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ABSTRACT

Construction of a physical model for the grand piano implies complex and multidimensional phenomena. We present
a model of piano strings coupled to a soundboard, and its numerical approximation. Measurements on piano strings
and bridge show phantom partials and a time precursor that both cannot be explained by the linear scalar string model.
A classical model of nonlinear strings has been written by Morse & Ingard, it implies to consider the longitudinal
displacement as well as the standard transversal displacement of the string, in a nonlinear coupled system. Various
approximate (polynomial) models have been written from this one, by expanding the nonlinearity (a square root term)
around the rest position of the string. We provide a mathematical justification of the most used model. Transmission of
the string motion to the rest of the structure is essential from the acoustical point of view. We use a modal approach for
the soundboard, and we write a nonstandard reciprocal coupling condition between strings and soundboard at the bridge.
Numerical approximation of such a nonlinear, multidimensional and coupled problem is a difficult issue. We use an
energy approach to achieve stability, which leads to an innovating implicit numerical scheme.

MODELING THE PIANO

The work presented in this paper is the ongoing subject of the
first author’s PhD, which consists in modeling a grand piano.
This project is the third collaboration between UME-ENSTA,
laboratory specialized in mechanics and musical acoustics, and
POEMS-INRIA, laboratory specialized in numerical analysis.
In the past, two other PhD works have considered the numer-
ical simulation of a timpani [12] and a guitar [8]. Apart from
the fluid/structure coupling, the major difficulty of the timpani
modeling was to take into account the nonlinear interaction
between the timpani stick and the membrane, while the major
difficulty of the guitar was to model the soundboard. For such
complex, coupled problems, the priority when performing nu-
merical simulations is the stability of the numerical scheme,
which is not an easy issue in a nonlinear context. The energy
approach has proven to be very efficient and lead to intuitive
numerical schemes, especially in order to treat the different
coupling conditions.

The two issues mentioned earlier have still to be considered
for the piano modeling, for the interaction between hammer
and strings and the modeling of the soundboard. As explained
later, we must also consider a nonlinear model for the strings.
The object of this paper is to explain the modeling choices
of the authors, and to construct a stable numerical scheme
that represents a system of hammer, strings and soundboard.
Because of all the nonlinearities and the couplings, this is not an
easy task and this paper will outline the difficulties, and propose
efficient solutions.

A first section will present the string models and how to approx-
imate them, then a second section will suggest how to model
the hammer/strings interaction. A description of the soundboard
and the models we use is then proposed, and finally we will
present the whole coupled problem and its numerical approxi-
mation.

STRINGS

A nonlinear string model has been introduced by Morse &
Ingard [10], in which the string vibration problem is considered
as a nonlinear coupled system referred to as “Geometrically
Exact Model” (GEM). Conklin [7] has seen in his measurements
on piano spectra that some partials could not be explained
with the linear string vibration theory, and Bank & Sujbert [2]
have shown that these so called “phantom partials” appeared at
frequency values being sum or differences of harmonic partials.
Several authors [2, 3] have done numerical simulations using a
nonlinear string model coming from Taylor developments of the
GEM. These developments are made so that the energy of the
string remains positive, giving a stable numerical scheme. We
present here the GEM as well as a mathematical justification of
the developed models, for small transversal initial data.

The geometrically exact model

We consider an infinitely thin string, parametrized at rest with
x ∈ [0,L], where L is the length of the string in meters. We will
call µ the lineic mass of the string, A the area of its section,
E its Young’s modulus, T0 its tension at rest. All along this

Figure 1: String unknowns and local tension

paper, the notations ∂t · ≡
∂ ·
∂ t

and ∂x· ≡
∂ ·
∂x

will denote the par-
tial derivative along time t and space x respectively. Vectorial
unknowns will be noted in thick or underlined font unlike the
scalar unknowns. The standard nonlinear geometrically exact
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model [10] couples the transversal displacement of the string
u(x, t) to the longitudinal displacement v(x, t):






























µ ∂ 2
t u =∂x



EA∂xu− (EA−T0)
∂xu

√

(

∂xu
)2

+
(

1+∂xv
)2





µ ∂ 2
t v =∂x



EA∂xv− (EA−T0)

(

1+∂xv
)

√

(

∂xu
)2

+
(

1+∂xv
)2





(1)

This system is obtained by a geometrical description of the
motion of a material point of the string, using the dynamic
fundamental law on the elementary system subjected only to
tension forces. Hooke’s law is used to link the local tension of
the string to the relative elongation. We can use a dimensionless
system, by introducing

α =
EA−T0

EA
∈ [0,1[, T = L

√

µ

EA
(2)

x∗ = x/L, u∗ = u/L, v∗ = v/L, t∗ = t/T (3)

The new system is, forgetting the starred notations,






























∂ 2
t u = ∂x



∂xu−α
∂xu

√

(

∂xu
)2

+
(

1+∂xv
)2





∂ 2
t v = ∂x



∂xv−α

(

1+∂xv
)

√

(

∂xu
)2

+
(

1+∂xv
)2





(4)

If we introduce the potential energy

Uex(u,v) =
1
2

u2 +
1
2

v2 −α
[
√

u2 +(1+ v)2 − (1+ v)
]

(5)

then the solution of (4) satisfies the preservation of the energy:

d

dt

{

1
2

∫ L

0
|∂tu|

2 +
1
2

∫ L

0
|∂tv|

2 +
∫ L

0
Uex(∂xu,∂xv)

}

= 0 (6)

Expanded models and their asymptotic justification

In the papers of [1–3], a developed model can be found, which
has been established with the method presented above, but
performing a Taylor development of the square root in (5) and
neglecting some terms, in order to keep a positive potential
energy. We wanted to give a more precise explanation of the
origin of this model, by using standard asymptotic methods on
the model (4). We present here the method used and the results
obtained, the reader can refer to [4] for calculation details.

We solve, for a small initial amplitude ε on the transversal data,














∂ 2uε

∂ t2 −
∂

∂x

[

∇Uex

(∂uε

∂x

)

]

= 0,

uε (t = 0,x) = ε u(x) , ∂tu
ε (t = 0,x) = ε ut ,

vε (t = 0,x) = 0 , ∂tv
ε (t = 0,x) = 0.

(7)

and we seek the solution uε = (uε ,vε ) under the form
∣

∣

∣

∣

∣

uε = ε u1 + ε2 u2 + ε3 u3 + . . .

vε = ε v1 + ε2 v2 + ε3 v3 + . . .
(8)

We wonder what would be the system of equation on uε if
we neglect all terms in factor of ε4. We write the fourth order
Taylor development of (6) and inject it in (7). Then we group all
the terms in factor of ε , ε2 and ε3 respectively, to obtain three
different systems on the unknowns uℓ and vℓ, and we find by
calculation that v1 = u2 = v3 = 0. If we regroup at this point all
the terms together, neglecting ε4, we find the following system
on the new unknowns ũε = ε u1 + ε3 u3 and ṽε = ε2u2:















∂ 2ũε

∂ t2 −
∂

∂x

[

(1−α)
∂ ũε

∂x
+α

∂ ũε

∂x

∂ ṽε

∂x
+

α

2

(∂ ũε

∂x

)3
]

= 0,

∂ 2ṽε

∂ t2 −
∂

∂x

[∂ ṽε

∂x
+

α

2

(∂ ũε

∂x

)2
]

= 0,

which corresponds to the Cauchy problem (7) replacing the
potential energy Uex with

UBS(u,v) =
1−α

2
u2 +

1
2

v2 +
α

2
u2v+

α

8
u4. (9)

This energy is the one found empirically in [1–3]. We give here
a restriction: this model is valid only if the string is excited
transversally.

Remark 1 For a more accurate development in long time, per-

turbation methods can be used [11]. The principle is to consider

different time scales, leading to more complex expressions of

the equations satisfied by the developed solution. See figure 2

for a comparison between classical method and multi-scale

method.
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Figure 2: Comparison between the solution of developed sys-
tems (dashed line) and the numerical solution of the original
system (7) (continuous line), using Taylor method (left) or per-
turbation method (right). The lower image is normalized, while
the upper one is not.

At this point of our work, it does not represent any further
difficulty to tackle the exact model rather than the developed
one. The string model will, in the sequel, be represented by
the potential energy U which can either be Uex or UBS, or any
other positive potential energy. This statement has yet to be
qualified, since we have to to enlarge our class of models in
order to consider stiff strings.

Stiff string

Dispersion plays a great role in the timbre of musical instru-
ments. This is why the modeling of stiffness is a major issue
when one aims at synthesizing musical instruments’ sounds. We
present here an unusual point of view for the modeling of string
stiffness: we propose to introduce an angle ϕ which will be
coupled with the string displacement, and use Timoshenko [14]
beam theory in order to write the coupling term. This approach
is quite close to considering a prestressed nonlinear beam.

The stiff string equation is the following system:






























































∂t(ρA ∂tu)−∂x

[

AGk′
(

∂xu−ϕ
)

+EA ∂xu

− (EA−T0)
∂xu

√

(∂xu)2 +(1+∂xv)2

]

= 0,

∂t(ρA ∂tv)−∂x

[

EA ∂xv

− (EA−T0)
1+∂xv

√

(∂xu)2 +(1+∂xv)2

]

= 0,

∂t(ρI ∂tϕ)−∂x

[

EI ∂xϕ
]

−AGk′
(

∂xu−ϕ
)

= 0.

(10)

2 ICA 2010



Proceedings of 20th International Congress on Acoustics, ICA 2010 23–27 August 2010, Sydney, Australia

If we write the kinetic and potential energies as:











































T (∂tq) =
ρA

2
(∂tu)2 +

ρA

2
(∂tv)

2 +
ρI

2
(∂tϕ)2 (11a)

U (q,∂xq) =
EA

2
(∂xu)2 +

EA

2
(∂xv)2 +

EI

2
(∂xϕ)2

− (EA−T0)
√

(∂xu)2 +(1+∂xv)2

+
AGk′

2
(∂xu−ϕ)2

(11b)

where
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q = (u,v,ϕ), N the size of the system (here, 3),

ρ is the volumic mass of the string: µ = ρA,

I is the stiffness inertia coefficient of the string,

G is the shear coefficient,

k′ is Timoshenko’s parameter,

(12)

then our stiff string can be seen as a system of the form

∂t∇T (∂tq)−∂x∇∂xq U (q,∂xq)+∇q U (q,∂xq) = 0 (13)

which preserves the energy

Es(q,∂xq,∂tq) =
∫ L

0
T (∂tq)+

∫ L

0
U (q,∂xq). (14)

We will for now on consider that

T (∂tq) = ∑
k

1
2
Tk(∂tqk)

2. (15)

Remark 2 In all what follows, we will abusively mingle nota-

tions and treat the triplet (u,v,ϕ) as (q1,q2,q3) and equally

refer to the unknowns with their number in q or their letter

symbol in the triplet. To illustrate this fact, we shall as well,

in our present case, write that T1 = T2 = ρA,T3 = ρI or

Tu = Tv = ρA,Tϕ = ρI.

Numerical approximation

We have shown in [5] that in a certain class of energy preserving
numerical schemes, it was impossible to construct an explicit
scheme unless the original equation is linear. We have shown
that the intuitive scheme, that approximate the gradient of U

with a directional finite difference does not, in general, lead to a
preserving scheme. The numerical scheme that we propose here
is an implicit, second order accurate in time, unconditionally
stable numerical scheme.

In a very general context, we had to introduce the functions



















































δ∂x,k U (q;∂xqn+1
k ,∂xqn−1

k
,∂xq

n+σ(ℓ)
ℓ6=k

) =

U (q;∂xqn+1
k

,∂xq
n+σ(ℓ)
ℓ6=k

)−U (q;∂xqn−1
k

,∂xq
n+σ(ℓ)
ℓ6=k

)

∂xqn+1
k

−∂xqn−1
k

δk U (qn+1
k ,qn−1

k
,q

n+σ(ℓ)
ℓ6=k

;∂xq) =

U (qn+1
k

,q
n+σ(ℓ)
ℓ6=k

;∂xq)−U (qn−1
k

,q
n+σ(ℓ)
ℓ6=k

;∂xq)

qn+1
k

−qn−1
k

where σ is a function mapping Σk to {−1,1}, while Σk is the set
of all variables except k : Σk = [1, . . . ,N]\{k}. As an example,
Σu = {v,ϕ}. We introduce the coefficients ζ (σ), and we write
the numerical scheme for any test function ψ in the Lagrange
Pk finite elements functions basis:

∮ L

0
Tk

qn+1
k

−2qn
k +qn−1

k

∆t2 ψ+

1
2

∮ L

0
∑

σ∈Σk

ζ (σ)
[

δ∂x,kU (qn+1
k ,qn+1

l 6=k
;∂xqn+1

k ,∂xqn−1
k

,∂xq
n+σ(l)
l 6=k

)+

δ∂x,kU (qn−1
k

,qn−1
l 6=k

;∂xqn+1
k ,∂xqn−1

k
,∂xq

n+σ(l)
l 6=k

)
]

∂xψ +

1
2

∮ L

0
∑

σ∈Σk

ζ (σ)
[

δkU (qn+1
k ,qn−1

k
,q

n+σ(l)
l 6=k

;∂xqn+1
k ,∂xqn+1

l 6=k
)+

δkU (qn+1
k ,qn−1

k
,q

n+σ(l)
l 6=k

;∂xqn−1
k

,∂xqn−1
l 6=k

)
]

ψ = 0

(16)

preserves the energy

E
n+1/2
s =

1
2

∮ L

0

N

∑
k=1

Tk

∣

∣

∣

∣

∣

qn+1
k

−qn
k

∆t

∣

∣

∣

∣

∣

2

+

∮ L

0

U (qn+1,∂xqn+1)+U (qn,∂xqn)

2

(17)

HAMMER / STRINGS INTERACTION

The interaction with the hammer is essential for timbre quality
and realism in sound synthesis. Several studies have been made
on the model which shall be used [13]. We will consider a
contact with nonlinear interaction and hysteresis. The reality
and geometry of the piano leads us to take into account the
coupling of several (Nc) strings with only one hammer. We call
qi = (ui,vi,ϕi) the triplet of unknowns of the ith string. As the
strings are slightly detuned (their tension at rest T0 is different),
which makes a different potential energy per string Ui.

The hammer is represented by a point of the space moving
along a straight line. It is then a scalar unknown that we will
call ξ (t). The parameters defining the hammer are Mham , Kham

i
and Rham

i , which could depend on the struck string (by damage,
for instance), and the function Φ which links the force of inter-
action to the crushing of the hammer. The contact is distributed
along the string through a repartition function δ ham , and we
note 〈ui〉 =

∫ L
0 δ ham (x− xham )ui(x)dx the value of ui averaged

by δ ham . The coupled system can now be written






















































Mham d2ξ

dt2 (t) = −∑
i

F ham
i (t) (18a)

F ham
i (t) = Kham

i Φ
(

〈ui〉(t)−ξ (t)
)

+Rham
i

d

dt
Φ
(

〈ui〉(t)−ξ (t)
)

(18b)

∂t∇T (∂tqi)−∂x∇∂xq Ui(qi,∂xqi)+∇q Ui(qi,∂xqi) =

F ham
i (t)





δ ham (x− xham )
0
0



 , ∀ i
(18c)

We introduce the function Ψ such that Ψ′ = −Φ and the previ-
ous system preserves the energy as soon as Rham

i vanishes:

Eh,s(t) =
Nc

∑
i=1

[

∫ L

0
T (∂tqi)

]

+
Mham

2

∣

∣ξ ′(t)
∣

∣

2
+

Nc

∑
i=1

[

∫ L

0
Ui(qi,∂xqi)+Kham

i Ψ
(

〈ui〉(t)−ξ (t)
)

]

(19)

Numerical approximation

An energy preserving numerical approximation of (18) can
be obtained by using (16) for each component of each string,
and adding a line for the hammer as well as the contributions
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coming from the interactions. Since the function Φ is nonlinear,
we have to treat the hammer implicitly with the string, which is
not a great over cost since it is a scalar unknown. The line for
the hammer should be:

Mham ξ n+1 −2ξ n +ξ n−1

∆t2 = (20)

Nc

∑
i=1

[

Kham
i

Ψ
(

〈Un+1
i,h 〉−ξ n+1

)

−Ψ
(

〈Un−1
i,h 〉−ξ n−1

)

(

〈Un+1
i,h 〉−ξ n+1

)

−
(

〈Un−1
i,h 〉−ξ n−1

)

−Rham
i

Φ
(

〈Un+1
i,h 〉−ξ n+1

)

−Φ
(

〈Un−1
i,h 〉−ξ n−1

)

2∆t

]

and the following contribution should be added to the u-line of
each string, for any test function ψ:

[

Kham
i

Ψ
(

〈Un+1
i,h 〉−ξ n+1

)

−Ψ
(

〈Un−1
i,h 〉−ξ n−1

)

(

〈Un+1
i,h 〉−ξ n+1

)

−
(

〈Un−1
i,h 〉−ξ n−1

) −

Rham
i

Φ
(

〈Un+1
i,h 〉−ξ n+1

)

−Φ
(

〈Un−1
i,h 〉−ξ n−1

)

2∆t

]

〈ψ〉

(21)

where Ui,h is the vector of unknowns linked to the degrees of
freedom of the string for the variable ui, Vi,h for vi and Φi,h for
ϕi. This scheme preserves the energy

E
n+1/2
h,s =

Nc

∑
i=1

[1
2

∮ L

0

N

∑
k=1

Tk

∣

∣

∣

∣

∣

qn+1
i,k −qn

i,k

∆t

∣

∣

∣

∣

∣

2
]

+
Mham

2

∣

∣

∣

∣

ξ n+1 −ξ n

∆t

∣

∣

∣

∣

2

+
Nc

∑
i=1

[

∮ L

0

Ui(q
n+1
i,h ,∂xqn+1

i,h )+Ui(q
n
i,h,∂xqn

i,h)

2
+

Kham
i

Ψ(〈Un+1
i,h −ξ n+1〉)+Ψ(〈Un

i,h −ξ n〉)

2

]

(22)

SOUNDBOARD

Geometry

Figure 3: Soundboard with brigdes (left) and ribs (right).
Source: www.richardlipp.com.au

The piano soundboard is a wooden plate (mostly in spruce)
with a variable shape depending on the piano. It is stiffened
by ribs, which are glued perpendicularly to the fibers of the
wood, and a bridge (see figure 3). The main purpose of the ribs
is to restore a certain isotropy in a fundamentally orthotropic
material: wood. This objective is achieved for the first modes
(see [9]) but is irrelevant for high wavelengths. The soundboard
can be modeled in different ways, from the least to the most
sophisticated in terms of details, as:

• an isotropic plate,
• an orthotropic plate with variations of thickness or mate-

rials at the place of the ribs and bridge,
• an orthotropic plate with variations of thickness or mate-

rials at the place of the ribs and bridge, but only on one
side each,

• a coupling between an orthotropic plate and beams mod-
eling the ribs and the bridge.

Remark 3 Even if this last model will be quite difficult to con-

sider and implement, it should represent a wide improvement

in the soundboard modeling, since measurements on the bridge

have shown that it has eigen vibration modes (see figure 4).

Figure 4: Motion of the upper part of the main bridge of a
PLEYEL upright piano, at frequency f=2,52 kHz. The shape is
very similar to the one of a bending mode for a free-free beam.
As a consequence, the bridge mobility at the end of the strings
varies substantially from one note to the next, which, in turn,
induces significant differences in the tone duration.

Modeling

Whatever choice we make in the above cases, we must choose
a set of equations which govern the soundboard motion. The
soundboard’s thickness is small compared to its other dimen-
sions. It fits the frame of plate theories, reducing the great
amount of unknowns of linear elasticity to only three or one
unknown. The price to pay for this simplification is several
hypothesis on the deformations, as for instance an hypothesis
of non-coupling between transversal and longitudinal displace-
ments. The two models that we will consider are Kirchhoff
Love and Mindlin Reissner models. They both model a stiff
plate, and can take into account orthotropy, variations in the
thickness or the material. The Kirchhoff Love model can be
derived from the Mindlin Reissner model when making an ad-
ditional assumption: the straight sections remain orthogonal to
the neutral fiber (excluding the ribs and the bridges).

These two plate models can be grouped into the following
general frame, with A and B two selfadjoint operators. We
seek a displacement field u : ω ×R

+ → R and an angle field
u : ω ×R

+ → R
2 such that:















cθ
∂ 2θ

∂ t2 +Aθ +C u = 0 (23a)

cu
∂ 2u

∂ t2 +Bu+C∗ θ = f χω (x,y) (23b)

where χω is a repartition function which distributes the force
f (t) over the plate.

Mindlin Reissner Kirchhoff Love

cθ ρ δ 3/12 0
cu ρ δ ρδ

Aθ −(δ 3/12)Div(C ε(θ))+δ Gθ 0

Bu −δ div(G∇u) (δ 3/12)div Div Cε(∇u)
C u δ G∇u 0

C∗ θ −δ Gdivθ 0

Numerical approximation

We proceed to the semi discretization of the plate problem,
the problem becomes to seek (θ p,up) : [0,T ] → (Θdisc

p ,U disc
p )

such that ∀θ∗ ∈ Θp, ∀u∗p ∈ Up



















∫

ω
cθ

∂ 2θ p

∂ t2 ·θ∗
p +

∫

ω
Aθ p ·θ

∗
p +

∫

ω
(C up) ·θ

∗
p = 0,

∫

ω
cu

∂ 2up

∂ t2 u∗p +
∫

ω
Bupu∗p +

∫

ω
(C∗ θ p)u

∗
p = f

∫

ω
χω (x,y)u∗p.

(24)
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If we introduce (ζ
k
)k a basis of Θdisc

p , and (ψn)n a basis U disc
p ,

and the matrices

(M
θp

h
)k,ℓ =

∮

ω
cθ ζ

k
·ζ

ℓ
, (M

up

h
)n,m =

∮

ω
cu ψnψm, (25)

(Ah)k,ℓ =
∮

ω
Aζ

k
·ζ

ℓ
, (Bh)n,m =

∮

ω
Bψnψm, (26)

(Ch)k,n =
∮

ω
(Cψn) ·ζ k

, (Jh)n =
∮

ω
χω ψn, (27)

the problem becomes to find the vectors Up,h and Θp,h s.t.











∂ 2
t (M

θp

h
Θp,h)+Ah Θp,h +Ch Up,h = 0,

∂ 2
t (M

up

h
Up,h)+Bh Up,h + tCh Θp,h = f Jh.

(28)

which is equivalent to

∂ 2
t MhΛEF

h +RhΛEF
h =

(

f Jh

0

)

,

where ΛEF
h =

(

Up,h
Θp,h

)

, Mh =

(

M
up

h
0

0 M
θp

h

)

, Rh =

(

Bh
tC

C Ah

)

.

We diagonalize the real symmetric matrix Rh in a Mh-orthogonal
basis. Let Λmod

h be the basis of eigenvectors. Then, there exist a
diagonal matrix Dh and a matrix Ph orthogonal for the scalar
product 〈Mh·, ·〉 such that

{

t
PhRhPh = Dh

t
PhMhPh = Id

and

{

ΛEF
h = PhΛmod

h

Λmod
h = t

PhMhΛEF
h

(29)

The problem is now constituted of decoupled ODEs with second
member and initial values: ∀ t ∈ [tn−1/2, tn+1/2]























∂ 2
t Λmod

h +DhΛmod
h = f t

Ph

(

Jh

0

)

,

Λmod
h (t = tn−1/2) = Λmod

h
,n−1/2,

∂tΛ
mod
h (t = tn−1/2) = ∂tΛ

mod
h

,n−1/2.

(30)

Which we can solve exactly, using the technique of [8]. We
introduce the operators S∆t(U0,U1), which gives the solution,
after ∆t time, to the homogeneous problem with initial values U0
and U1, and Rn,∆t(F) which gives the solution to the problem

between tn−1/2 and tn+1/2 with second member F (see (43c)).
Out of linearity, we can write that

Λmod
h (tn+1/2) = S∆t(Λ

mod
h

,n−1/2,∂tΛ
mod
h

,n−1/2)+

f Rn,∆t

(

t
Ph

(

Jh

0

)

)

.
(31)

The energy preserved by this method, if f ≡ 0, is

E
n+1/2
p =

1
2
‖∂tΛ

mod
h

,n+1/2‖2 +
1
2
‖Λmod

h
,n+1/2‖2

Dh

=
1
2
‖∂tΛ

EF
h

,n+1/2‖2
Mh

+
1
2
‖ΛEF

h
,n+1/2‖2

Rh

(32)

Remark 4 An interesting possibility is to solve the problem

only on the first eigen modes of the soundboard, which concen-

trates most energy, by considering a truncated (hence rectangu-

lar) matrix P̃h. This approach justifies the (expensive) diagonal-

ization of the matrix Mh since it entitles us to use a physically

more relevant basis of approximation with less degrees of free-

dom.

COMPLETE COUPLED PROBLEM

Complete model

The system that we consider is the following:


























































































































Mham d2ξ

dt2 (t) = −∑
i

F ham
i (t) (33a)

∣

∣

∣

∣

∣

∣

F ham
i (t) =Kham

i Φ
(

〈ui〉(t)−ξ (t)
)

+

Rham
i

d

dt
Φ
(

〈ui〉(t)−ξ (t)
)

(33b)

∣

∣

∣

∣

∣

∣

∣

∣

∂t∇T (∂tqi)−∂x∇∂xq Ui(qi,∂xqi)+∇q Ui(qi,∂xqi) =

F ham
i (t)





δ ham (x− xham )
0
0



 , ∀ i
(33c)























cθ

∂ 2θ p

∂ t2 +Aθ p +C up = 0

cu
∂ 2up

∂ t2 +Bup +C∗ θ p =
[

−∑
i

F
coupl

i (t)
]

χω (x,y)

(33d)

F
coupl

i (t) = ν ·∇u,v
∂xq

Ui(qi,∂xqi)(x = L, t) (33e)

Coupling condition at the bridge are (see remark (5)):







(

ui(x = L, t)
vi(x = L, t)

)

= ν ×
∫

ω
up(x,y, t)χω (x,y)dxdy (34a)

∂xϕi(x = L, t) = 0 (34b)

All the other limit conditions are standard (string attached and
plate embedded). The only non zero initial condition is the
hammer’s, which has an initial velocity.

The solution of this system preserves the following energy:



































































E (t) = E
k(t)+E

p(t), where: (35a)

E
kin(t) =

Nc

∑
i=1

[

∫ L

0
T (∂tqi)

]

+
cu

2

∥

∥∂tup

∥

∥

2
ω

+
cθ

2

∥

∥∂tθp

∥

∥

2
ω

+

Mham

2

∣

∣ξ ′(t)
∣

∣

2

(35b)

E
pot(t) =

Nc

∑
i=1

[

∫ L

0
Ui(qi,∂xqi)+Kham

i Ψ
(

〈ui〉(t)−ξ (t)
)

]

+
1
2
〈Aθ p,θ p〉+

1
2
〈Bup,up〉+

1
2

∥

∥Cup +θ p

∥

∥

2
ω

(35c)

The proof of energy preservation is obtained classically, multi-
plying each line with the appropriate time derivative and adding
all lines. We must notice that we use (34a) after derivation in
time.

We consider the variational spaces such that

ξ : [0,T ] → R,

(qi)i = (ui,vi,ϕi)i : [0,T ] → Q = Uc ×Vc ×Φc,

(θ p,up) : [0,T ] → (Θp,Up)

(36)

Writing the variational formulation leads us to calculate the
following formal equation, for each string i:

∫ L

0
∂t∇T (∂tqi) ·q

∗
i +

∫ L

0
∇∂xq Ui(qi,∂xqi) ·∂xq∗

i −

[

∇
u,v
∂xq

Ui(qi,∂xqi)(x = L, t) ·

(

u∗i (x = L, t)
v∗i (x = L, t)

)

]

+
∫ L

0
∇q Ui(qi,∂xqi) ·q

∗
i = F ham

i (t)





〈u∗i 〉(t)
0
0



 ,

(37)
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The standard choice of Uc, Vc, Φc, Θp, Up is to set



































(Uc,Vc) =
{

uc ∈ H1([0,L]), vc ∈ H1([0,L])
∣

∣

∣

(

uc(x = 0)
vc(x = 0)

)

=

(

0
0

)

,

(

uc(x = L)
vc(x = L)

)

· τ = 0

}

,
(38a)

Φc = H1([0,L]), (38b)

Θp = H1
0 (ω)2, Up = H1

0 (ω). (38c)

But in this case, the expression ν ·∇u,v
∂xq

Ui(qi,∂xqi)(x = L, t)

does not make sense anymore. We choose to introduce new
unknowns, Lagrange multipliers, F

coupl

i = [0,T ] → R
Nc , which

will be implicitly determined by the equation (34a).

Semi discretization in space

We choose, to approximate the string spaces (Uc,Vc,Φc) (which
are very close to H1([0,L])), Lagrange finite elements Pk, with,
associated to the degree of freedom j, the basis function φ j . We
introduce

(Mc
h)i, j =

∮ L

0
φiφ j, and α j = φ j(L).

As previously, we call Ui,h the vector of coordinates of ui in the
basis (φ j) j, Vi,h the coordinates of vi, and Φi,h the coordinates
of ϕi.

The semi discrete problem is to find

ξ : [0,T ] → R,

(Ui,h,Vi,h,Φi,h)i : [0,T ] → U
disc

c ×V
disc

c ×Φdisc
c ,

(Θp,h,Up,h) : [0,T ] → (Θdisc
p ,U disc

p ),

F
coupl

i : [0,T ] → R
Nc ,

(39)

such that


























































































































































































































Mham d2ξ

dt2 (t) = −∑
i

F ham
i (t) (40a)

F ham
i (t) = Kham

i Φ
(

〈∑
p

Ui,h,pφp〉(t)−ξ (t)
)

+

Rham
i

d

dt
Φ
(

〈∑
p

Ui,h,pφp〉(t)−ξ (t)
)

(40b)















































































Tu ∂ 2
t

(

Mc
h Ui,h

)

j
+
∮ L

0
∂∂xu Ui(qi,∂xqi) ·∂xφ j+

∮ L

0
∂u Ui(qi,∂xqi) ·φ j = F

coupl

i (t) α j νu +F ham
i (t)〈φ j〉,

Tv ∂ 2
t

(

Mc
h Vi,h

)

j
+
∮ L

0
∂∂xv Ui(qi,∂xqi) ·∂xφ j+

∮ L

0
∂v Ui(qi,∂xqi) ·φ j = F

coupl

i (t) α j νv,

Tϕ ∂ 2
t

(

Mc
h Φi,h

)

j
+
∮ L

0
∂∂xϕ Ui(qi,∂xqi) ·∂xφ j+

∮ L

0
∂ϕ Ui(qi,∂xqi) ·φ j = 0, ∀ i, ∀ j.

(40c)















∂ 2
t (M

θp

h
Θp,h)+Ah Θp,h +Ch Up,h = 0,

∂ 2
t (M

up

h
Up,h)+Bh Up,h + tCh Θp,h =

[

−∑
i

F
coupl

i (t)
]

Jh

(40d)

(

Ui,h ·α
Vi,h ·α

)

·ν = Up,h · Jh (40e)

Remark 5 The coupling condition at the bridge is a delicate

issue that needs to be treated with caution. As drawn in figure 5,

the bridge (directed by the vector ν) is not orthogonal to the

position of the string at rest, hence the variable tension of the

string acts on the bridge also through its longitudinal part. For

this reason, longitudinal waves are transmitted to the bridge,

giving to the piano its “striking” sound, and resulting in high

frequency precursor at the bridge (see [6] for a further study

and measurements regarding this issue). In a first approach, we

decided to model the coupling condition as a contact condition

between the last point of the string and a distribution zone on

the soundboard, before coming to a more realistic model of the

whole bridge.

ν

τ

∇
u,v
∂xq Ui(qi, ∂xqi)(x = L, t)

Figure 5: Schematic of the bridge condition.

Time discretization

The introduction of the Lagrange multiplier is a standard tool
often used in linear problems where arithmetic combinations
of linear sub-problems can lead to eliminate all unknowns but
the Lagrange multiplier, leading to an equation on this multi-
plier only. It is then possible to determine it, and to treat all
sub-problems independently. Here, the nonlinearity of the string
problem forbids us to do the same. We will still be able to de-
couple the plate problem from the hammer/strings/Lagrange
multiplier problem, which is rather good since the Lagrange
multiplier (Nc scalar unknowns) does not represent a major cost
compared to the string. The idea is to notice that we can write
the solution of (40d) in the eigenvectors basis as the superposi-
tion of elementary solutions (see (31)). The coupling constraint
that we have to deal with is written to obtain an energy preserva-
tion, using a discrete equivalent of the time derivative of (34a):








Un+1
i,h −Un−1

i,h

2∆t
·α

V n+1
i,h −V n−1

i,h

2∆t
·α









·ν =
Λmod

h
,n+1/2 −Λmod

h
,n+1/2

∆t
· t

Ph

(

Jh

0

)

(41)

which can be seen as the following equation, linear in all the
F

coupl

i and the Ui,h and Vi,h:








Un+1
i,h −Un−1

i,h

2∆t
·α

V n+1
i,h −V n−1

i,h

2∆t
·α









·ν =

[

S∆t(Λ
mod
h

,n−1/2,∂tΛ
mod
h

,n−1/2)+

[

−∑i(F
coupl

i )n
]

Rn,∆t

(

t
Ph

(

Jh

0

)

)]

−Λmod
h

,n−1/2

∆t
· t

Ph

(

Jh

0

)

(42)

In this equation, we can evaluate beforehand the quantities

S∆t(Λ
mod
h

,n−1/2,∂tΛ
mod
h

,n−1/2) and Rn,∆t

(

t
Ph

(

Jh

0

)

)

without

knowing the values of the hammer, strings and Lagrange multi-
plier unknowns. Then, the much smaller sub-problem {hammer,
strings, coupling equation} can be solved using a fully implicit
scheme. The strings and hammer are treated as in the previ-
ous dedicated section, and the coupling is treated as mentioned
above in (42).
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The fully discrete problem can be written, centered around time tn:



























































































































































































































































































































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At each time step, this system can be solved in three steps:

• Exact resolution of (43c) (needing only the knowledge
of Λmod

h
,n−1/2 and ∂tΛ

mod
h

,n−1/2),
• Implicit resolution of the system {(43a), (43b), (43d)} :

Newton iterations on the strings, hammer and Lagrange
multipliers unknowns,

• Adjustment of the soundboard unknowns with (43e).

The soundboard unknowns can finally be calculated in the finite
element basis thanks to (29).

The energy preserved by the numerical solution of the previous
system is
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(44)

PERSPECTIVES

This paper has presented an ongoing work on the modeling of
the grand piano. Innovating models, coupling energy preserving
conditions and numerical schemes have been presented, as well
as the precise method to solve the proposed equations. The pa-
per is divided into pedagogical parts, treating the discretization
of each sub system respectively, coming finally to the model
and energy preserving numerical approximation of a system
{hammer, strings, soundboard}. Damping can be considered, in
return for some modifications in the numerical approximation.
The total discrete energy must decrease in accordance with the
continuous energy decay. Numerical results and comparison
with real measurements will be presented in the oral session.
The first perspective of this work is to extend the model to the
radiation of sound. Accurate modeling of bridges and ribs is
another goal that should help in a better understanding of the
function of the soundboard.
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