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Abstract. In a reward-seeking task performed in a continuous environment, our
previous work compared several Actor-Critic (AC) architecturggdementing
dopamine-like reinforcement learning mechanisms in the rat'd basalia.
The task complexity imposes the coordination of several AC submodales,
module being an expert trained in a particular subset of the\Waskshowed
that the classical method where the choice of the expertincatra given time
depends on each expert's performance suffered from strong iimgatWe
rather proposed to cluster the continuous state space d&y ocmethod that
lacked autonomy and generalization abilities. In the present wohHawecom-
bined the mixture of experts with self-organizing maps in ordecluster
autonomously the experts' responsibility space. On the one hand, weétnd
classicalkohonen mapgive very variable results: some task decompositions
provide very good and stable reinforcement learning performanceseasher
some others are unadapted to the task. Moreover, they require thernofm
experts to be set a priori. On the other hand, algorithmsGikeving Neural
Gasor Growing When Requireldave the property to choose autonomously and
incrementally the number of experts to train. They lead to goddrpences,
even if they are still weaker than our hand-tuned task deconguoaitid than
the best Kohonen maps that we got. We finally discuss on propositions a
what information to add to these algorithms, such as knowledgerreint be-
havior, in order to make the task decomposition appropriate toethf@nce-
ment learning process.

1 Introduction

In the frame of the Psikharpax project, which aims dtlimg an artificial rat having
to survive in complex and changing environments, and having wfysdiiferent
needs and motivations [5][14], our work consists in providing alsited robot with
habit learning capabilities, in order to make it able t@eiate efficient behaviors to
relevant stimuli located in an unknown environment.

The control architecture of Psikharpax is expected to beoas ak possible to known
anatomy and physiology of the rat brain, in order to unable comparisorebefuves-
tioning of the model with electrophysiological and behaviorabrgings. As a con-



sequence, our model of reinforcement learning is based on an Aclora@rititecture
inspired from basal ganglia circuits, following well estsiidid hypotheses asserting
that this structure of the mammalian brain is responsibl@roing action selection
[16] and reinforcement learning of behaviors to select via antiatnigra dopaminer-
gic neurons [17].

At this stage of the work, our model runs in 2D-simulatiorhwitsingle need and a
single motivation. However the issue at stake already hegarccomplexity: it cor-
responds to a continuous state-space environment; the perceptiemohamonoton-
ic changes; an obstacle-avoidance reflex can interfete agtions selected by the
model; the reward location provides a non instantaneous relmaadprevious paper
[11], we demonstrated that this task complexity requiresutieeof multiple Actor-
Critic modules, where each module is an expert trainedpartcular subset of the
environment. We compared different hypotheses concerning thegemaat of such
modules, concerning there more or less autonomously determinednetiordi and
found that the classical mixture of experts method - wherehibiee of the expert to
train at a given time depends on each expert's performandg-f3jpnnot train more
than one single expert in our reinforcement learning task.rsther proposed to
cluster the continuous state space and to link each expertitstar by an ad hoc
method that could indeed solve the task, but that lacked automodngeneralization
abilities.

The objective of the present work is to provide an autonomoegar@ation of the
state space by combining the mixture of experts with@ghnizing maps (SOM).
This combination has already been implemented by Tang RQl- these authors
having criticized the undesirable effects of classicatuné of experts on boundaries
of non disjoint regions. However, they did not test the method in a rednfierd lear-
ning task. When they were used in such tasks [18][¢8] without mixture of experts
—, SOM were applied to the discretization of the input spacie reinforcement
learning model, which method suffers from generalizatiotlitiabi Moreover, the
method has limited performance in high-dimensional spamseanains to be tested
robustly on delayed reward tasks.

In our case, we propose that the SOM algorithms have to predcicstering of the
responsibility space of the experts, in order to decide whitbr-Critic expert has to
work in a given zone of the perceptual state space. Ini@udihe selected Actor-
Critic expert of our model will receive the entire state spacerder to produce a non
constant reward prediction inside the given zone.

After describing the task in the following section, wél vaport the test of three self-
organizing maps combined with the mixture of Actor-Critic expdotstne comparis-
on of their usefulness for a complex reinforcement learnisig thconcerns the clas-
sicalKohonenalgorithm [12], which requires the number of expertse@lpriori set;
the Growing Neural Gasalgorithm [6], improved by [9], which adds a new expert
when an existing expert has a important error of classifitagiod theGrowing When
Requiredalgorithm [15], which creates a new expert when habin of the map to
visual inputs produces a too weak output signal when facing new visual data.

In the last section of the paper, we will discuss the p@ssilmdifications that could
improve the performance of the model.



2 Thetask

Figure 1 shows the simulated experimental setup, a simpléudBaze. The dimen-
sions are equivalent to a 5m * 5m environment with 1m laogedors. In this envir-

onment, walls are made of segments colored on a 256 graysialeffécts of light-

ing conditions are not simulated. Every wall of the mazeplered in black (lumin-

ance = 0), except walls at the end of each arm and at the center okztheumigah are

represented by specific colors: the cross at the centgrys(191), three of the arm
ends are dark gray (127) and the fourth is white (255), indictmgeward location

equivalent to a water trough delivering two drops (non instantamewasd) — not a

priori known by the animat.
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Fig. 1. Left: the robot in the plus-maze environment. Upper right: the robdtigal percep-
tions. Lower right: activation level of different channels in the rhode

The plus-maze task reproduces the neurobiological and behaviorailmeqsrthat
will serve as future validation for the model [1]. At the lnegig of each trial, one
arm end is randomly chosen to deliver reward. The adedcimall becomes white
whereas the other arm ends become dark gray. The animat leasrt that selecting
the actiondrinking when it is near the white wall (distance < 30 cm) andsface
(angle < 45°) gives it two drops of water. Here we asstateréward = 1 for n itera-
tions (n = 2) during which the actianinking is being executed. However, the robot's
vision does not change between these two moments, since thésrtten facing the
white wall. As visual information is the only sensory magahat will constitute the
input space of the Actor-Critic model, this makes the prolitesolve a Partially Ob-
servable Markov Decision Process [19]. This charactenstis set in order to fit the
multiple consecutive rewards that are given to rathiénneurobiological plus-maze,
enabling comparison between our algorithm with the learniagess that takes place
in the rat brain during the experiments.
We expect the animat to learn a sequence of context-speeifaviors, so that it can
reach the reward site from any starting point in the maze:
« When not seeing the white wall, face the center of the mazmawel forward
« As soon as arriving at the center (the animat can seetiite wall), turn to the
white stimulus
» Move forward until being close enough to reward location



« Drink

The trial ends when reward is consumed: the color of theawvaéward location is
changed to dark gray, and a new arm end is randomly chosietivter reward. The
animat has then to perform another trial from the currentitotafhe criterion
chosen to validate the model is the time — number of iteratibifse algorithm - to
goal, plotted along the experiment as the learning curve of the model.

3 Theanimat

The animat is represented by a circle (30 cm diamdtsrjranslation and rotation

speeds are 40 cnt.and 10°.8.

Its simulated sensors are:

» Eight sonars with a 5m range, an incertitude of +5 deg@eseing the pointed
direction and an additional +10 cm measurement error. Thessama used by a
low level obstacle avoidance reflex which overrides any decision tak#re Act-
or-Critic model when the animat comes too close to obstacles.

- An omnidirectional linear camera providing every 10° theicof the nearest per-
ceived segment. This results in a 36 colors table thatitate the animat’s visual
perception (see figure 1).

The animat is provided with a visual system that computesdf irariables and a

constant equal to (Vie[1; lS],Osvarisl ) out of the 36 colors table at each time

step. These sensory variables constitute the state eptme Actor-Critic and so will

be taken as input to both the Actor and the Critic parteeftodel (figure 3). Vari-

ables are computed as following:

» seeWhitgresp.seeGray seeDarkGray = 1 if the color table contains the value
255 (resp. 191, 127), else 0.

» angleWhite angleGray angleDarkGray= (number of boxes in the color table
between the animat’s head direction and the desired color) / 18.

» distanceWhitedistanceGray, distanceDarkGray (maximum number of consec-
utive boxes in the color table containing the desired color) / 18.

« nearWhite(resp.nearGray nearDarkGray = 1 —distanceWhitgresp.distance-
Gray, distanceDarkGrgy

The model permanently receives a flow of sensory infdomaand has to learn
autonomously the sensory contexts that can be relevant for the taskigasolu

The animat has a repertoire of 6 actiotignking, moving forward turning to white
perception turning to gray perceptigrturning to dark gray perceptigrandwaiting.
These actions constitute the output of the Actor model (described belotteaingut
to a low-level model that translates it into appropriate orders to thet&angines.
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Fig. 2. General scheme of the model tested in this work. The Actogi®up of “GPR” mod-
ules [8] with saliences as inputs and actions as outputs. Tte @wolving striosomes in the
dorsal striatum, and the substantia nigra compacta (SNc)) propagaterds the Actor an es-
timater of the instantaneous reinforcement triggered by thetesttlaction The particularity
of this scheme is to combine several modules for both Actor atid, @nd to gate the Critic
experts’ predictions and the Actor modules’ decisions with respabsibignals. These re-
sponsibilities can be either computed by a Kohonen, a GWR or a GNG map.
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4 TheMod€

4.1 Themulti-module Actor-Critic

The model tested in this work has the same general sctiean described in [11]. It
has two main components, an Actor which selects donadepending on the visual
perceptions described above; and a Critic, having to conguatictions of reward
based on these same perceptions (figure 2). Each of thessotwmonents is com-

posed of N submodules experts At a given time, each submodule (ke{l ;Nb

has a responsibilit ck(t) that determines its weight in the output of the overall mod-
el. In the context of this work, we restrict to the casera/toaly one expelk has its
responsibility equal to 1 at a given moment, V j#k, cj(t) =0.

Inside the Critic component, each submodule is a single lineaoméhat computes
its own prediction of reward:
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where w’ ki(t) is the synaptic weight of expdetrepresenting the association strength

with inpuf variable j. Then the global prediction of the Critia iweighted sum of ex-
perts’ predictions:

Pll=3 e lip o @

Concerning the learning rule, derived from the Tempordebifice Learning al-
gorithm [19], each expert has a specific reinforcement sigased on its own predic-
tion error:

fk[f\,'=r(¢)+gP(t:'—pk(t—1 J 3)
The synaptic weights of each expleere updated according to the following formula:

W'k,j(t)Fw'k,j(t_l )+n'rAk(t)~Varj(t—l )-ck(t) (4)

Actor submodules also have synaptic wei wl,j(t) that determine, inside each sub-

modulek, the salience — i.e. the strength — of each ac¢tamtording to the following
equation:

(1) S5)(
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sali(t): Zl Varj(t)~wl,,j(t) +perszsti(t)'wi, ”
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The action selected by the Actor to be performed by the &rdoreesponds to the
strongest output of the submodule with responsibility 1. If af@egement signal oc-
curs, the synaptic weights of the latter submodule are updated fail@guation (4).

An exploration function is added that would allow the animatytan action in a giv-
en context even if the weights of the Actor do not give acserfit tendency to per-
form this action in the considered context.

To do so, we introduce a clock that triggers exploration in two different cases:

» When the animat has been stuck for a large number of timeBteps\iperior to a
fixed thresholdx) in a situation that is evaluated negative by the modeéiivihe
predictionP(t) of reward computed by the Critic is inferior to a fixed threshold).

» When the animat has remained for a long time in a situatimmef(t) is high but
this prediction doesn’t increase that mud(tfin) — P(t)| <€) and no reward ec
curs.

If one of these two conditions is true, exploration is triggeoed: of the 6 actions is

chosen randomly. Its salience is being set to 1 (Note tham wkploration = false,



sali(t)<1, Vi,t,wij(t) ) and is being maintained to 1 for a duration of 15 timesteps

(time necessary for the animat to make a’180 turn or tdroam the center of the
maze until the end of one arm).

4.2 The self-organizing maps

In our previous work [11], we showed that the classicdahoteused to determine the
experts’ responsibilities — a gating network, giving the highest redplitysio the ex-
pert that approximates the best the future reward value [3][4] -r@tagppropriate for
the resolution of our reinforcement learning task. Indeed, wedfdhat the method
could only train one expert which would remain the moreamrsiple in the entire
state space without having a good performance. As our tagkriplex, we rather
need the region of the state space where a given expbe msost responsible to be
restricted, in order to have only limited information torhethere. As a consequence,
we propose that the state space should be clustered indeiheficen the perform-
ance of the model in learning the reward value function.
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Fig. 3. Examples of clusterings found by the GWR self-organizing map pidie
tures show, for three different AC experts, the positions ofdhetfor which the ex-
pert has the highest responsibility — thus, positions where the Actor-Qpgctés in-
volved in the learning process.

In this work, the responsibility space of the Actor-Créigerts is determined by one
of the following self-organizing maps (SOMs): the Kohonegotithm, the Growing
Neural Gas, or the Growing When Required. We willcdes here only essential as-
pects necessary for the comprehension of the method maps. Bpdhama certain
number of nodes, receives as an input the state space d¢edsttuhe same percep-
tion variables than the Actor-Critic model, and will autonomoustyto categorize
this state space. Training of the SOMs is processed as following:

Begin
Initialize a fixed number of nodes (for the Kohonen
Map) or 2 nodes for GNG and GWR algorithms;
While (iteration < 50000)
Move the robot randomly; //Actor-Critic disabled
Try to categorize the current robot’s perception;
If (GNG or GWR) and (classification-error > threshold)
Add a new node to the map;
End if;
Adapt the map;
End;



/I After that, the SOM won't be adapted anymore
While (trial < 600)
Move the robot with the Actor-Critic (AC) model;
Get the current robot’s perception;
Find the SOM closest node (K) to this perception;
Set expert k responsibility to 1 and others to 0;

Compute the learning rule and adapt synaptic weights of the AC;
End;

End;

Parameters used for the three SOM algorithms are givitre iappendix table. Figure
3 shows some examples of categorization of the state spaceedbtdath a GWR al-
gorithm. Each category corresponds to a small region in the plus-wizeke its asso-
ciated Actor-Critic expert will have to learn. Noticattwe set the parameters so that
regions are small enough to train at least several expeddarge enough to require
that some experts learn to select different actions successisigle the region.

5 Reaults

The results correspond to several experiments of 600 trialsdoroéghe three differ-
ent methods (11 with GWR, 11 with GNG, and 11 with Kohonen maps). &queri-
ment is run following the algorithmic procedure described in the pres@ei®n.

Table 1. Summarized performances of the methods applied to reinforcemerihdpa

Method Average performance during Standard Best map's aver-
second half of the experiment error age performance
(nb iterations per trials)

Hand-tuned map 93.71 N/A N/A
KOH (n=11) 548.30 307.11 87.87
GWR (n=11) 459.72 189.07 301.76
GNG (n=11) 403.73 162.92 193.39

Figure 4 shows the evolution with time of the learning psoaf each method. In
each case, the smallest number of iterations occurs aroer&b®th trial and remains
stabilized. Table 1 summarizes the global performancesgac@ver the second half
of the experiment — e.g. after trial #300. Performanceseofhifee methods are com-
parable (Kruskall-Wallis test reveals no significant défeces: p > 0.10). When look-
ing at the maps' categorizations precisely and independeatiy thre reinforcement
learning process, measure of the maps' errors of catagmihéghlights that Kohon-
en maps provide a slightly worst result in general, even while using meurons than
the GWR and GNG algorithms. However, this doesn't seeravie tonsequences on
the reinforcement learning process, since performancesiratlar. So, the Kohonen
algorithm, whose number of experts is a priori set, is noeb#tan the two others
which recruit new experts autonomously.

Performances with GNG and GWR algorithms are not vergreifit either. In their
study, Marsland et al. [15] conclude that GWR is slightiytdr than the GNG al-
gorithm in its original version. Here, we used a modified wersif GNG [9]. In our



simulations, the GNG recruited on average less expertshaBWR but had a clas-
sification error a little bigger. However, when appliedémforcement learning, the
categorizations provided by the two algorithms did not show major differences
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Fig. 4. Learning curves of the reinforcement learning experimentsdesith dif-
ferent self-organizing maps.

Qualitatively, the three algorithms have provided the mudtdabe Actor-Critic with
quite good experts' responsibility space clustering, and the animagethto learn an
appropriate sequence of actions to the reward location. Howgedormances are
still not as good as a version of the model with hand-tuned8gneeights. The lat-
ter has an average performance of 93.71 iterations per thiadh s characterized by
a nearly “optimal” behavior where the robot goes systematistithight to the reward
location, without loosing any time (except the regular trajectimyiation produced
by the exploration function of the algorithm). Some of testtKohonen maps and
GNG maps reached similar nearly optimal behavior. As shown in table Hesh&o-
honen map got an average performance of 87.87 iterations pelntlized, it seems
that the categorization process can produce very variabfen@ment learning de-
pending on the map built during the first part of the experiment.

6 Discussion

In this work, we have combined three different self-organiziaggwith a mixture of
Actor-Critic experts. The method was designed to provide an -Anftc model with
autonomous abilities to recruit new expert modules for thailegiof a reward-seek-
ing task in continuous state space. Provided with such a control etatétehe simu-
lated robot can learn to perform a sequence of actionsdigr to reach the reward.
Moreover, gating Actor-Critic experts with our methodosgly ressembles neural
activity observed in the striatum — e.g. the input structutheobasal ganglia — in rat
performing habit learning tasks in an experimental maze [&@ged, the latter study



shows striatal neurons' responses that are restrictedal@émt chunks of the traject-
ory performed by the rat in the maze. This is companatitethe clusters of experts'
responsibilities shown in figure 3.

However, the performance of the model presented here remeaakemthan a hand-
tuned behavior. Indeed, the method produces very variabldtsydsam maps with
nearly optimal performance to maps providing unsatisfying robotics/imeha
Analysis of the maps created with our method shows that sbithem are more ap-
propriate to the task than others, particularly when the boiesdaetween two ex-
perts' receptive fields corresponds to a region of the maeeewhe robot should
switch from one action to another in order to get the r@was an example, we no-
ticed that the majority of the maps obtained in this work thair expert closer to the
reward location with a too large field of responsibility. Asoasequence, the trunk of
the global value function that this expert has to approxiisatere complex, and the
behavior to learn is more variable. This results incsiglg inappropriate behavior in
the field of this expert — for example, the robot selectsatii®mn “drinking” too far
from reward location to get a reward. Notice howevat this is not a problem with
selecting several different actions in the same regioheofitaze, since some experts
managed to learn to alternate between two actions inrgsgpnsibility zone, for ex-
ample in the area close to the center of the plus-mazée/ei gxpert having limited
computational capacities, its limitations occur when itsoregf responsibility is too
large.

To improve the performance, one could suggest setting paranoéténe SOM in
order to increase the number of experts in the model. HowiNgnvould result in
smaller experts' receptive field than those presentedyimefi3. As a consequence,
each expert would receive a nearly constant input signal inside itstresgene, and
would need only to select one action. This would be computationally egpiivalthe
use of small fields place cells for the clustering ofdta#e space of an Actor-Ciritic,
which has been criticized by several authors [2], and would ndiffeesnt than other
algorithms where the winning node of a self-organizing map pesdadiscretization
of the input space to a reinforcement learning process [18].

One could also propose to increase each expert-module’'s etionpeait capacity.
For instance, one could use a more complex neural netwarkttie single linear
neuron that we implemented for each expert. However, one carprairi know the
task complexity, and no matter the number of neurons antgpgesesses, there could
still exist too complex situations. Moreover, “smart” experts havingallsesponsib-
ility region could overlearn the data with poor generalization ability [

7 Perspective

In future work, we rather propose to enable the experts' gatindapt slightly to
the behavior of the robot. The management of experts should not be mainly aépende
on the experts' performances in controlling behavior and atitignthe reward value,
as we have shown in previous work [11]. However, considdéhagategorization of
the visual space as the main source of experts’ specializatimuld be useful to add
information about the behavior in order for boundaries betweerexperts' respons-
ibility regions to flexibly adapt to areas where the animat needwitch its behavior.



In [21], the robot's behavior is a priori set and stabilized candtitutes one of the in-
puts to a mixture of experts having to categorize theosgmsotor flow perceived by
a robot. In our case, at the beginning of the reinforcemantifey process, when be-
havior is not yet stable, visual information could be the rsaurce of experts’ spe-
cialization. Then, when the model starts to learn anompjate sequence of actions,
behavioral information could help adjusting the speciatmatrhis would be similar
to electrophysiological recordings of the striatum showing} tifter extensive train-
ing of the rats, striatal neurons' responses tend to tranelgarticular “meaningful”
portions of the behavioral sequences, such as the startingapdirthe goal location
[10].
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Appendix: Parameterstable

Symbol Value Description

At 1 sec. Time between two successive iterations of the model.
o [50;100] Time threshold to trigger the exploration function.

g 0.98 Discount factor of the Temporal Difference learning rule.
n 0.05/0.01 Learning rate of the Critic and the Actor rethypely.

N 36 Number of nodes in Kohonen Maps.

n-koh 0.05 Learning rate in Kohonen Maps.

o 3 Neighborhood radius in Kohonen Maps.

Ew, En 0.5,0.005/0.1,0.001 Learning rates in the GNG and GWR ttasggc

a-max 100 Max. age in the GNG and GWR.

S Threshold for nodes recruitment in the GNG.

o-gng, B-gng 0.5, 0.0005 Error reduction factors in the GNG.

A 1 Window size for nodes incrementation in the GNG.
a-T 0.8 Activity threshold in the GWR

h-T

0.05 Habituation threshold in the GWR.



