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The Bell-Kochen-Specker theorem (BKS) theorem rules out realistic noncontextual theories by resorting to impossible assignments of rays among a selected set of maximal orthogonal bases. We investigate the geometrical structure of small v -l BKS-proofs involving v real rays and l 2n-dimensional bases of n-qubits (1 < n < 5). Specifically, we look at the parity proof 18 -9 with two qubits (A. Cabello, 1996 [3]), the parity proof 36 -11 with three qubits (M. Kernaghan & A. Peres, 1995 [4]) and a newly discovered non-parity proof 80-21 with four qubits (that improves work of P. K Aravind's group in 2008 [5]). The rays in question arise as real eigenstates shared by some maximal commuting sets (bases) of operators in the n-qubit Pauli group. One finds characteristic signatures of the distances between the bases, which carry various symmetries in their graphs.

Introduction

Contextuality is an important hallmark of quantum mechanics. In a contextual world, the measured value of an observable depends on which other mutually compatible measurements might be performed. In this line of thought, the Bell-Kochen-Specker (BKS) theorem is fundamental because it is able to rule out non-contextual hidden variable theories [START_REF] Kochen | The problem of hidden variables in quantum mechanics[END_REF][START_REF] Peres | Quantum theory: concepts and methods[END_REF] by resorting to mathematical statements about coloring of rays located on maximal orthonormal bases in a d-dimensional Hilbert space (d ≥ 3).

A non-coloring BKS proof consists of a finite set of rays/vectors that cannot be assigned truth values (1 for true, 0 for false) in such a way that (i) one member of each complete orthonormal basis is true and (ii) no two orthogonal (that is, mutually compatible) projectors are both true [2, p. 197]- [START_REF] Aravind | Two noncolourable configurations in four dimensions illustrating the Kochen-Specker theorem[END_REF] ‡. The smallest state-independent proofs in three dimensions are of the 31 -17 type (31 rays located on 17 orthogonal triads) and the (closely related) 33 -16 type corresponding to a very symmetric arrangement of rays located on a cube of edge √ 2 [2, fig. 7.2, p. 198], see also [START_REF] Arends | On searching for small Kochen-Specker vector systems[END_REF]. ‡ Throughout the paper, the word proof is not taken in the strict mathematical sense as a list of logical statements, but as a set v -l of v rays and l maximal bases satisfying the BKS postulates/constraints.

The BKS theorem is intimately related to the coloring of a graph whose vertices are the rays and whose edges are the bases [START_REF] Cabello | Simple unified proof of state-independent contextuality[END_REF].

A parity proof of BKS theorem is a set of v rays that form l bases (l odd) such that each ray occurs an even number of times over these bases. A proof of BKS theorem is ray critical (resp. basis critical) if it cannot be further simplified by deleting even a single ray (resp. a single basis), see [12, p. 9] and [START_REF] Pavicić | Kochen-Specker vectors[END_REF] §. The smallest BKS proof in dimension 4 (resp. 8) is a parity proof and corresponds to arrangements of real states arising from the two-qubit (resp. three-qubit) Pauli group, more specifically as eigenstates of operators forming Mermin's square (2) (resp. Mermin's pentagram [START_REF] Cabello | Simple unified proof of state-independent contextuality[END_REF]) [START_REF] Mermin | Hidden variables and the two theorems of John Bell[END_REF]. In what follows, we shall investigate in detail the structure of the 18 -9 two-qubit proofs [START_REF] Cabello | Bell-Kochen-Specker theorem: A proof with 18 vectors[END_REF][START_REF] Waegell | Parity proofs of the Kochen-Specker theorem based on the 24 rays of Peres Found[END_REF], that of the 36 -11 three-qubit proofs [START_REF] Kernaghan | Kochen-Specker theorem for 8-dimensional space[END_REF], and the related small proofs. Moreover, we shall improve the earlier four-qubit 80 -265 proof [START_REF] Harvey | BKS theorem and Bell's theorem in 16 dimensions[END_REF] by simplifying it to a 80 -21 one.

Our overall goal in this paper is to gain a deeper understanding of the algebraic and geometrical structure of the minimal BKS n-qubit proofs. This is not a straigthforward task because there exists a plethora of quantum states appearing as eigenstates shared by the maximal commuting sets of operators in the n-qubit Pauli group. The total number of states is dL, where d = 2 n and L = n i=1 (1 + 2 i ) is the number of maximal commuting sets, see for example [13, eq. (16)]. The number of real states is found to be L R = n i=1 (2 + 2 i ), corresponding to the sequence {4, 24, 240, 4320, • • •} of kissing numbers in the Barnes-Wall lattice B n of dimension 2 n . One can ultimately expect a deep relationship between n-qubit BKS proofs and the B n 's (in the spirit of [START_REF] Planat | Multipartite entanglement arising from dense Euclidean lattices in dimensions 4 -24[END_REF]), but our goal here is more modest. We shall restrict the reservoir of real states to those generated by Mermin's square (24 states for two qubits), Mermin's pentagram (40 states for three qubits) and the magic rectangle [START_REF] Planat | Multipartite entanglement arising from dense Euclidean lattices in dimensions 4 -24[END_REF] found in [START_REF] Harvey | BKS theorem and Bell's theorem in 16 dimensions[END_REF] (80 states for four qubits) .

Apart from the use of standard graph theoretical tools for characterizing the ray/base symmetries, we shall employ a useful signature of the proofs in terms of Bengtsson's distance D ab between two orthonormal bases a and b defined as [15, eq. ( 2)]-[16]

D 2 ab = 1 - 1 d -1 d i,j | a i |b j | 2 - 1 d 2 . (1) 
The distance (1) vanishes when the bases are the same and is maximal (equal to unity) when the two bases a and b are mutually unbiased, | a i |b j | 2 = 1/d, and only then. We shall see that the bases of a BKS proof employ a selected set of distances which seems to be a universal feature of the proof ¶.

The next three sections 2, 3, and 4 focus on two-, three-and four-qubit proofs built from the operators in the corresponding Pauli groups. We denote by X, Z and Y the § The authors of [START_REF] Pavicić | Kochen-Specker vectors[END_REF] discuss the KS theorem in terms of so-called KS sets and sometimes arrive at different counts for the minimal numbers of vectors required.

The BKS theorem also admits many proofs with complex rays as already shown for the two-qubit case [START_REF] Waegell | Parity proofs of the Kochen-Specker theorem based on 60 complex rays in four dimensions[END_REF]. ¶ Instead of a signature built from the maximal bases one can of course define a signature built from the rays involved in the proof, as in [START_REF] Ruuge | New examples of Kochen-Specker type configurations on three qubits[END_REF].

Pauli spin matrices in x, y and z directions, and the tensor product is not explicit, i. e. in (2) one denotes Z 1 = Z ⊗ I, Z 2 = I ⊗ Z and ZZ = Z ⊗ Z, in (8) one denotes Z 1 = Z ⊗ I ⊗ I and so on, with I being the identity matrix of the corresponding dimension.

The symmetries underlying the proofs and the distances between the involved bases are revealed + . In some sense, quantum contextuality encompasses quantum complementarity by having recourse, not only to the maximal distance corresponding to mutually unbiased bases, but also to another set of distances which is a signature of the proof. Knowing the particular set of distances used in a proof of a given type, one is able to derive all proofs of the same type and their overall structure (at least for two and three qubits).

The BKS parity proofs for two qubits

The simplification of arguments in favour of a contextual view of quantum measurements started with Peres' note [START_REF] Peres | Incompatible results of quantum measurements[END_REF] and Mermin's report [START_REF] Mermin | Hidden variables and the two theorems of John Bell[END_REF]. Observe that in (2), the three operators in each row and each column mutually commute and their product is the identity matrix, except for the right hand side column whose product is minus the identity matrix. There is no way of assigning multiplicative properties to the eigenvalues ±1 of the nine operators while still keeping the same multiplicative properties for the operators * . Paraphrasing [START_REF] Peres | Incompatible results of quantum measurements[END_REF], the result of a measurement depends "in a way not understood, on the choice of other quantum measurements, that may possibly be performed".

| | || -Z 1 -Z 2 -ZZ- | | || -X 2 -X 1 -XX- | | || -ZX-XZ-Y Y - | | || (2) 
The next step to be able to see behind the scene, and to reveal the simplest paradoxical/contextual set of rays and bases, was achieved by A. Cabello [START_REF] Cabello | Bell-Kochen-Specker theorem: A proof with 18 vectors[END_REF]. It is a 18 -9 BKS parity proof that can be given a remarkable diagrammatic illustration fitting the structure of a 24-cell [START_REF] Waegell | Parity proofs of the Kochen-Specker theorem based on the 24 rays of Peres Found[END_REF]. More generally, it is already known [START_REF] Waegell | Parity proofs of the Kochen-Specker theorem based on the 24 rays of Peres Found[END_REF][START_REF] Pavicić | Kochen-Specker vectors[END_REF] that there exist four main types of parity proofs arising from 24 Peres rays [START_REF] Peres | Quantum theory: concepts and methods[END_REF], that are of + The notations we use are standard ones: the symbols × and ⋊ mean the direct and semidirect product of groups, S n is the n-letter symmetric group and D n is the 2n-element dihedral group. * It is intriguing that such a property can be given a ring geometrical illustration by seeing Mermin's square as the projective line over the ring F 2 × F 2 (where F 2 is the field with two elements) and the right hand side column as the locus for pairs of units or pair of zero divisors of R. Ultimately, the geometry of the 15 two-qubit operators in the Pauli group has been found to mimic the generalized quadrangle GQ(2, 2), see [START_REF] Planat | Pauli graphs when the Hilbert space dimension contains a square: why the Dedekind psi function?[END_REF] and references therein.

the type 18 -9, 20 -11, 22 -13 and 24 -15. Types 20 -11 and 22 -13 subdivide into two non-isomorphic ones A and B as shown in Table 1.

For the list of the unnormalized eigenvectors (numbered consecutively) we use the same notation as [START_REF] Waegell | Parity proofs of the Kochen-Specker theorem based on the 24 rays of Peres Found[END_REF] 1 : (3)

The 24 complete orthogonal bases are as follows 

Normalizing rays (3), a finite set of distances (1) between the 24 bases is found to be

D = {a 1 , a 2 , a 3 , a 4 , a 5 } = { 1 √ 3 , √ 7 √ 12 , √ 2 √ 3 , √ 5 √ 6
, 1} ≈ {0.577, 0.763, 0.816, 0.912, 1.000}.

Table 2 provides a histogram of distances for various parity proofs v -l. Tables 1 and2 give all essential information about the proofs. First, a proof of a given type possesses a seemingly universal pattern in terms of the distances. Observe that the smallest proof does not contain any pair of mutually unbiased bases. Second, a given proof can be seen from its symmetry subsets, each one attached to a selected crossing graph (see the captions of Tables 1 and2). Then, one can create a graph having the bases as vertices and an edge joining two vertices if the two bases are in the proper range of distances. The cliques of the latter graph (not all maximal), of the selected odd size l, are candidates for a proof of the v -l type, but not all of them provide proofs. This way, we could explicit all the proofs, 16 proofs of the 18 -9 type (as for the 24 -15 type) and 240 proofs of the 20 -11 type (as for the 22 -13 type), as reported, for example, in [START_REF] Waegell | Parity proofs of the Kochen-Specker theorem based on the 24 rays of Peres Found[END_REF]Table 2].

The 16 proofs of the 18 -9 type can be displayed as the 4 × 4 square (5) in which two adjacent proofs share three bases. Observe that each 2 × 2 square of adjacent proofs has the same shared base, which is taken as an index (e.g. the upper left-hand-side 2 × 2 square has index 7 and the lower right-hand-side square has index 10 

G 72 = Z 2 3 ⋊ D 4 .
The 16 proofs of the 18 -9 type overlap in 3 or 5 elements. The way the proofs overlap each other (the crossing graph) is that of the square (5) with aut ∼ = Z 4 2 ⋊ G 72 . For the 16 proofs of the 24 -15 type, the symmetry is the same. Basically, still the same group governs the 240 = 96 + 144 proofs of the 20 -11 type (as well as the 240 proofs of the 22 -13 type), although there also exist some extra abelian symmetries. (For a nice geometrical display of the proofs, see [START_REF] Waegell | Parity proofs of the Kochen-Specker theorem based on the 24 rays of Peres Found[END_REF]). 

# common elements

0 1 2 distance a 5 , a 4 a 2 a 1 24 -15 type G 72 Z 9 2 ⋊ (D 4 × S 6 ) G 72 22 -13A type D 4 G 72 × S 4 D 4 22 -13B type D 4 Z 2 3 ⋊ (Z 4 2 ⋊ D 6 ) D 4 20 -11A type D 6 Z 2 3 ⋊ P 1 Z 3 3 ⋊ P 1 20 -11B type D 4 Z 2 3 ⋊ P 1 Z 4 2 ⋊ D 6 18 -9 type G 72 G 72 no overlap
The 16 proofs of the 24 -15 type (not shown) also form a 4 × 4 square in which two proofs share seven elements, comprising a common part of the six reference bases 1 -6 and an isolated base.

Diagrams for the proofs

How can we account for the distance signature of a given proof? A simple diagram does the job.

The diagram for the 18 -9 proof is simply a 3 × 3 square. Below we give an explicit construction of the first proof that corresponds to the upper left-hand-side corner in [START_REF] Harvey | BKS theorem and Bell's theorem in 16 dimensions[END_REF]. The 9 vertices of the graph are the 9 bases of the proof, the one-point crossing graph between the bases is the graph [START_REF] Aravind | Two noncolourable configurations in four dimensions illustrating the Kochen-Specker theorem[END_REF], with aut = G 72 = Z 2 3 ⋊ D 4 . There are 18 (distinct) edges that encode the 18 rays, a selected vertex/base of the graph is encoded by the union of the four edges/rays that are adjacent to it. 

As for the distances between the bases, two bases located in the same row (or the same column) have distance a 2 = 7/12, while two bases not in the same row (or column) have distance a 4 = 5/6 > a 2 , as readily discernible from Table 2 and the histogram in Table 1. Indeed, any proof of the 18 -9 type has the same diagram as [START_REF] Aravind | Two noncolourable configurations in four dimensions illustrating the Kochen-Specker theorem[END_REF].

Similar diagrams can be drawn to reflect the histogram of distances in proofs of a larger size. Below we restrict to the case of a 20 -11A proof (where only the distance between two bases is made explicit, but not the common rays of the bases) 

The proof consists of 11 bases, 9 of them have the same mutual diagram as in [START_REF] Aravind | Two noncolourable configurations in four dimensions illustrating the Kochen-Specker theorem[END_REF] and their mutual distance is a 2 = 7/12 (as shown) or a 4 = 5/6 (not shown), depending on whether they are located in the same row (or the same column) of the 3 × 3 square, or not. The extra two bases of the right-hand-side column are mutually unbiased (with distance a 5 = 1), their distance to any base of the same row is 1/ √ 3 and their distance to any base of the first row is a 4 (as shown).

The BKS parity proofs for three qubits

Quantum contextuality of a three-qubit system is also predicted in Mermin's report [START_REF] Mermin | Hidden variables and the two theorems of John Bell[END_REF] in terms of its famous pentagram. Below we display it in a sligthly different form in order to underline its kinship to the four-qubit "magic" rectangle (14). Mermin's rectangle/pentagram (8) features the same (real) operators as in [START_REF] Saniga | Mermin's pentagram as an ovoid of P G[END_REF] ♯.

(8)

Following [START_REF] Mermin | Hidden variables and the two theorems of John Bell[END_REF], (8) is a parity proof of the BKS theorem because mutually commuting operators in the four columns multiply to the identity matrix while operators in the single row multiply to minus the identity matrix. Since each operator appears ♯ In [START_REF] Saniga | Mermin's pentagram as an ovoid of P G[END_REF], it is shown that Mermin's pentagram corresponds to an ovoid of the three-dimensional projective space of order two, P G(3, 2), which generalizes the results discussed in the footnote on p. 3. twice in this reasoning, it is impossible to assign truth values ±1 to the eigenvalues while keeping the multiplicative properties of the operators.

The list of (unormalized) eigenvectors coming from the five bases in ( 8) is (in the notation of [START_REF] Kernaghan | Kochen-Specker theorem for 8-dimensional space[END_REF]) These rays form 25 maximal orthogonal bases 

D 6 Z 3 ⋊ (Z 2 × S 5 ) Z 3 2 ⋊ Z 6 36 -11 type Z 2 2 ⋊ S 6 S 5 Z 2 2 ⋊ (Z 6 × S 6 )
Table 4. The symmetries involved in various three-qubit parity proofs of the BKS theorem. The first row gives the number of common elements between the bases, this number being related in the second row to the distance between the bases. The five-letter symmetric group S 5 is an important building block symmetry of the proofs.

The finite set of distances involved is

D = { √ 3 √ 7 , √ 9 √ 14 , √ 6 √ 7 } ≈ {0.654, 0.801 , 0.925}.
It contrast to the two-qubit case, there is no set of mutually unbiased bases. Three types of parity proofs may be found, the 36 -11 type discovered in [START_REF] Kernaghan | Kochen-Specker theorem for 8-dimensional space[END_REF] and the two extra types 38 -13 and 40 -15. The same result (and much more) is found in [START_REF] Waegell | Proofs of the Kochen-Specker theorem based on a system of three qubits[END_REF]. Tables 3 and4 gather the main properties. As in the two-qubit case, one uses computer to construct a graph having the bases as vertices and an edge joining two vertices/bases at the proper distances. Then one extracts all sets of cliques, not necessarily maximal, of a given odd cardinality (that is eleven, thirteen and fifteen) and keeps those having the desired property of being parity proofs of the BKS theorem. Doing this, one gets an explicit list of 64 proofs of the 40 -15 type, 640 proofs of the 38 -13 type and 320 proofs of the 36 -11 type, totalling to 2 10 distinct parity proofs.

Below, we provide a short list of 36 -11 proofs: the 16 proofs containing bases 1, 2 and 3 

Diagrams for the proofs

To be more explicit, the first parity proof in [START_REF] Peres | Incompatible results of quantum measurements[END_REF] consists of the eleven 8-ray bases [START_REF] Waegell | Parity proofs of the Kochen-Specker theorem based on the 24 rays of Peres Found[END_REF], where the four rays 12, 18, 25 and 38 do not appear and the remaining ones occur 2 or 4 times each As in the previous section, a simple diagram illustrates how distances between the bases are distributed. Let us look at the 36 -11 parity proof [START_REF] Waegell | Parity proofs of the Kochen-Specker theorem based on the 24 rays of Peres Found[END_REF]. The 11 bases are displayed as a pentagram (13) plus the isolated reference base 1. 

Two adjacent bases of the pentagram have two rays in common. The reference base has with each of the bases on the horizontal line of the pentagram four rays in common and is disjoint from any other base. One can further observe that each line of the pentagram shares a set of four rays that is disjoint from the set of four rays shared by another line. The automorphism group of this configuration is isomorphic to S 5 .

The maximal distance, a 3 , is that between two disjoint bases, and amounts to 6/7. The intermediate distance, a 2 = 9/14, occurs between two bases located in any line of the pentagram. Finally, the shortest distance, a 1 = 3/7, is that between the reference base and each of the four bases on the horizontal line of the pentagram. Similar diagrams can be produced for any proof.

The BKS proofs for four qubits

The BKS theorem for four qubits was investigated in [START_REF] Harvey | BKS theorem and Bell's theorem in 16 dimensions[END_REF]. The "magic" rectangle [START_REF] Planat | Multipartite entanglement arising from dense Euclidean lattices in dimensions 4 -24[END_REF] (also shown in a pentagram form in [START_REF] Raynal | Mutually unbiased bases in six dimensions: the four most distant bases[END_REF]) is a parity proof similar to (2) and [START_REF] Cabello | Simple unified proof of state-independent contextuality[END_REF] because each operator appears twice, the mutually commuting operators in any column multiply to give the identity operator and the operators in the single row multiply to 2 and4, where only critical proofs were displayed. 

a 80 -23 Z 1 D 6 Z 2 Z 2 2 ⋊ (A 7 ⋊ Z 2 ) Z 5 2 ⋊ Z 6 Z 5 2 × S 18 Z 2 × S 80 -22 Z 1 D 6 Z 2 Z 2 2 ⋊ S 6 Z 3 2 ⋊ S 6 Z 2 × S 20 Z 2 × S 80 -21 Z 1 Z 2 2 Z 2 Z 2 2 ⋊ S 5 Z 3 2 ⋊ S 5 Z 2 × S 19 Z 2 × S
For the sake of completeness, we mention that the 22-base and 23-base proofs follow by adding to [START_REF] Ruuge | New examples of Kochen-Specker type configurations on three qubits[END_REF] That ( 17) is a BKS proof of the four-qubit system can be easily checked with the help of a computer by checking that for all 16 4 * 80 = 5242880 possibilities of assigning the truth value 1 to a quintuple of rays (i, j, k, l, m) with i, j, k, l and m being the indices in one set of four mutually disjoint bases and in an arbitrary base of index m of ( 17), at least one basis does not satisfy the constraint (ii) of the introduction. The same conclusion holds for the set of 22 bases that contains the set of the 21's, and for the set of 23 bases that contains the set of the 22's. No further simplification of the 21-base set could be obtained while keeping the BKS proof.

One observes from Table 6 (column 2) that the proofs are quite random given the overall symmetry group Z 1 . But many remnant symmetries are present as one can see by looking at the other crossing graphs (in columns 3 to 8 ).

Conclusion

We have performed a systematic investigation of small state proofs of the BKS theorem involving real rays of several qubits. The proofs correspond to some sets of maximal orthogonal bases constructed from Mermin's 3 × 3 square (for two qubits) and from Mermin's pentagram (for three and four qubits). These BKS states belong to a larger set of real states on an (Euclidean) Barnes-Wall lattice B n . It would be desirable to discover the precise status of the KS sets on B n . This is left for a future work.

Another ongoing work of ours concerns BKS proofs with complex rays in the spirit of [START_REF] Waegell | Parity proofs of the Kochen-Specker theorem based on 60 complex rays in four dimensions[END_REF][START_REF] Megill | Probabilistic generation of quantum contextual sets[END_REF] and BKS proofs for more qubits (a particular case of five qubits is investigated in [START_REF] Planat | Five-qubit contextuality, noise-like distribution of distances between maximal bases and finite geometry[END_REF]). A deeper understanding of KS sets may be useful for conceptual questions concerning the EPR local elements of reality, quantum complementarity, counterfactual compatibility and non-contextual inequalities [START_REF] Liang | Specker's parable of the overprotective seer: A road to contextuality, nonlocality and complementarity[END_REF][START_REF] Abramsky | Logical Bell inequalities Preprint[END_REF].

  [1000], 2 : [0100], 3 : [0010], 4 : [0001], 5 : [1111], 6 : [11 11 ] 7 : [1 11 1], 8 : [1 11 1], 9 : [1 111 ], 10 : [1 111], 11 : [11 11], 12 : [111 1] 13 : [1100], 14 : [1 100], 15 : [0011], 16 : [001 1], 17 : [0101], 18 : [010 1] 19; [1010], 20 : [10 10], 21 : [100 1], 22 : [1001], 23 : [01 10], 24 : [0110]

1 :

 1 [10000000], 2 : [01000000], 3 : [00100000], 4 : [00010000], 5 : [00001000], 6 : [00000100], 7 : [00000010], 8 : [00000001], 9 : [11110000], 10 : [11 11 0000], 11 : [1 11 10000], 12 : [1 11 10000], 13 : [00001111], 14 : [000011 11 ], 15 : [00001 11 1], 16 : [00001 11 1], 17 : [11001100], 18 : [1100 11 00], 19 : [1 1001 100], 20 : [1 100 1100], 21 : [00110011], 22 : [001100 11 ], 23 : [001 1001 1], 24 : [001 100 11], 25 : [10101010], 26 : [1010 10 10], 27 : [10 1010 10], 28 : [10 10 1010], 29 : [01010101], 30 : [01010 10 1], 31 : [010 1010 1], 32 : [010 10 101], 33 : [100101 10], 34 : [100 10110], 35 : [10010 110], 36 : [100 10 11 0], 37 : [0110 1001], 38 : [01 101001], 39 : [01 10 100 1], 40 : [0110100 1]. (9)

( 11 )

 11 These 16 selected proofs have 4, 5, 6, 7 or 8 bases in common. The 8-base crossing graph is regular, of valency 5, with automorphism group aut = Z5 2 ⋊ G 72 , where G 72 = Z 2 3 ⋊ D 4 was already found as an important symmetry group of the two-qubit 36 -11 proofs.

1 :

 1 {1, 2, 3, 4}, 2 : {5, 6, 7, 8}, 3 : {9, 10, 11, 12}, 4 : {13, 14, 15, 16}, 5 : {17, 18, 19, 20}, 6 : {21, 22, 23, 24}, 7 : {1, 2, 15, 16}, 8 : {1, 3, 17, 18}, 9 : {1, 4, 23, 24}, 10 : {2, 3, 21, 22}, 11 : {2, 4, 19, 20}, 12 : {3, 4, 13, 14},

13 : {5, 6, 14, 16}, 14 : {5, 7, 18, 20}, 15 : {5, 8, 21, 23}, 16 : {6, 7, 22, 24}, 17 : {6, 8, 17, 19}, 18 : {7, 8, 13, 15}, 19 : {9, 10, 13, 16}, 20 : {9, 11, 18, 19}, 21 : {9, 12, 22, 23}, 22 : {10, 11, 21, 24}, 23 : {10, 12, 17, 20}, 24 : {11, 12, 14, 15}

Table 1 .

 1 ). All four indices proof v -l # proofs a 1 a 2 a 3 a 4 a 5 The histogram of distances for various parity proofs v -l obtained from Mermin's square. One can check the expected equality 2 a i = l(l -1) in each proof. Let us first observe that the symmetry group of Mermin's graph (2) is

	24 -15 22 -13A 22 -13B 20 -11A 20 -11B 18 -9	16 18 18 96 12 18 144 12 18 96 6 18 144 6 18 16 0 18	9 54 3 42 4 42 0 30 1 30 0 18	6 3 2 1 0 0

Table 2 .

 2 The symmetries involved in various two-qubit parity proofs of the BKS theorem. The first row gives the number of common elements between the bases, the second row relates these numbers to distinguished distances. Among the building block symmetries are the group G 72 = Z2 3 ⋊D 4 and the single qubit Pauli group P 1 ∼ = D 4 ⋊Z 2 , a group underlying the CPT symmetries of the Dirac equation[START_REF] Planat | Three-qubit entangled embeddings of CPT and Dirac groups within E8 Weyl group[END_REF].in each row and in each column correspond to four disjoint bases that together partition the 24 rays.

		7 8 10			7 9 11			8 9 12			10 11	
		13 14 16 22 23 24	 -		14 15 18 19 20 22	 -		16 17 18 20 21 24	 -		13 15 19 21	 -
		| 7 7 9 11			| 20 7 8 10			| 12 10 11 12			| 23 8 9	
		16 17 18 19 21 23	 -		13 15 17 20 21 24	 -		13 14 16 19 20 22	 -		14 15 22 23	 -
		| 17 8 9 12			| 10 10 11 12			| 14 7 8 10			| 9 7 9	
		13 15 17 19 20 22	 -		16 17 18 22 23 24	 -		14 15 18 19 21 23	 -		13 14 20 21	 -
		| 12 10 11 12			| 23 8 9 12			| 7 7 9 11			| 20 7 8	
		14 15 18 20 21 24	 -		13 14 16 19 21 23	 -		13 15 17 22 23 24	 -		16 17 19 20	 -
		| 14			| 9			| 17			| 10	

1 :

 1 {1, 2, 3, 4, 5, 6, 7, 8}, 2 : {1, 2, 3, 4, 13, 14, 15, 16}, 3 : {1, 2, 5, 6, 21, 22, 23, 24}, 4 : {1, 3, 5, 7, 29, 30, 31, 32}, 5 : {1, 4, 6, 7, 37, 38, 39, 40}, 6 : {5, 6, 7, 8, 9, 10, 11, 12}, 7 : {9, 10, 11, 12, 13, 14, 15, 16}, 8 : {9, 10, 13, 14, 19, 20, 23, 24}, 9 : {9, 11, 13, 15, 27, 28, 31, 32}, 10 : {9, 12, 14, 15, 34, 36, 38, 39}, 11 : {10, 11, 13, 16, 33, 35, 37, 40}, 12 : {10, 12, 14, 16, 25, 26, 29, 30},

	13 : {11, 12, 15, 16, 17, 18, 21, 22}, 14 : {3, 4, 7, 8, 17, 18, 19, 20}, 15 : {17, 18, 19, 20, 21, 22, 23, 24}, 16 : {17, 19, 21, 23, 26, 28, 30, 32}, 17 : {17, 20, 22, 23, 35, 36, 37, 39}, 18 : {18, 19, 21, 24, 33, 34, 38, 40}, 19 : {18, 20, 22, 24, 25, 27, 29, 31}, 20 : {2, 4, 6, 8, 25, 26, 27, 28}, 21 : {25, 26, 27, 28, 29, 30, 31, 32}, 22 : {25, 28, 30, 31, 33, 36, 37, 38}, 23 : {26, 27, 29, 32, 34, 35, 39, 40}, 24 : {2, 3, 5, 8, 33, 34, 35, 36}, 25 : {33, 34, 35, 36, 37, 38, 39, 40}. (10)
	proof v -l # proofs a 1 a 2 a 3 64 20 30 55 40 -15 640 12 30 26 38 -13 36 -11 320 4 30 21

Table 3 .

 3 The histogram of distances for various parity proofs v -l obtained from Mermin's pentagram. Observe that the symmetry group of Mermin's pentagram is S 5 . Two proofs of the 36 -11 type share 3, 4, 7, 8 or 9 elements, with crossing graph whose aut ∼ = Z 6 2 ⋊ S 5 , or 5 or 6 elements with crossing graph having aut ∼ = Z 14 2 ⋊ (Z 2 × S 5 ). Two proofs of the 40 -15 type have 9, 10, 11 or 12 elements in common. The graphs corresponding to 9 or 11 shared elements are complementary, with aut ∼ = Z 10 2 ⋊ (A 2 6 ⋊ D 4 ), the graph corresponding to 10 shared elements has aut ∼ = Z 32 2 ⋊ (Z 5 2 ⋊ S 6 ) and the graph corresponding to 12 common elements has aut ∼ = Z 6 2 ⋊ S 5 .

	# common elements	0	2	4
	distance	a 3	a 2	a 1
	40 -15 type 38 -13 type	S 5	S 2 5	S 5

1 :

 1 {1, 2, 3, 4, 8, 9, 11, 16, 17, 23, 24}, 2 : {1, 2, 3, 4, 8, 9, 11, 18, 19, 22, 24}, 3 : {1, 2, 3, 4, 8, 10, 12, 16, 17, 22, 24}, 4 : {1, 2, 3, 4, 8, 10, 12, 18, 19, 23, 24}, 5 : {1, 2, 3, 4, 9, 10, 13, 16, 18, 23, 24}, 6 : {1, 2, 3, 4, 9, 10, 13, 17, 19, 22, 24}, 7 : {1, 2, 3, 4, 11, 12, 13, 16, 18, 22, 24}, 8 : {1, 2, 3, 4, 11, 12, 13, 17, 19, 23, 24}, 9 : {1, 2, 3, 5, 8, 9, 11, 16, 17, 20, 22}, 10 : {1, 2, 3, 5, 8, 9, 11, 18, 19, 20, 23}, 11 : {1, 2, 3, 5, 8, 10, 12, 16, 17, 20, 23}, 12 : {1, 2, 3, 5, 8, 10, 12, 18, 19, 20, 22},

	13 : {1, 2, 3, 5, 9, 10, 13, 16, 18, 20, 22}, 14 : {1, 2, 3, 5, 9, 10, 13, 17, 19, 20, 23}, 15 : {1, 2, 3, 5, 11, 12, 13, 16, 18, 20, 23}, 16 : {1, 2, 3, 5, 11, 12, 13, 17, 19, 20, 22}.

  proof v -l a 1 a 2 a 3 a 4 a 5 a 6 a 7

	80 -23 80 -22 80 -21	1 1 1	3 17 19 76 69 68 1 17 19 65 64 64 1 14 19 60 64 51

Table 5 .

 5 The histogram of distances for various proofs obtained from the square of operators[START_REF] Planat | Multipartite entanglement arising from dense Euclidean lattices in dimensions 4 -24[END_REF].

	# common elements	0	2	4	6	8	10
	distance a 7 a 6 a 5	a 4	a3	a 2

Table 6 .

 6 The symmetries involved in the selected four-qubit proofs of the BKS theorem. The first row gives the number of common elements between the bases, the second row providing the corresponding distances. The proof 80 -23 contains the 80 -22 one, and the latter contains the 80 -21 one. Thus Table6has a slightly different status than Tables

  {17, 18, 20, 21, 22, 24, 25, 26, 28, 29, 30, 32, 67, 69, 75, 80}, 21 : {1, 6, 10, 12, 33, 34, 36, 39, 40, 46, 47, 48, 66, 67, 73, 75}.

	4 : {1, 2, 4, 5, 7, 11, 12, 16, 21, 22, 25, 26, 35, 37, 39, 48}, 5 : {3, 7, 8, 16, 18, 19, 20, 21, 24, 25, 30, 31, 33, 42, 44, 46}, 6 : {1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 14, 16, 19, 20, 24, 31}, 7 : {1, 6, 10, 12, 23, 24, 31, 32, 33, 34, 36, 46, 49, 60, 62, 64}, 8 : {17, 18, 20, 21, 22, 25, 26, 27, 29, 30, 31, 32, 37, 43, 47, 48}, 9 : {20, 27, 31, 32, 33, 34, 36, 37, 38, 41, 42, 43, 44, 46, 47, 48}, 10 : {1, 2, 9, 10, 20, 27, 31, 32, 37, 43, 47, 48, 52, 53, 57, 63}, 11 : {3, 7, 11, 15, 33, 34, 41, 42, 54, 55, 57, 58, 59, 60, 63, 64}, 12 : {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}, 13 : {2, 3, 10, 11, 12, 13, 14, 16, 65, 66, 74, 75, 76, 78, 79, 80}, 14 : {33, 36, 41, 44, 56, 58, 60, 62, 65, 69, 70, 73, 74, 75, 77, 79}, 15 : {4, 6, 12, 14, 51, 54, 56, 58, 59, 60, 61, 62, 65, 69, 73, 75}, 16 : {18, 21, 26, 29, 49, 50, 55, 64, 66, 67, 68, 71, 76, 77, 79, 80}, 17 : {5, 11, 13, 15, 21, 22, 23, 27, 28, 29, 30, 32, 53, 54, 61, 63}, 18 : {5, 11, 13, 15, 17, 18, 23, 25, 26, 27, 28, 32, 51, 52, 57, 59}, 19 : {33, 34, 36, 38, 41, 42, 44, 46, 65, 66, 67, 69, 71, 73, 75, 80}, 20 :

  the following two rays, respectively {2, 10, 12, 14, 35, 37, 43, 45, 65, 69, 71, 74, 76, 78, 79, 80}, {49, 50, 55, 56, 58, 60, 62, 64, 68, 70, 72, 74, 76, 77, 78, 79}.
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give minus the identity operator. There is no way of assigning the eigenvalues ±1 while still preserving the multiplicative properties of the operators † †.

To investigate a state proof of the BKS theorem, we have at our disposal the following set of 5 × 16 = 80 rays [START_REF] Bengtsson | Mutually unbiased bases and Hadamard matrices of order six[END_REF] • • • partners † † For a finite geometrical account of the "magic" rectangle [START_REF] Planat | Multipartite entanglement arising from dense Euclidean lattices in dimensions 4 -24[END_REF], see [START_REF] Saniga | Finite geometry behind the Harvey-Chryssanthacopoulos four-qubit magic rectangle[END_REF]. 16)

In ( 16), each ray is paired with a partner ray (possibly itself), which is obtained by inversion of the entries in the original ray. The concept of a partner ray allows us to convert a BKS proof (about contextuality) into a proof of Bell's theorem (about non-locality), as described in [START_REF] Aravind | Impossible colorings and Bell's theorem[END_REF].

In [START_REF] Harvey | BKS theorem and Bell's theorem in 16 dimensions[END_REF], a non-parity BKS proof 80-265 was proposed. Here we find a smaller 80-21 one. Our strategy is as follows. Let us consider the set

.447, 0.547, 0.632, 0.707, 0.774, 0.836, 0.894}, that characterizes the allowed distances between the 625 bases. We randomly select a minimal set B of l bases within the 625's such that (a) there is at least one distance of each type among the selected bases, (b) there is at least one subset of B containing 5 bases partitioning the 5 × 16 = 80 rays (this criterion is adopted to reach the result with only 16 5 = 1048576 checks), (c) the set B satisfies the BKS postulates (i) and (ii) listed in the introduction. We found a mimimal cardinality l = 23 for the set B. It was further simplified to l = 22, a set still satisfying the criterion (b), then to l = 21. The 80 -21 proof, given in [START_REF] Ruuge | New examples of Kochen-Specker type configurations on three qubits[END_REF], does not satisfy criterion (b), although there exist two sets of four disjoint bases. The main properties of 80 -23, 80 -22 and 80 -21 proofs are summarized in Tables 5 and6