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ABSTRACT

Providing real time analysis of the huge amount of data generated by computer vision algorithms in interactive
applications is still an open problem. It promises great advances across a wide variety of �elds. When using
dynamics scene analysis algorithms for computer vision, a trade-o� must be found between the quality of the
results expected, and the amount of computer resources allocated for each task. It is usually a design time
decision, implemented through the choice of pre-de�ned algorithms and parameters. However, this way of doing
limits the generality of the system. Using an adaptive vision system provides a more �exible solution as its
analysis strategy can be changed according to the new information available. As a consequence, such a system
requires some kind of guiding mechanism to explore the scene faster and more e�ciently. We propose a visual
attention system that it adapts its processing according to the interest (or salience) of each element of the dynamic
scene. Somewhere in between hierarchical salience based and competitive distributed, we propose a hierarchical
yet competitive and non salience based model. Our original approach allows the generation of attentional focus
points without the need of neither saliency map nor explicit inhibition of return mechanism. This new real-
time computational model is based on a preys / predators system. The use of this kind of dynamical system
is justi�ed by an adjustable trade-o� between nondeterministic attentional behavior and properties of stability,
reproducibility and reactiveness.

1. INTRODUCTION

While machine vision systems are becoming increasingly powerful, in most regards they are still far inferior to
their biological counterparts. In human, the mechanisms of evolution have generated the visual attention system
which selects the most important information in order to reduce both cognitive load and scene understanding
ambiguity. Thus, studying the biological systems and applying the �ndings to the construction of computational
vision models and arti�cial vision systems are a promising way of advancing the �eld of machine vision.

In the �eld of scene analysis for computer vision, a trade-o� must be found between the quality of the
results expected, and the amount of computer resources allocated for each task. It is usually a design time
decision, implemented through the choice of pre-de�ned algorithms and parameters. However, this way of doing
it limits the generality of the system. Using an adaptive vision system provides a more �exible solution as its
analysis strategy can be changed according to the information available concerning the execution context. As
a consequence, such a system requires some kind of guiding mechanism to explore the scene faster and more
e�ciently.

In this article, we propose a �rst step to building a bridge between computer vision algorithms and visual
attention. In particular, we will describe how to create and evaluate a visual attention system tailored for
interacting with a computer vision system so that it adapts its processing according to the interest (or salience) of
each element of the scene. Somewhere in between hierarchical salience based and competitive distributed models,
we propose a hierarchical yet competitive model. Our original approach allows us to generate the evolution of
attentional focus points without the need of either saliency map or explicit inhibition of return mechanism.
This new real-time computational model is based on a dynamical system. The use of such a complex system
is justi�ed by an adjustable trade-o� between nondeterministic attentional behavior and properties of stability,
reproducibility and reactiveness.

We justify why dynamical systems are a good choice for visual attention simulation, and we show that preys
/ predators models provide good properties for simulating the dynamic competition between di�erent kinds of



Figure 1. Architecture of the computational model of attention.

information. This dynamical system is also used to generate a focus point at each time step of the simulation.
In order to show that our model can be integrated in an adaptable computer vision system, we show that this
architecture is fast and allows a �exible real time visual attention simulation. In particular, we present a feedback
mechanism used to change the scene exploration behavior of the model. This mechanism can be used to maximize
the scene coverage (explore each and every part) or maximize focalization on a particular salient area (tracking).
In a last section we present the evaluation results of our model. Since the model is highly con�gurable, its
evaluation will cover not only its plausibility (compared to human eye �xations), but also the in�uence of each
parameter on a set of properties (stability, reproducibility, scene exploration, dynamic behavior).

2. APPLICATION TO A REAL TIME VISUAL ATTENTION MODEL

Many reaserchers have worked on visual attention, we classiquely used Laurent Itti's work.1 The �rst part of its
architecture relies on the extraction of three conspicuity maps based on low level characteristics computation,
that's correspond to the production of information on retina. These three conspicuity maps are representative
of the three main human perceptual channels: color, intensity and orientation.

The second part of Itti's architecture proposes a medium level system which allows merging conspicuity maps
and then simulates a visual attention path on the observed scene. The focus is determined by a �winner-takes-all �
and an �inhibition of return� algorithms (Figure 1).

We propose to substitute this second part by our optimal competitive theory conclusion: a preys / predators
system. This optimal criteria, preys / predators equations are particularly well adapted for such a task:

� preys / predators systems are dynamic, they include intrinsically time evolution of their activities. Thus,
the visual focus of attention , seen as a predator, can evolve dynamically;

� without any objective (top-down information or pregnancy), choosing a method for conspicuity maps fusion
is hard. A solution consists in developing a competition between conspicuity maps and waiting for a natural



Figure 2. Competitive preys / predators attention model. Singularity maps are the resources that feed a set of preys
which are themselves eat by predators. The maximum of the predators map represents the location of the current focus
of attention.

balance in the preys / predators system, re�ecting the competition between emergence and inhibition of elements
that engage or not our attention;

� discrete dynamic systems can have a chaotic behavior. Despite the fact that this property is not often
interesting, it is an important one for us. Actually, it allows the emergence of original paths and exploration of
visual scene, even in non salient areas, re�ecting something like curiosity.

2.1 How to modelise visual attention with a 2D preys / predators system

As previously mentionned, we have demonstrated that model visual attention with a competitive dynamical
system biologically inspired is an optimal way of extracting information. General architecture is represented in
Figure 2

Starting from this �basic� version of preys / predators equations, we can enriche processing in several ways:

� the number of parameters can be reduced by replacing s′ by s. Indeed, mortality rates di�erences between
preys and predators can be modeled by an adjustment of factors b and mI

� the original model represents the evolution of a single quantity of preys and predators over time. It can be
spatially extended in order to be applied to 2D maps where each point represents the amount of preys or
predators at a given place and time. Preys and predators can then �move� on this map using a classical
di�usion rule, proportional to their Laplacian 4C and a di�usion factor f .

� natural mortality of preys in the absence of predation is not taken into account. If the model only changes
temporally, mortality is negligible when compared to predation. However, when the model is applied to a
2D map (which is the case in our system), some areas of the map may not contain any predator. Natural
mortality of prey can no longer be considered negligible. A new mortality term −mc need to be added to
the model.



This yield to the following set of equations, modeling the evolution of preys and predators populations on a two
dimensional map: {

dCx,y

dt = bCx,y + f 4Cx,y
−mCCx,y − sCx,yIx,y

dIx,y

dt = sCx,yIx,y + sf 4Px,y
−mIIx,y

(1)

A last phenomenon can be added to this model: a positive feedback, proportional to C2 or I2 and controlled
by a factor w. This feedback models the fact that (provided unlimited resources) the more numerous a population
is, the better it is able to grow (more e�cient hunting, higher encounter rater favoring reproduction, etc.). The
new preys / predators system is now:{

dCx,y

dt = b(Cx,y + w(Cx,y)
2) + f 4Cx,y

−mCCx,y − sCx,yIx,y
dIx,y

dt = s(Cx,yIx,y + w(Ix,y)
2) + sf 4Px,y −mIIx,y

(2)

In order to simulate the evolution of the focus of attention, we propose a preys / predators system (as
described above) with the following features:

� the system is comprised of four types of preys and one type of predators;

� these four types of preys represent the spatial distribution of the curiosity generated by our four types of
conspicuity maps (intensity, color, orientation and motion);

� the predators represent the interest generated by the consumption of curiosity (preys) associated to the
di�erent conspicuity maps;

� the global maximum of the predators maps (interest) represents the focus of attention at time t.

The equations described in the next sub-section are obtained by building a preys / predators system which
integrates the above cited features.

2.2 Simulating the evolution of the attentional focus with a Preys / predators system

For each of the three conspicuity maps (color, intensity and orientation) extended with another one, motion, the
preys population C evolution is governed by the following equation:

dCn
x,y

dt
= hC∗nx,y + hf 4C∗n

x,y
−mCC

n
x,y − sCn

x,yIx,y (3)

with C∗nx,y = Cn
x,y +wCn

x,y
2 and n ∈ {c, i, o,m}, which mean that this equation is valid for Cc, Ci,Co and Cm

which represent respectively color, intensity, orientation and motion populations.

C represents the curiosity generated by the image's intrinsic conspicuity. It is produced by a sum hof four
factors:

h = b(1− g + gG)(a ∗R+ (1− a) ∗ SMn)(1− e) (4)

� the image's conspicuity SMn (with n ∈ {c, i, o,m}) is generated using our real time visual system, previously
described in this article. Its contribution is inversely proportional to a;

� a source of random noise R simulates the high level of noise that can be measured when monitoring our
brain activity (2). Its importance is proportional to a. Equations that model the evolution of our system
become stochastic di�erential equations. A high value for a gives some �freedom� to the attentional system,
so it can explore less salient areas. On the contrary, a lower value for a will constraint the system to only
visit high conspicuity areas;



a b g w mC mI s f THysteresis

0.5 0.007 0.1 0.001 0.3 0.5 0.025 0.25 0.0
Table 1. . Default parameters of the preys / predators model

� a Gaussian map G which simulates the central bias generally observed during psycho-visual experiments
(3,4). The importance of this map is modulated by g

� the entropy e of the conspicuity map (color, intensity, orientation or motion). This map is normalized
between 0 and 1. C is modulated by 1− e in order to favor maps with a small number of local minimums.
Explained in terms of preys / predators system, we favor the growth of the most organized populations
(grouped in a small number of sites). This mechanism is the preys / predators equivalent to the feature
maps normalization presented above.

The population of predators I, which consume the 4 kinds of preys, is governed by the following equation:

dIx,y

dt
= s(Px,y + wI2x,y) + sf 4Px,y+wI2

x,y
−mIIx,y (5)

with Px,y =
∑

n∈{c,i,o}(C
n
x,y)Ix,y.

As already mentioned the positive feedback factor w enforces the system dynamics and facilitates the emer-
gence of chaotic behaviors by speeding up saturation in some areas of the maps. Lastly, please note that curiosity
C is consumed by interest I, and that the maximum of the interest map I at time t is the location of the focus
of attention.

To allow less frequent changes of the position of the focus of attention, we added an optional hysteresis
mechanism. This latter changes the focus of attention only if the new maximum of the predators map exceeds
its previous value by more than a certain threshold:

Focus(t) =

(xmax, ymax)
if maxx,y (Px,y(t)) >

(1 + SeuilHysteresis)×maxx,y (Px,y(t− 1))

Focus(t− 1) otherwise

with (xmax, ymax) the coordinates of the maximum of Px,t(t), SeuilHysteresislis the hysteresis threshold and
Focus(t)are the coordinates of the current focus of attention.

This system has been implemented in real time, see.?, 5, 6

2.3 Default parameters of the preys / predators system

During the experiments presented at the end of this article, the following (empirically determined) parameters
were used (Table 1):

These parameters represent reasonable values that can be used to obtain a system at equilibrium. This
equilibrium is obtained when the system is run without any input image. Other parameters combinations are
possible. In particular, experiments have shown that these values can be varied within a wide range without
compromising the system's stability (see further for details). The system is thus quite robust to its parameters
variation.

Please note that our implementation of the model evolves according to Euler method using a step size of 0.33
and that 3 sub-iterations are run before computing each simulated focus of attention.



2.4 Top-Down feedback

The attention model presented in this article is computationally e�cient and plausible. It provides many tuning
possibilities (adjustment of curiosity, central preferences, etc.) that can be exploited in order to adapt the
behavior of the system to a particular context. This adaptation is however somewhat limited. In this sub-
section, we propose to extend our bottom-up model so that it can take into account more information concerning
its objectives.

This top-down in�uence can be expressed as a simple modi�cation of the model parameters, but it can also
reuse information generated by the system itself in order to modify its behavior. In the latter case, a feedback
loop is created (auto-adaptation).

In the following, we de�ne the adaptation mechanisms used in our model. We will also explore how previously
visited locations can be used as inputs to an attentional feedback mechanism aimed at controlling the scene
exploration capabilities of the model.

2.4.1 Adaptation mechanisms

In this sub-section, we describe the di�erent mechanisms that can be used in order to adapt the model behavior
to external constraints (e.g. top-down information).

Top down map Usually, top-down information is included in hierarchical computational attention model in
either of these two ways:

� global weighting of feature maps which allows a bias of the attentional system in favor of the distinctive
features of a target object. This mechanism is used, for example, in (7) in order to learn which features
are salient, depending on the context.

� local weighting of feature maps. This approach is an extension of the global weighting scheme which allows
specifying prior knowledge about the target localization. This mechanism is exploited by (8) where it is
called task-relevance maps.

Other extensions are also possible, for example using prior knowledge about the intensity of some expected
features (9).

Even if the conspicuity maps fusion part of our model of attention is competitive (and thus non hierarchical),
it can be biased using top-down maps. This can be done using a map (di�erent for each king of prey) which will
favor the growth of one kind of preys against others (eventually at preferred locations) :

dCn
x,y

dt
= Tn

x,y

(
1−

Cn
x,y

Maxpopulation

)(
C∗nx,y + hf4C∗n

x,y

)
−mCC

n
x,y − sCn

x,yIx,y (6)

where Tn
x,y is the top-down map associated to a prey type, n ∈ {i, c, o,m} and maxx,y(T

n
x,y) = 1.0.

If Tn
x,y = Wn∀(x, y) then the evolution of prey n is constrained by a global weight (Figure 3).

Otherwise, saliency boosting is local (10). It can be used, for example, to favor colored targets located in the
right part of the scene.



Figure 3. E�ects of global weighting. a) heatmap generated with default parameters (Wc = Wi = Wo = 1.0), b) heatmap
generated with lower color weights (Wc = 0.5), c) heatmap generated with high color weight (Wi = Wo = 0.5).

Feedback maps Top-down maps described in the previous paragraphs help modifying the attentional system
behavior using contextual prior-knowledge (external to the model of attention). But the system can also be
biased using information generated by the model itself or the computer vision it is connected to.

This mechanism can be implemented using a global feedback map R which will be used as a facilitation or
inhibition mechanism. Preys growth equation now becomes:

dCn
x,y

dt
= Rx,yT

n
x,y

(
1−

Cn
x,y

Maxpopulation

)(
hC + hf4C∗n

x,y

)
−mCC

n
x,y − sCn

x,yIx,y (7)

where Rx,y is built according to one or more feedback criteria. An example criterion, based on scene explo-
ration is given in the next sub-section.

2.4.2 A feedback criterion: scene exploration

In this sub-section, we describe how we can use a scene exploration feedback criterion based on the history
of attentional focus points generated by our system. If we build a map of previously visited locations and
modulate (negatively of positively) its in�uence in the preys growing equation, we can de�ne two complementary
attentional strategies (and all intermediate states):

� scene exploration maximization : the attentional system will favor unvisited areas;

� focalizations stability : the attentional system will favor already visited areas.

We now describe how this visited areas maps is constructed, and how it can be used as a feedback map.

Visited areas map The visited areas map construction is based on the following hypothesis. During an
attentional focus, most of the information is acquired at the center of a circular area (equivalent to the fovea in
the retina). In the rest of this circular area, information linearly looses importance as we move away from the
center.

The visited areas map is constructed incrementally in order to keep a memory of all the information acquired
in the scene:

Mvisit(x, y, t) = max(Mvisit(x, y, t− 1),
NLevels −min

(
dist(x,y,xf ,yf )

BlurSize , NLevels

)
NLevels

(8)

where (xf , yf ) are the coordinates of the focus of attention at time t; dist(x1, y1, x2, y2) is the Euclidian
distance between (x1, y1) and (x2, y2); BlurSize the size of the retinal area (�xed to 10 of the largest image
dimension; this value may be associated with human fovea size (about 2 degrees of visal �eld)); NbLevels =
ceiling(log2(min(W,H)) and (W,H)the size of the input image. It guarantees that Mvisites(x, y) ∈ [0, 1]∀x, y.

Human memory is however limited, so attentional focus is most probably in�uenced by only the most recent
focus points. To improve the plausibility of Mvisit, we should take into account this fact and update Mvisit



Figure 4. . In�uence of Fforget on the visited area map, after 100 attention simulation iterations.

equation by introducing a �forgetting� factor Fforget ∈ [0, 1] which will iteratively attenuate the role of the oldest
focus points:

Mvisites(x, y, t) = max(Fforget ×Mvisites(x, y, t− 1),
NLevels −min

(
dist(x,y,xf ,yf )

BlurSize , NLevels

)
NLevels

(9)

Figure 4 shows the in�uence of Fforget on the visited areas map Mvisit.

Feedback map processing The feedback map R is built upon Mvisit. Its parameter Ffeedback allows
modulating the in�uence of the visited areas map in intensity and feedback type (positive or negative):

R(x, y) =

{
1+|Ffeedback|×Mvisites(x,y)

1+|Ffeedback| si Ffeedback ≥ 0
1+|Ffeedback|×(1−Mvisites(x,y))

1+|Ffeedback| sinon
(10)

withR(x, y) ∈ [0, 1]∀x, y.
A positive feedback value will lead to a focalization or tracking behavior since already visited objects /

locations are preferred. A negative feedback value will lead to an exploration behavior since unknown (unvisited)
objects or locations will be favored.

The computational model of attention described in this chapter provides many tuning parameters and adap-
tation mechanisms. In order to validate this model we need to evaluate its plausibility by comparing its prediction
with human �xations; but we also need to study the way it reacts when its parameters are adjusted. Indeed, the
model is dedicated to computer vision and as such we should provide some clues concerning its general behavior
(plausibility, reproducibility, etc.). This is the purpose of the next section.

2.5 Model properties

In order to conduct the study of our model, it is necessary to de�ne one or more observation levels (microscopic or
macroscopic) as well as a set of properties. In this article we study macroscopic properties, since we are interested
in the overall behavior of the model (competition between di�erent sources of attention). The properties studied
are derived from classical constraint usually de�ned:

� stability: do the values of the dynamical system stay within their nominal range when the di�erent param-
eters of the model are changed ?



Paramètre Default

value

Min stable

value

Max

stable

value

preys

natality b

0.007 0.006 0.013

Preys

mortality

mC

0.3 0.3 0.36

Predation

s

0.025 0.017 0.05

Predators

natality

mI

0.5 0.1 1.5

Positive

feedback

w

0.001 0 0.003

Table 2. Stability range of the main parameters of the preys / predators system.

� reproducibility: as discrete dynamical system can have a chaotic behavior, what is the in�uence of the
various parameters of the model (in particular noise) on the variability of the focus paths generated during
di�erent simulations on the same data ?

� scene exploration: which parameters do in�uence the scene exploration strategy of our model?

� system dynamics: how can we in�uence the reactivity of the system? In particular how do we deal with
mean �xation time?

For all of these properties we have also studied the in�uence of top-down feedback.

All the measures presented in this section were done on two image databases. The �rst one is proposed by
Bruce.11 It is made up of 120 color images which contexts are streets, gardens, vehicles or buildings, more or less
salient. The second one, proposed by Le Meur,3 contains 26 color images. They represent sport scenes, animals,
building, indoor scenes or landscapes. Unless otherwise stated, the system is run using the parameters de�ne in
Table 1.

2.5.1 Stability

Volterra-Lotka equations are only stable in a prede�ned range of parameters values.?This statement is also true
for our attention model. For example, if preys birth rate is too small compared to predation rate and natural
mortality of predators is high, neither preys or predators will see their populations grow.

We have studied the stability of our system by monitoring the mean value of the preys maps Cn and of the
predator map I. If these values stay within a �nite range, the system is stable. Table 2 gives an overview of the
system behavior for di�erent of values of natality, mortality and predator parameters b,mC ,mI , s. Outside of
the stability ranges de�ned in this table preys and / or predators population gradually saturate.

2.5.2 Reproducibility

Since we are using a discrete dynamical system and because we have added a random map when computing
the growth factor of the attentional system, our model is nondeterministic. This behavior is interesting because
it simulates the natural variability observed when performing multiple eye-tracking experiments on the same
person and the same data set. It is also a way to adjust the curiosity of our attentional system by encouraging
the exploration of relatively low saliency areas of an image.

However, giving more �curiosity� to our system also leads to less reproducibility. In order to study this
phenomenon, we have used the same measures as when studying attentional models plausibility. We have



Figure 5. Example of image "reconstruction". Left, source image and current focus point; middle, blur mask; right,
"reconstructed" image.

compared heatmaps generated from eye-tracking measures, with heatmap generated from various simulations
with our model. We have used classical similarity / dissimilarity measures: cross-correlation3), Kullback-Leibler
divergence (12) and normalized scanpath salience (13).

During our experiments, we used ground truth heatmaps included in Bruce and LeMeur datasets. Simulated
heatmaps were generated using the same method as for ground truth maps : integrating all focalizations on a
single maps, and then �ltering this maps with a Gaussian �lter Gsvx,svy where:

svx = svy = 0.3× foveaSize×max(W,H)

With W and H the width and height of the source image, and foveaSize = 0.15 (which correspond to a
Gaussian width of approximately 15 of the source image).

As the number of parameters studied is important (retinal �lter, central bias, di�usion, hysteresis, noise,
positive feedback and top-down feedback) we have decided not to include detailed results of our measures in this
article. A summary of the analysis of these results is however available in Table 4.

2.5.3 Scene exploration

Scene exploration validation is based on a measure of the quantity of information lost between the original image
and a �reconstruction� of this image through the evolution of the attentional focus. To �reconstruct� the image
during the dynamic simulation, we start from a completely blurred image and �add� details from the image in
areas which get the focus. The �reconstruction� becomes sharper and sharper through time evolution.

Actually, we update a blurring mask Mb which maximum values represents non blurred areas and minimum
values represent highly blurred area. Its iterative construction is similar to the one used for Mvisit equation:

Mb(x, y, t) = max(Mb(x, y, t− 1), NLevels −min

(
dist(x, y, xf , yf )

BlurSize
,NLevels

)
(11)

Reconstructed image IR is then generated through a convolution between the source image IS and a mean
�lter Bs :

IR(x, y) = IS(x, y) ∗Bs(x,y)

with s the size of the �lter, and s(x, y) = 2NLevels−Mb(x,y)

Examples of image �reconstruction� are presented Figure 5.

After generating these �reconstructed images�, we have used the minimum description length (MDL) principle
inspired by (14). Following this principle, the simpler a data is, the easier it is to compress. We have decided
to adapt this principle to images using two compression technics: JPEG (lossy compression) and PNG (lossless
compression). An estimator between 0 and 1 is obtained at any t :

InformationRatioJPEG =
size (compressJPEG(IS))

size (compressJPEG(IR))
(12)

InformationRatioPNG =
size (compressPNG(IS))

size (compressPNG(IR))
(13)



Figure 6. In�uence of feedback on scene exploration .

Parameters Defaut CentralBias=0.5 FeedBack=-1.0 FeedBack=1.0 Step = 0.1 Iterations=1 Hysteresis=0.5

Fixation time (ms) 70 143 53 417 807 102
Table 3. In�uence of a few parameters on simulated �xations time

with IS the source image and IR the reconstructed image.

The feedback mechanism aims at controlling the way visual scene is explored. Results obtained from measures
described above (JPEG and PNG ratio) con�rm this expected behavior (Table 6):

� positive feedback leads to a faster but not necessarily a more exhaustive exploration. Without any feedback,
the scene is already almost covered after 300 simulation steps);

� negative feedback can greatly reduce the explored area. For a feedback value Ffeedback = −1, even after
300 simulation step, the scene exploration ratio is still inferior to the one obtained without any feedback.

Other parameters also play a role in scene exploration, in particular noise and central bias. Their in�uence
is summarized in Table 4.

2.5.4 Dynamics

Even if our system does not generate saccades and �xations which are directly comparable to human eye �xations
(we do not take into account eye movements constraints), we can estimate the average time FixationT ime
between two changes of position of the simulated focus of attention. New �xations detection can be done:

� when the position of the focus of attention changes, regardless of the distance to the next position;

� if the distance between the current focus and the next exceeds a threshold SFixing.

We have chosen the second method because it allows canceling the e�ect of small movements that would otherwise
bias the estimation of the average time between two �xations. The value of SFixing (15% of the longest side of the
source image) was determined so as to be consistent with the foveaSize parameter used to generate heatmaps
from the focus of attention output by our attention model.

We measured the e�ect of the di�erent parameters of our model on the mean �xation time for Bruce and Le
Meur image databases. The results of this study are summarized in Table 4. Table 3 gives a few examples for
some representative parameters. These results should be compared to mean human �xation time: 300 ms.

Dynamics can be �ne tuned using many parameters. But the most e�cient ones are di�erential equation
evolution parameters (simulation step and number of sub-iterations), feedback, and central bias. However, these
parameters don't have the same side-e�ects on other properties (plausibility, scene exploration, etc.).



Parameters
Default

value
Fidélity Reproducibility Exploration Dynamics

Retinal blur no ↗ ↘ ↗ →
Central bias (g) 0.1 ↑ → ↑ ↓
Di�usion (f) 0.25 → ↘ ↗ ↘
THysteresis 0 → → / ↘ ↘ ↘
Noise (a) 16 × × × →

Positive feedback
(w)

0.5 ↑ / ↓ ↓ ↑ ↗

Simulation step 0.001 ↗ / ↓ ↘ / ↓ ↗ / ↘ ↗ / ↓
# of sub-iterations 1/3 × × × ↑
Top-down feedback 3 × × × ↑

Table 4. Summary of the in�uence of each parameter of the model

2.5.5 Summary

Table 4 summarizes the in�uence of each parameter one the system behavior. We have not mentioned the
in�uence of birth and death factors b, s, MC and MI since the only a�ect stability.

The arrows used have the following meanings:

↑ strong positive in�uence.

↓ strong negative in�uence.

↗ weak positive in�uence.

↘ weak negative in�uence.

→ no signi�cant in�uence.

× non tested / theoritically non in�uent.

In the case of the retinal �lter, arrows correspond to the in�uence of activating the �lter. Arrows separated by
a slash (for example: → / ↘) represent a �rst type of in�uence for small increases of the parameters, followed
by a second type of in�uence for higher increases.

2.6 Model Plausibility

2.6.1 Comparison to existing models

In (5) we have presented a subjective validation of the plausibility of our model. In this article, we con�rm the
latter by a more classical objective evaluation. This validation consists in checking the plausibility of the system,
i.e. checking if it is apparently reasonably valid, and truthful.

Cross-correlation, Kullback-Leibler divergence and normalized scanpath saliency were used to compare 6
algorithms to an eye-tracking ground-truth (Figure 7). The models evaluated were:

� two naïve models. �AllEqual� correspond to a constant saliency map, consider all points as equally salient.
�Gaussian� model considers the central part of the image as the most salient area. Saliency is distributed
using a centered Gaussian distribution, scaled in order to cover all the image;

� Le Meur model (3), in its �coherent normalization� version;

� the AIM model of Bruce and Tsotsos(11);

� the NVT model of Itti (1).



Figure 7. Plausibility of computational models. Comparison of the saliency maps and heatmaps generated by the 6
algorithms tested.

CC KLD NSS
Bruce LeMeur Bruce LeMeur Bruce LeMeur

Bruce 0.4 0.45 1.59 1.08 0.98 0.89
LeMeur 0.37 0.43 1.61 1.08 0.90 0.84
Itti 0.31 0.27 2.74 2.52 0.79 0.53

AllEqual 0.00 0.00 2.15 1.55 0.00 0.00
Gaussian 0.46 0.60 1.55 0.94 1.02 1.10

Perreira Retina 0.43 0.38 1.61 1.4 1.17 0.73
Table 5. Comparison of di�erent algorithms to ground-truth. (Please note that for KLD, lower values mean more plausi-
bility)

� our model (with fast retinal blur).

All models were tested using their default parameters.

Table 5 is a summary of the performance of each algorithm over all the images of the two test databases.
The analysis of the latter table leads to the following remarks:

� Kullback-Leibler divergence is sensitive to maps normalization : the �AllEqual� model seems to perform
better than Itti's model whereas it obtains a null score with the two other measures;

� the �AllEqual� model is (quite unsurprisingly) the worst performer;

� despite its simplicity, the �Gaussian� model is quite a plausible model. This central preference is well
known bias when evaluating computational attention models over eye-tracking data. It may be due to the
type of images included in the databases, the experimental protocol, the photographer bias (which tends
to center it's subject in the picture), or a real attentional bias against the central position. This e�ect can
however be attenuated by using an alternative metric: the area under ordinal dominant score (15);

� Model's performances are comparable to other state of the art models and even outperform them on Bruce
database (NSS measure).

2.7 In�uence of parameters

We have shown that our model is as plausible as other state of the art models. However, this model (and in
particular its dynamical system) depends on numerous parameters. Table 6 summarizes the in�uences of some
of these parameters on the plausibility of the model. The following conclusions can be drawn:



Parameters
CC KLD NSS

Mean Gain
Bruce LeMeur Bruce LeMeur Bruce LeMeur

Defaut 0.35 0.30 1.80 1.76 0.95 0.56 0%
Retinal �lter 0.43 0.38 1.61 1.40 1.17 0.73 22%

CentralBias=0.00 0.2 0.14 2.33 2.29 0.57 0.27 -41%
CentralBias=0.25 0.48 0.44 1.57 1.49 1.29 0.82 32%
CentralBias=0.50 0.55 0.53 1.92 1.66 1.49 1.01 45%
Di�usion=0.00 0.33 0.23 2.06 2.26 0.96 0.47 -14%
Di�usion=0.125 0.35 0.29 1.77 1.7 0.95 0.55 0%
Di�usion=0.5 0.35 0.31 1.83 1.72 0.94 0.59 1%
Noise=0.00 0.17 0.06 4.32 4.77 0.49 0.13 -95%
Noise=0.25 0.16 0.07 4.21 4.49 0.48 0.15 -90%
Noise=0.75 0.46 0.44 1.61 1.17 1.25 0.83 33%
Noise=1.00 0.27 0.35 1.89 1.30 0.68 0.64 0%

Table 6. In�uence of model parameters on plausibility. Gains are relative to default parameters de�ned in Table 1.

Gain / Feedback -1.0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

CC+NSS -19% -18% -16% -13% -7% 0% 9% 10% 12% 14% 20%
KLD -1% 0% 1% 1% 3% 0% -10% -26% -40% -55% -64%

Table 7. In�uence of top-down feedback on plausibility. Gains are relative to the bottom-up only version of the model.

� using a retinal �lter during the generation of feature and conspicuity maps improves plausibility signif-
icantly. This tends to prove that each new attentional focus depends on the location of the previous
attentionnal focus;

� using central biasing in an attention model can improve signi�cantly its plausibility, but this bias is partly
due to the experimental protocol;

� the dynamical system used in our attention model needs some di�usion in order to work correctly, but
adding more di�usion does not improve plausibility;

� similarly, noise is an important factor for the plausibility of the model. However, the in�uence of noise on
the repeatability of the system (variation in behavior between di�erent runs) is still an open question.

2.8 In�uence of Feedback

The in�uence of feedback on the plausibility of our model is quite tricky to explain. Indeed, as can be seen
in Table 7, the mean changes observed seem contradictory: � for cross correlation and normalized scanpath
salience, the use of top-down feedback appears to improve the plausibility of our model; � for the Kullback
Leibler divergence, it seems rather to reduce it.

Our explanation is the following: NSS and correlation are similarity measures while Kullback-Leibler diver-
gence is a dissimilarity measure, as a consequence they react di�erently to a change in the exploration strategy
of our model.

It is therefore di�cult to judge the in�uence of feedback, as it is twofold. However, we can conclude that
feedback slightly improves correlation of our model with ground truth in the most salient areas, the price of
increasing the di�erence with ground truth in the less salient areas.

3. CONCLUSION

In this article, we have presented a complete implementation and evaluation system of a computational model
of attention for computer vision. Concerning implementation, we have shown that preys / predators models
provide good properties for simulating the dynamic competition between di�erent kinds of information. We
have described the architecture of our model which can be divided in two parts. The �rst one is hierarchical, it



improves the model of L. Itti by providing much faster processing times while allowing the computation of more
scales during its multi-resolution analysis of the scene. The second part is our major contribution: it makes use of
a dynamical system (inspired from a preys / predators competition analogy) to handle the fusion of conspicuity
maps generated by the �rst part of the model. This dynamical system is also used to generate a focus point at
each time step of the simulation. Concerning evaluation, we have presented di�erent results (cross-correlation,
Kullback-Leibler divergence, normalized scanpath salience) that demonstrate that, in spites of being fast and
highly con�gurable, our results are as plausible as existing models designed for high biological �delity.
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