is the diversity that 
comes from the fact that vehicles are declined in several
equipment versions. Moreover, due to simultaneous 
engineering, the exact definition of these equipments is 
not available when it is required for computation.

Last but not least, the lack of modelling knowledge
remains a major cause of uncertainties. 

In this sub-section, the coupling operator and internal
acoustic cavity operator remain deterministic. Only the

stiffness matrix of the structural part is a random matrix 
and the uncertainty parameter is the same for all 
presented results. 

Figure 5 displays the structural frequency response in 
the z-direction at point 1 located on the vehicle 
framework (see Fig.2). It can be seen a narrow 
confidence region (a few decibels) with a tendency to a
slight increase with frequency. 

Figure 6 displays the structural frequency response in 
the normal direction at point 2 located on the car roof.
This is a flexible structural element. It can be seen that 
the confidence region is much larger than in the previous 
case, up to 20 dB. The width of the confidence region
seem to increase progressively and stabilize above 120
Hz.

Figure 7 displays the structural frequency response in 
the normal direction at point 1 located on the firewall. 
The width of the confidence region is about 5 dB at 
lower frequency and increase suddenly above 140 Hz, 
as if the behaviour was switching form the one of figure 
5 (stiff) to the one of figure 6 (flexible). 

From these 3 figures, it can be concluded that the same
random uncertainty model –controlled by a single
number- produce a variety of effects depending  on the 
location of observation points, and frequency range. 

Figure 8 shows the effect of the structural uncertainty on 
the acoustic pressure at the driver’s ear position in the
cavity. The width of the confidence region increases 
regularly with frequency but remains lower than what 
was observed on the roof. 
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Figure 5 Confidence region of the random frequency
response for the structural z displacement (point 1) 
structural uncertainties. Mean model prediction (thick 
solid line), mean response of the stochastic model
(dashed line), confidence region (grey region). 
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Figure 6 Confidence region of the random frequency response for the 

structural normal displacement (point 2) structural uncertainties. Mean 

model prediction (thick solid line), mean response of the stochastic 

model (dashed line), confidence region (grey region). 
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Figure 7 Confidence region of the random frequency response for the 

structural normal displacement (point 3) structural uncertainties. Mean 

model prediction (thick solid line), mean response of the stochastic 

model (dashed line), confidence region (grey region). 
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Figure 8 Confidence region of the random frequency response for the 

internal acoustic pressure at a point located at the driver’s ear for 

structural uncertainties. Mean model prediction (thick solid line), mean 

response of the stochastic model (dashed line), confidence region 

(grey region). 

Effect of random structural uncertainties on modal 
shapes

The previous results are the consequence of the  modal 
basis changes induced by the uncertainty modelling.
Therefore, it seemed interesting to examine statistically 
the modal shapes and eigenfrequencies of the trimmed
body vibration modes.

We first introduce the Stochastic Modal Assurance

Criteria (SMAC) between the mean model structural 
modes and structural random modes, defined as: 
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where 9 :; are the mean model structural mode shapes 

and 9 :Y are the structural random mode shapes.

The SMAC function is a random variable, which 
mathematical expectation is estimated  as : 
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Figure 9 displays an estimation of the Stochastic Modal
Assurance Criteria mathematical expectation for a given 
level of structural uncertainty. 
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Figure 9 (a) Estimation of the mathematical expectation of SMAC from 

rank mode 1 to rank mode 80. 
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Figure 9 (b)  Estimation of the mathematical expectation of SMAC from 

rank mode 81 to rank mode 200. 

In  the first part of the frequency range, up to structural
mode rank 80, one can observe a low sensitivity of 

modal shapes: SMAC matrix  is close to identity matrix 
meaning random modal shapes are close to the mean
model modal shapes. In this case, it is meaningful to plot
the eigenfrequencies distribution. As an example, Figure 
10 displays an estimation of the probability density
function of the first body torsion mode relatively to the
mean model torsion eigenfrequency. 
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Figure 10 Estimation of the probability density function of the fisrt 

torsional body mode with respect to its eigenfrequency.

Above structural mode rank 80, the SMAC matrix is not 
diagonal anymore, indicating that structural modes
shapes are highly sensitive to structural random 
uncertainties. It is then impossible to track modes and 
individual eigenfrequency statistics become 
meaningless. This is a typical feature of the
medium/high frequencies vibroacoustic models, such as 
SEA, that only consider modal densities and assume no
peculiarity of individual modes.

It is recalled here that the limit between the two 
behaviours is depending on the uncertainty parameter
that was nearly arbitrary here. Nevertheless, these 
results present globally the same trends as observed 
experimentally: low order modes appear with stable
shapes while high order modes may be difficult to
capture.

Effect of Vibroacoustic coupling interface uncertainties

In this section, the case of the coupling interface random
uncertainties will be discussed. These uncertainties are 
mainly related to modelling uncertainties due to the
incompatibility between the structural mesh and the 
cavity mesh. They may also account for geometrical 
uncertainties of both meshes. 

Structural responses appear to be nearly insensitive to 
the coupling uncertainties.

Figure 11 displays the acoustic frequency response for 
the internal acoustic pressure at the driver’s ear position,
when considering only coupling interface uncertainty. 
Again in this case, the confidence region is first
increasing with frequency, and then –approximately
above 60 Hz- becomes  nearly independent of the 
frequency.
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Figure 11 Confidence region of the random frequency response for the 

internal acoustic pressure at a point located at the driver’s ear for 

vibroacoustic coupling uncertainties. Mean model prediction (thick solid 

line), mean response of the stochastic model (dashed line), confidence 

region (grey region). 

Effects of cavity random uncertainties

Cavity uncertainties are mainly resulting from
geometrical uncertainties (seat positions, passengers), 
material uncertainties (seat foam, seat coating)
boundary uncertainties (HVAC inlets, connection to the
trunk) or environmental uncertainties (temperature, air 
convection). Again the number of uncertainty causes 
legitimates the use of a random model. 

Figure 12 displays the acoustic frequency response for 
the internal acoustic pressure at the driver’s ear position, 
for a given level of internal acoustic cavity random 
uncertainties. The confidence region is increasing 
regularly with the frequency.

As previously, the structural part is rather insensitive to 
cavity uncertainties.
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Figure 13 Confidence region of the random frequency response for the 

internal acoustic pressure at a point located at the driver’s ear for 

acoustic cavity uncertainties. Mean model prediction (thick solid line), 

mean response of the stochastic model (dashed line), confidence 

region (grey region). 

CONCLUSION

A new  approach to investigate the sensitivity of low 
frequencies vibroacoustic responses to random 
uncertainties has been presented and applied to a
current trimmed body model. The proposed method, 
based on the maximum of entropy principle, models
randomly the variability of a vibroacoustic system. The
range of the variability is controlled by a reduced number
of parameters associated to the structural part, the
cavity, and the coupling interface. Any cause of random 
uncertainty may be described using this method: data 
uncertainties as well as modelling uncertainties. 
Assuming modelling errors is the major cause of the lack 
of predictability of vehicle models, the proposed method 
is able to provide, at least, the sensitivity of vibroacoustic
responses to such errors, until errors are quantified
which will permit a robust prediction. 

The numerical implementation is performed using 
random matrices and a Monte-Carlo simulation. Random
matrices are constructed using the available information 
i.e. the FE model of the studied problem, named mean 
model. The method is numerically efficient, when
generalized coordinates are used for the cavity and the
structural part. Results shown are confidence regions of
the Frequency Response Functions obtained with a 
probability of 95%. It should be noted that all the 
realizations of the Monte-Carlo simulation remain 
physically consistent. This important feature is
characteristic of the theory (see Ref. [21]).

The application to a trimmed body have demonstrated 
the possibility to implement the method within the
existing vibro-acoustic modelling process at PSA
Peugeot-Citroën. Results of computations show the 



sensitivity of the booming noise to structural and to 
cavity uncertainties as well as coupling interface 
uncertainties. It is observed that stiff parts of the vehicle 
(framework) are more robust to structural random 
uncertainties than flexible part (panels). This seems to fit 
quiet well what may be observed on car bodies: global 
structural modes are usually less dispersed than local 
modes. Another illustration of the random uncertainty 
modelling is the mean value Stochastic MAC table 
between the mean model and the random model. This 
table shows that modal shapes can not be recognized 
any more above a given frequency. Again this result is 
close to observations that led engineers to use statistical 
modal methods, such as SEA, to study  the so-called 
high frequency range. 

In order to go further in the practical use of the 
presented theory, and for example provide robust 
predictions, one has to identify the uncertainty 
parameters of the nonparametric probabilistic approach. 
Two different experimental approaches may be 
considered:

1. when dispersion measurements are available, one 
can identify the uncertainty parameters that provide 
the computed spread the closer to the measured 
one. This procedure is efficient to identify the 
amount of uncertainty related to the vehicle diversity, 
manufacturing dispersion, environmental and 
operational causes, but it requires a good quality 
mean model. 

2. when only one experiment is available, or 
considering the mean value of a statistical 
observations, one can increase the uncertainty 
parameters until the predicted envelope covers the 
measured result. The obtained value is a measure of 
the distance between the mean model and the 
targeted experiment. This procedure is clearly 
dedicated to the identification of modelling errors.

Work is in progress in these ways.
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