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CONSTRUCTING THE SET OF COMPLETE INTERSECTION NUMERICAL

SEMIGROUPS WITH A GIVEN FROBENIUS NUMBER

A. ASSI AND P. A. GARCÍA-SÁNCHEZ

Abstract. Delorme suggested that the set of all complete intersection numerical semigroups can
be computed recursively. We have implemented this algorithm, and particularized it to several
subfamilies of this class of numerical semigroups: free and telescopic numerical semigroups, and
numerical semigroups associated to an irreducible plane curve singularity. The recursive nature of
this procedure allows us to give bounds for the embedding dimension and for the minimal generators
of a semigroup in any of these families.

1. Introduction

Let N denote the set of nonnegative integers. A numerical semigroup Γ is a submonoid of N with
finite complement in N (this condition is equivalent to gcd(Γ) = 1). If Γ is a numerical semigroup,
the elements in N \ Γ are the gaps of Γ. The cardinality of N \ Γ is the genus of Γ, g(Γ). The
largest integer not in Γ is called the Frobenius number of Γ, and will be denoted by F(Γ). Clearly,
F(Γ) + 1 + N ⊆ Γ, and this is why c(Γ) = F(Γ) + 1 is known as the conductor of Γ.

Since for every x ∈ Γ, F(Γ) − x cannot be in Γ, we deduce that g(Γ) ≥ c(Γ)
2 . We say that Γ is

symmetric when the equality holds, or equivalently, for every integer x, x 6∈ Γ implies F(Γ)−x ∈ Γ.
In this setting, c(Γ) is an even integer, and thus F(Γ) is odd.

It can be easily proved that any numerical semigroup admits a unique minimal generating system
(every element is a linear combination of elements in this set with nonnegative integer coefficients and
none of its proper subsets fulfills this condition; see for instance [16, Chapter 1]). If A = {r0, . . . , rh}
is the minimal generating set of Γ, then its elements are called minimal generators, and its cardinality
is the embedding dimension of Γ, e(Γ). The smallest minimal generator is the smallest positive
integer belonging to the semigroup, and it is known as the multiplicity of Γ, denoted by m(Γ).

The map

N
e(Γ) → Γ, ϕ(a0, . . . , ah) = a0r0 + · · ·+ ahrh

is a monoid epimorphism. Hence Γ is isomorphic to N
e(Γ)/ kerϕ, where kerϕ = {(a, b) ∈ N

e(Γ) ×
N
e(Γ) | ϕ(a) = ϕ(b)} (kerϕ is a congruence on N

e(Γ)).
A presentation for Γ is a set of generators of the congruence ϕ, and a minimal presentation is

a set of generators minimal with respect to set inclusion (actually, in our setting also with respect
to cardinality; see [16, Corollary 8.13]). It can be shown that the cardinality of any minimal
presentation is greater than or equal to e(Γ) − 1, [16, Theorem 9.6]. A numerical semigroup is a
complete intersection if this equality holds.

Given A a set positive integers, and A = A1 ∪ A2 a non trivial partition of A, we say that A
is the gluing of A1 and A2 if lcm(d1, d2) ∈ 〈A1〉 ∩ 〈A2〉, where di = gcd(Ai) and 〈Ai〉 denotes
the monoid generated by Ai, i = 1, 2. If A is the minimal system of generators of Γ, and Γi is
the numerical semigroup generated by Ai/di, i = 1, 2, we also say that Γ is the gluing of Γ1 and
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Γ2. It turns out that d1 ∈ Γ2, d2 ∈ Γ1, gcd(d1, d2) = 1, and neither d1 is a minimal generator of
Γ2 nor d2 is a minimal generator of Γ1 ([16, Section 8.3]). Delorme proved in [5, Proposition 9]
that a numerical semigroup is a complete intersection if and only if it is a gluing of two complete
intersection numerical semigroups (though with a different notation; the concept of gluing was
introduced in [13]). The gluing of symmetric numerical semigroups is symmetric ([5, Proposition
10 (iii)]), and as a consequence of this, complete intersections are symmetric.

In [17] there is a procedure to construct the set of all numerical semigroups with a given Frobenius
number. We show in this manuscript how can we use the concept of gluing to compute the set of all
complete intersection numerical semigroups with a given Frobenius number (or equivalently with
fixed genus). Recently there have been some experimental results that point out to the possibility
that the number of numerical semigroups with a fixed genus has a Fibonacci like behaviour ([4]).
Indeed, it is known that asymptotically the number of numerical semigroups with given genus grows
as the Fibonacci sequence ([18]). However there is not a proof for this for all genus, and we still
do not even have a demonstration that there are more numerical semigroups with genus g + 1
than numerical semigroups with genus g. This is not the case for complete intersection numerical
semigroups, as we see in the last section.

We also show how to calculate the set of all free (in the sense of [1]) numerical semigroups, which
is a special subclass of complete intersections, the set of all telescopic numerical semigroups (con-
tained in the set of free numerical semigroups), and that of numerical semigroups associated to an
irreducible plane curve singularity (these are a particular case of telescopic numerical semigroups).

The recursive nature of gluing also allows us to give some bounds for the generators and embed-
ding dimension for these families of semigroups when we fix the Frobenius number. The deeper we
go in the chain of inclusions given in the preceding paragraph, the smaller are the bounds.

2. The Frobenius number and multiplicity of a complete intersection

Let Γ be a numerical semigroup. We know that Γ is a complete intersection if and only if it is
the gluing of two complete intersections. Delorme (though with a different notation) highlighted
in [5, Section 11] that this fact can used to determine if a numerical semigroup is a complete
intersection (this idea has already been exploited in [2]; and in [15] one can find a procedure to
determine if an affine semigroup is the gluing of two affine semigroups), and also to compute the
set of all complete intersections. In order to construct the set of all complete intersection numerical
semigroups with given Frobenius number, we can proceed recursively by using the following formula
for the Frobenius number of the gluing of two numerical semigroups, which is just a reformulation
of Delorme’s description of the conductor of a gluing.

Proposition 1. Assume that Γ is a numerical semigroup minimally generated by A = A1 ∪ A2,
and that A is the gluing of A1 and A2. Let d1 = gcd(A1) and d2 = gcd(A2). Define Γ1 = 〈A1/d1〉
and Γ2 = 〈A2/d2〉. Then

F(Γ) = d1F(Γ1) + d2F(Γ2) + d1d2.

Proof. Observe that Γ = d1Γ1 + d2Γ2. By [5, Proposition 10 (i)],

(1) c(Γ) = d1c(Γ1) + d2c(Γ2) + (d1 − 1)(d2 − 1).

Having in mind the relationship between Frobenius number and conductor, the formula follows
easily. �

In Proposition 1, Γ = d1Γ1+d2Γ2 and d = d1d2 = d1Γ1∩d2Γ2. The integer d is the element where
the gluing takes place. If we repeat the process with d1Γ1 and d2Γ2 in this result, we construct a
decomposition tree of Γ, whose leaves are copies isomorphic to of N (this was the idea followed in
[3]). Assume that d(1), . . . , d(h) are the elements where the gluings take place in this splitting. The

Frobenius number of Γ is precisely
∑h

i=1 d
(i) −

∑

a∈A a (see [5, Section 11] where it is highlighted
that this formula is a particular case of a result given in [10]).
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Example 2. Let Γ = 〈10, 14, 15, 21〉. Then Γ = 〈10, 15〉 + 〈14, 21〉 and 35 = 5 × 7 ∈ 〈10, 15〉. We
repeat the process for 〈10, 15〉 = 〈10〉 + 〈15〉 and 〈14, 21〉 = 〈14〉 + 〈21〉. We get 30 ∈ 〈10〉 ∩ 〈15〉
and 42 ∈ 〈14〉 ∩ 〈21〉. Hence the gluings take place at 35, 30 and 42. Thus F(Γ) = (35 + 30 + 42)−
(10 + 14 + 15 + 21) = 47.

Example 3. We construct a complete intersection numerical semigroup with four generators, by
gluing two embedding dimension two numerical semigroups.

gap> s:=NumericalSemigroup(10,11);;

gap> t:=NumericalSemigroup(7,9);;

gap> g:=NumericalSemigroup(16*10,16*11,21*7,21*9);;

gap> FrobeniusNumber(g);

2747

gap> 16*FrobeniusNumber(s)+21*FrobeniusNumber(t)+16*21;

2747

Remark 4. For Γ = N, we have

c(N) = 0, F(N) = −1, g(N) = 0, m(N) = 1, e(N) = 1.

Proposition 5. If Γ is a complete intersection, then

m(Γ) ≥ 2e(Γ)−1.

Proof. Let h = e(Γ) − 1. We use induction on h. For h = 1, the statement follows trivially.
As Γ is a complete intersection, if A is its minimal set of generators, we can find a partition of
A = A1 ∪A2 such that A is the gluing of A1 and A2. Set as above di = gcd(Ai), and Γi = 〈Ai/di〉.
Let hi = e(Γi)−1. Hence h = h1+h2+1. By induction hypothesis m(Γi) ≥ 2hi . Recall that d1 ∈ Γ2

and d2 ∈ Γ1, and they are not minimal generators. Thus d1 ≥ 2m(Γ2) ≥ 2h2+1, and analogously
d2 ≥ 2h1+1. For every a ∈ A1, a/d1 is a minimal generator of Γ1, whence a/d1 ≥ 2h1 . Therefore
a ≥ 2h1+h2+1 = 2h. The same argument shows that any element in A2 is greater than or equal to
2h. �

Example 6. We construct recursively a family {Γ(n)}n∈N of complete intersection numerical semi-
groups reaching the bound of Proposition 5.

We start with Γ(1) = 〈2, 3〉, and the general element in the sequence is defined as Γ(n+1) =

2Γ(n) + (2n+1 + 1)N.

For instance, Γ(2) = 2〈2, 3〉 + 5N = 〈4, 5, 6〉, Γ(3) = 2〈4, 5, 6〉 + 9N = 〈8, 9, 10, 12〉, and so on.
It is not hard to prove that

Γ(n+1) = 〈2n+1, 2n+1 + 1, 2n+1 + 2, 2n+1 + 22, . . . , 2n+1 + 2n〉
= 2〈2n, 2n + 1, . . . , 2n + 2n−1〉+ (2n+1 + 1)N.

Notice that Γ(n+1) is a gluing of Γ(n) and N, since

• 2 ∈ N and 2 is not a minimal generator of N,
• 2n+1 + 1 is the sum of the two smallest minimal generators of Γ(n); thus 2n+1 + 1 belongs
to Γ(n) and it is not a minimal generator of Γ(n),

• gcd(2, 2n+1 + 1) = 1.

It follows that m(Γ(n)) = 2n and e(Γ(n)) = n+ 1. Thus the bound in Proposition 5 is attained.

Corollary 7. If Γ is a complete intersection numerical semigroup other than N, then

e(Γ) ≤ log2(c(Γ)) + 1.

Proof. By Proposition 5, 2e(Γ)−1 ≤ m(Γ). Since Γ 6= N, we have that m(Γ) ≤ c(Γ), and the bound
follows. �
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Remark 8. Notice that in the proof of Corollary 7 we use m(Γ) ≤ c(Γ). For Γ = 〈2, 3〉, we get an
equality and also the bound given in this corollary is reached. If m(Γ) = c(Γ), then Γ = 〈m,m +
1, . . . , 2m−1〉, with m = m(Γ). Hence e(Γ) = m, that is, Γ has maximal embedding dimension (it is
easy to see that the embedding dimension of a numerical semigroup is always less than or equal to
its multiplicity; see for instance [16, Chapter 1]). It is well known that the cardinality of a minimal

presentation of a maximal embedding dimension numerical semigroup with multiplicity m is m(m−1)
2

(see for instance [16, Corollary 8.27]). Hence a maximal embedding dimension numerical semigroup

with multiplicity m is a complete intersection if and only if m(m−1)
2 = m− 1, or equivalently, either

the numerical semigroup is N or m = 2. If in addition we impose that the conductor and the
multiplicity agree, then the only two possibilities are N and 〈2, 3〉.

From the definitions of multiplicity and conductor, it is easy to see that there is no numerical
semigroup Γ such that c(Γ) = 1 +m(Γ).

If c(Γ) = 2+m(Γ), then Γ = 〈m,m+2,m+3, . . . , 2m−1, 2m+1〉, which is a maximal embedding
dimension numerical semigroup. So the only complete intersection with c(Γ) = 2 +m(Γ) is 〈2, 5〉.

The case c(Γ) = 3 + m(Γ) requires more effort. In this setting m = m(Γ) > 2. We have two
possibilities.

• Γ = 〈m,m+3,m+4, . . . , 2m−1, 2m+1, 2m+2〉, which has maximal embedding dimension,
and so it cannot be a complete intersection numerical semigroup, because m > 2.

• Γ = 〈m,m+ 1,m+ 3,m+ 4, . . . , 2m− 1〉. Here e(Γ) = m− 1 and the minimum element in
Γ congruent with 2 modulo m is 2m+1 = (m+1)+ (m+1). Thus in view of [14, Theorem

1(2)], the cardinality of a minimal presentation for Γ is (m−1)(m−2)
2 . We conclude that Γ is

a complete intersection if and only if (m−1)(m−2)
2 = m− 2, and as m > 2, this is equivalent

to m = 3. Hence Γ = 〈3, 4〉.
Therefore, if we assume that Γ 6∈ {N, 〈2, 3〉, 〈2, 5〉, 〈3, 4〉}, and Γ is a complete intersection nu-

merical semigroup, then we can assert that c(Γ) ≥ m(Γ) + 4, and the bound in Corollary 7 can be
slightly improved to

e(Γ) ≤ log2(c(Γ) − 4) + 1.

This bound is attained for instance by 〈2, 7〉, 〈4, 5, 6〉 and 〈4, 6, 7〉.
By using [14, Section 1.2], we can determine those complete intersections with c(Γ) = m(Γ) + 4,

and thus obtain another small improvement of the above bound.

We can improve this bound by using a different strategy.

Proposition 9. Let Γ be a complete intersection numerical semigroup. Then

(e(Γ) − 1)2e(Γ)−1 ≤ c(Γ).

Proof. We use induction on the embedding dimension of Γ. If the embedding dimension of Γ is
either one or two, then the result holds trivially. So assume that e(Γ) ≥ 3. As Γ is a complete
intersection, we know that there exist two complete intersection numerical semigroups Γ1 and Γ2

such that Γ is the gluing of Γ1 and Γ2. Thus there exist d1 ∈ Γ2 and d2 ∈ Γ1, that are not minimal
generators, such that Γ = d1Γ1 + d2Γ2. For sake of simplicity write c = c(Γ), e = e(Γ), ci = c(Γi)
and ei = e(Γi), i = 1, 2. Then from the definition of gluing we already know that e = e1 + e2.

Since e ≥ 3, we may assume without loss of generality that e1 ≥ 2. As d1 is not a minimal
generator of Γ2, d1 ≥ 2m(Γ2), and as e1 ≥ 2 and d2 is not a minimal generator of Γ1, d2 ≥ 2m(Γ1)+1.
In view of Proposition 5, we deduce d1 ≥ 2e2 and d2 ≥ 2e1 + 1.

Now from (1), we have c = d1c1+d2c2+(d1−1)(d2−1). By induction hypothesis and the preceding
paragraph, we get c ≥ 2e2(e1 − 1)2e1−1 + (2e1 +1)(e2 − 1)2e2−1 + (2e2 − 1)2e1 = (e− 2)2e−1 + (e2 −
1)2e2−1 + 2e − 2e1 ≥ (e− 1)2e−1 − 2e−1 + 2e − 2e1 = (e− 1)2e−1 + 2e−1 − 2e1 ≥ (e− 1)2e−1. �
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Example 10. Let {Γ(n)}n∈N be the family of numerical semigroups presented in Example 6. By
using (1), it is not hard to check inductively that c(Γ(n)) = n2n, and thus the bound of Proposition
9 is attained.

If we have a closer look at the proof of Proposition 9, then we easily deduce that for the bound
to be attained, the following must hold in all induction steps with e ≥ 3:

• (e2 − 1)2e2−1 = 0 and thus e2 = 1, that is, Γ2 is N (we will study these semigroups in the
next section);

• from e2 = 1 it follows that e1 = e− 1 and 2e−1 − 2e1 = 0;
• m(Γ1) = 2e1−1 and d2 = 2m(Γ1) + 1 = 2e1 + 1, whence m(Γ1) + 1 ∈ Γ1;
• c1 = (e1 − 1)2e1−1 = (e− 2)2e−2;
• d1 = 2.

Also the only embedding dimension two numerical semigroup for which the equality holds is 〈2, 3〉.
If follows that the family given in Example 6 contains all possible complete intersection numerical
semigroups with the property that the bound in Proposition 9 becomes an equality.

Proposition 11. Let Γ be a complete intersection numerical semigroup other than N, minimally
generated by {r0, . . . , rh}. If m(Γ) 6= 2, for all k, rk < F(Γ).

Proof. Assume without loss of generality that r0 = m(Γ). The numerical semigroup Γ is symmetric
and thus for every i > 0, F(Γ)+ r0 − ri ∈ Γ. If rk > F(Γ), for some k > 0, then F(Γ)+ r0 − rk < r0,
which forces F(Γ) + r0 = rk.

If h > 1, choose 0 < i 6= k. Then rk − ri = F(Γ) + r0 − ri ∈ Γ, contradicting that rk is a minimal
generator. This proves rk < F(Γ), whenever h > 1.

For h = 1, F(Γ) = (r0−1)(r1−1)−1. In this setting, Γ = 〈2, f +2〉 has F(Γ) = f . For m(Γ) > 2,
we get F(Γ) = (r0 − 1)(r1 − 1)− 1 ≥ 2(r1 − 1)− 1 = (r1 − 1) + (r1 − 2) ≥ r1. �

Remark 12. If we want to compute the set of all complete intersection numerical semigroups with
Frobenius number f , then we can use the formula given in Proposition 1. Hence f = d1f1 + d2f2 +
d1d2, and we recursively construct all possible numerical semigroups with Frobenius number f1, and
then the set with Frobenius number f2. We next give some useful bounds and facts to perform this
task. Denote f + 1 by c.

i) d1 6= 1 6= d2. This is because d1 ∈ Γ2 and it is not a minimal generator of Γ2. The only
possibility to have d1 = 1 ∈ Γ2 would be Γ2 = N = 〈1〉. But then d1 would be a minimal
generator. The same argument is valid for d2.

ii) Since gcd(d1, d2) = 1, we can assume without loss of generality that 2 ≤ d2 < d1.
iii) Since f1, f2 ≥ −1, f ≥ −d1 − d2 + d1d2 = (d1 − 1)(d2 − 1) − 1. Hence d2 ≤ c

d1−1 + 1; and

consequently, d2 ≤ min{d1 − 1, c
d1−1 + 1}.

iv) f − djfj ≡ 0 mod di, {i, j} = {1, 2}. In particular, if fj = −1, then f + dj ≡ 0 mod di.
v) d1 < f , except in the case Γ = 〈2 = d2, f + 2 = d1〉.

a) If f1 = f2 = −1, then Γ1 = Γ2 = N, and Γ is 〈d2, d1〉. If d2 6= 2, then Proposition 11, asserts
that d1 < f .

b) If f2 > 0, then f ≥ −d1 + d2 + d1d2 = (d1 + 1)(d2 − 1) + 1 ≥ d1 + 2. Hence d1 ≤ f − 2.
c) If f1 > 0, then f ≥ d1−d2+d1d2 = (d1−1)(d2+1)+1 > 3(d1−1) ≥ d1+2(d1−1)−1 > d1.

vi) If f1 6= −1 6= f2, then f − d1d2 ∈ 〈d1, d2〉. We are only interested in factorizations f − d1d2 =
a1d1 + a2d2, a1, a2 ∈ N, with a1 ≡ a2 ≡ 1 mod 2, since the Frobenius number of a complete
intersection is an odd integer.

Example 13. We compute the set of all complete intersection numerical semigroups with Frobenius
number 11. First note that 〈2, 13〉 is in this set. The possible d1 belong to {3, . . . , 10}.

• d1 = 10. Then 2 ≤ d2 ≤ min{9, ⌊129 ⌋+1} = 2. Hence d2 must be 2, but then gcd(d1, d2) 6= 1,
and we have no complete intersections under these conditions.
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• d1 = 9. Then 2 ≤ d2 ≤ min{8, ⌊128 ⌋ + 1} = 2. This forces d2 = 2, which in addition is
coprime with 9.

⋆ 11 + 9 ≡ 0 mod 2, and thus f1 = −1 (Γ1 = N) is a possible choice. In this setting
f2 = (11 − 18 + 0)/2 = 1, whence Γ2 = 〈2, 3〉. We obtain a new complete intersection
Γ = 9N + 2〈2, 3〉 = 〈4, 6, 9〉, because 9 ∈ 〈2, 3〉 is not a minimal generator.

⋆ 11 + 2 6≡ 0 mod 9, so f2 cannot be −1.
⋆ 11− 18 6∈ 〈2, 9〉, so we have no more complete intersections with this data.

• For d1 = 8, we have 2 ≤ d2 ≤ min{7, ⌊127 ⌋+ 1} = 2. However gcd{d1, d2} 6= 1.

• If d1 = 7, then 2 ≤ d2 ≤ min{6, ⌊126 ⌋+ 1} = 3.
⋆ d2 = 2.

∗ 11 + 7 ≡ 0 mod 2, and thus Γ1 can be N. But then f2 = (11 − 14 + 7)/2 = 2,
which is even. So this case cannot occur.

∗ 11 + 2 6≡ 0 mod 7, and so Γ2 will not be N.
∗ Finally, 11−14 6∈ 〈2, 7〉, so no complete intersections can be found with properties.

⋆ d2 = 3.
∗ 11+7 ≡ 0 mod 3, and thus Γ1 could be N. In this setting f2 = (11− 21+7)/3 =
−1, and so Γ2 is also N. We get a new complete intersection Γ = 7N+3N = 〈3, 7〉
with Frobenius number 11.

∗ 11− 21 6∈ 〈3, 7〉, so no more complete intersections are obtained for this choice of
d1 and d2.

• For d1 = 6, 2 ≤ d2 ≤ min{5, ⌊125 ⌋+ 1} = 3, but both 2 and 3 are not coprime with 6.
• d1 = 5. Then d2 ∈ {2, 3, 4}.

⋆ d2 = 2.
∗ 11 + 5 ≡ 0 mod 2, and so Γ1 can possibly be N. Hence f2 = (11 − 10 + 5)/2 =
3. The only possible complete intersection numerical semigroup with Frobenius
number 3 is 〈2, 5〉. But 5 is a minimal generator of this semigroup.

∗ 11 + 2 6≡ 0 mod 5.
∗ 11− 10 6∈ 〈2, 5〉.

⋆ d2 = 3. In this case 11 + 5 6≡ 0 mod 3, 11 + 3 6≡ 0 mod 5, and 11− 15 6∈ 〈3, 5〉.
⋆ d2 = 4.

∗ 11 + 5 ≡ 0 mod 4, and f2 = (11 − 20 + 5)/4 = −1. So Γ = 5N + 4N = 〈4, 5〉 is
another complete intersection with Frobenius number 11.

∗ 11− 20 6∈ 〈4, 5〉.
• d1 = 4, 2 ≤ d2 ≤ min{3, ⌊123 ⌋+ 1} = 3, and as gcd(2, 4) 6= 1, we get d2 = 3.

⋆ 11 + 4 ≡ 0 mod 3. So Γ1 could be N. If this is the case, f2 = (11 − 12 + 4)/3 = 1,
which forces Γ2 to be 〈2, 3〉, and 4 ∈ Γ2 is not a minimal generator. So we obtain
Γ = 4N + 3〈2, 3〉 = 〈4, 6, 9〉, which was already computed before.

⋆ 11 + 3 6≡ 0 mod 4.
⋆ 11− 12 6∈ 〈3, 4〉

• d3 = 3 and d2 = 2.
⋆ 11+3 ≡ 0 mod 2, and Γ1 = N can be a possibility. Then f2 = (11− 6+3)/2 = 7. If we
apply this procedure recursively for f = 7, we obtain that {〈2, 9〉, 〈3, 5〉, 〈4, 5, 6〉} is the
set of all possible complete intersection numerical semigroups with Frobenius number
7. However, 3 6∈ 〈2, 9〉, 3 is a minimal generator of 〈3, 5〉, and 3 6∈ 〈4, 5, 6〉.

⋆ 11 + 2 6≡ 0 mod 3.
⋆ 11 − 6 = 5 ∈ 〈2, 3〉, and 5 = 1 · 2 + 1 · 3 is the only factorization. So the only possible
choice for f1 and f2 is 1. This means that Γ1 and Γ2 must be 〈2, 3〉. Again we obtain
no new semigroups, since 2 and 3 are minimal generators of 〈2, 3〉.
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Thus the set of complete intersection numerical semigroups with Frobenius number 11 is

{〈2, 13〉, 〈4, 6, 9〉, 〈3, 7〉, 〈4, 5〉}.

3. Free numerical semigroups

Throughout this section, let Γ be the numerical semigroup Γ minimally generated by {r0, . . . , rh}.
For k ∈ {1, . . . , h+ 1}, set dk = gcd({r0, . . . , rk−1}) (d1 = r0).

Write Γk =
〈

r0
dk+1

, . . . , rk
dk+1

〉

, and ck = c(Γk) for all k ∈ {1, . . . , h}. Set c = ch = c(Γ).

We say that Γ is free if either h = 0 (and thus r0 = 1) or Γ is the gluing of the free numerical semi-
group Γh−1 and N. Free numerical semigroups were introduced in [1]. For other characterizations
and properties of free numerical semigroups see [16, Section 8.4].

Example 14. Notice that the order in which the generators are given is crucial. For instance,
S = 〈8, 10, 9〉 is free for the arrangement (8, 10, 9) but it is not free for (8, 9, 10). And a numerical
semigroup can be free for different arrangements, for example, S = 〈4, 6, 9〉 has this property.

If we take c0, . . . , ch pairwise coprime integers greater than one, and ri =
∏h

j=0,i 6=j cj , j = 0, . . . , h,

then the numerical semigroup generated by {r0, . . . , rh} is free for any arrangement of its minimal
generating set (see [9]).

According to Proposition 1, with A2 = {rh}, we obtain the following consequence.

Corollary 15. If Γ is free, then

F(Γ) = dhF(Γh−1) + rh(dh − 1).

In this way we retrieve Johnson’s formula ([11]). Notice also that Γh−1 is again free, so if
we expand recursively this formula we obtain the formula given by Bertin and Carbonne for free
numerical semigroups (see [1]; these authors named these semigroups in this way).

This equation can be reformulated in terms of the conductor as

(2) c(Γ) = ch = dhch−1 + (dh − 1)(rh − 1).

Lemma 16. If Γ is free, then

(1) gcd(dh, rh) = 1;
(2) dh | F(Γ) + rh (consequently dh 6 |F(Γ));
(3) if we define ek = dk

dk+1
, k = 1, . . . , h, then ekrk ∈ 〈r0, . . . , rk−1〉, for all k = 1, . . . , h; in

particular, ek ≥ 2;
(4) d1 > d2 > · · · > dh+1 = 1;

(5) dh ≤ c(Γ)
rh−1 + 1;

(6) for h ≥ 1, (dh − 1)(rh − 1) ≥ 2h.

Proof. (1) This follows from the fact that Γ is a numerical semigroup, and thus gcd(dh, rh) =
dh+1 = 1.

(2) F(Γh−1) = (F(Γ) + rh(1− dh))/dh = (F(Γ) + rh)/dh − 1.

(3) As Γk is the gluing of Γk−1 and N, we have that rk
dk+1

∈ Γk−1. Hence
dk

dk−1
rk ∈ 〈r0, . . . , rk−1〉.

If ek = 1, then rk ∈ 〈r0, . . . , rk−1〉, contradicting that rk is a minimal generator.

(4) By definition, dk ≥ dk+1. As ek = dk
dk+1

≥ 2, we get dk > dk−1.

(5) Notice that F(Γ) ≥ (rh − 1)(dh − 1)− 1, since F(Γh−1) ≥ −1.
(6) If dh = 2, then we show that rh > m(Γ). Assume to the contrary that rh = m(Γ). Then we

already proved above that ehrh ∈ 〈r0, . . . , rh−1〉. Since eh = dh and ri is a minimal generator

of Γ for all i, we deduce that 2rh =
∑h−1

i=0 airi, with
∑h−1

i=0 ai ≥ 2. As ri > rh for every

i = 0, . . . , h − 1, we get 2rh > rh
∑h−1

i=0 ai, and thus
∑h−1

i=0 ai < 2, a contradiction. Thus in

view of Proposition 5, we have that rh ≥ 2h, and if dh = 2, then rh ≥ 2h+1. Hence for dh = 2
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the proof follows easily, and for dh > 2 we get (dh − 1)(rh − 1) ≥ 2(rh − 1) ≥ 2(2h − 1) ≥ 2h

(we are assuming h ≥ 1).
�

In view of Example 10, the bound proposed in Proposition 9 cannot be improved for free numer-
ical semigroups, since the family introduced in Example 6 consists on free numerical semigroups.
However, we can use Proposition 9 to find an upper bound for rh, as we show next.

For all h ≥ 2, ch−1 =
c−(dh−1)(rh−1)

dh
is an even integer, and c = ch ≥ h2h. In particular,

−ch−1dh ≤ −(h− 1)2h−1dh.

Hence

(rh − 1)(dh − 1) ≤ c− (h− 1)2h−1dh

This gives us the following upper bound for rh.

rh ≤ c

dh − 1
− (h− 1)2h−1 dh

dh − 1
+ 1.

Corollary 17. For all h ≥ 2,

2h + 1 ≤ rh ≤ c

dh − 1
− (h− 1)2h−1 dh

dh − 1
+ 1 ≤ c− (h− 1)2h−1 + 1.

Remark 18. In order to compute the set of all free numerical semigroups with a given Frobenius
number, we make use of the formula given in Corollary 15, by taking into account the restrictions
given in this section for dh and rh.

4. Telescopic numerical semigroups

We keep using the same notation as in the preceding section. We say that the numerical semigroup
Γ minimally generated by {r0, . . . , rh} is telescopic if it is free for the arrangement of the generators
r0 < · · · < rh (see for instance [12]). This motivates the notation {r0 < · · · < rh}, that means
that the elements in the set {r0, . . . , rh} fulfill the extra condition r0 < · · · < rh. We will also write
Γ = 〈r0 < · · · < rh〉 when {r0, . . . , rh} is a generating system for Γ and r0 < · · · < rh.

Notice that in addition to the properties we had for free numerical semigroups, if Γ is telescopic,
then

(1) dh < rh, because dh | rh−1 < rh;

(2) F(Γ) ≥ (rh−1)(dh−1)−1 > (dh−1)2−1, whence dh ≤ min
{

rh − 1, c(Γ)
rh−1 + 1,

√

c(Γ) + 1
}

.

Proposition 19. Let Γ be a telescopic numerical semigroup minimally generated by {r0 < · · · < rh}.
If h ≥ 2, then rh ≥ 2h+1 − 1.

Proof. Let h = 2, and let Γ1 =
〈

r0
d2
, r1
d2

〉

. Since r1
d2

≥ 3 and d2 ≥ 2, we have r1 ≥ 6. Besides, r2 > r1,

whence r2 ≥ 7. Note that this bound is attained for Γ2 = 〈4, 6, 7〉.
Assume that h ≥ 3, and that the formula is true for h − 1. We have rh ≥ rh−1 + 1 and rh ∈

〈

r0
dh
, . . . ,

rh−1

dh

〉

. By induction hypothesis, we have
rh−1

dh
≥ 2h−1. Hence rh ≥ 2(2h−1)+1 = 2h+1−1.

Note that this bound is reached by Γh = 〈2h, 3 ·2h−1, 7 ·2h−2, . . . , (2k+1−1) ·2h−k, . . . , 2h+1−1〉. �

As in the free case, we can describe a bound for the embedding dimension of a telescopic numerical
semigroup.

Proposition 20. Let Γ be a telescopic numerical semigroup other than N. Then

(e(Γ)− 2)2e(Γ) + 2 ≤ c(Γ).
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Proof. Assume that Γ is minimally generated by {r0 < · · · < rh}. Denote as usual c(Γ) by c. We
use once more induction on h.

The case h = 1 is evident.
Suppose that h ≥ 2, and that our inequality is true for h− 1. By (2), we have c = dhch−1+(dh−

1)(rh − 1). By induction hypothesis, ch−1 ≥ (h − 2)2h + 2, and as dh ≥ 2, and rh ≥ 2h+1 − 1, we
get c ≥ (h− 2)2h+1 + 4 + 2h+1 − 2 = (h− 1)2h+1 + 2. �

Note that for all h ≥ 2, ch−1 =
c− (dh − 1)(rh − 1)

dh
is an even integer, and that c = ch ≥

(h− 1)2h+1 + 2. In particular

−ch−1dh ≤ −
(

(h− 2)2h + 2
)

dh.

Hence
(rh − 1)(dh − 1) ≤ c−

(

(h− 2)2h + 2
)

dh.

This gives us the following upper bound for rh:

rh ≤ c

dh − 1
−

(

(h− 2)2h + 2
) dh
dh − 1

+ 1 ≤ c− (h− 2)2h − 1.

Corollary 21. For all h ≥ 2, we have

2h+1 − 1 ≤ rh ≤ c

dh − 1
−

(

(h− 2)2h + 2
) dh
dh − 1

+ 1 ≤ c− (h− 2)2h − 1.

Remark 22. For computing the set of all telescopic numerical semigroups with fixed Frobenius
number, we proceed as in the free case, ensuring that rh is larger than the largest generator of Γ1

multiplied by dh. Notice that dh must now be smaller than rh.

5. Plane curve singularities

Let Γ be the numerical semigroup minimally generated by {r0 < r1 < . . . < rh}. Let dk, Γk,
ck, and ek be as in the preceding section. The numerical semigroup Γ is the numerical semigroup
associated to an irreducible plane curve singularity if Γ is telescopic and ekrk < rk+1 for all k =
1, . . . , h− 1 (see [19]).

Proposition 23. Let Γ be the semigroup associated to an irreducible plane curve singularity mini-
mally generated by {r0 < · · · < rh}, with h ≥ 2. Then rh ≥ 1

3(5 · 22h−1 − 1).

Proof. For h = 2, as Γ1 =
〈

r0
d2

< r1
d2

〉

, we obtain r1
2 ≥ 3. Since d2 ≥ 2, we deduce that r1 ≥ 6.

The plane singularity condition implies r2 > e1r1 ≥ 12, because we know that e1 ≥ 2 (Lemma 16).
Hence r2 ≥ 13.

Assume that h ≥ 3, and that the formula is true for h − 1. The plane singularity condition
for k = h − 1 implies that rh ≥ rh−1

dh
dh−1 + 1. The quotient

rh−1

dh
is the largest generator of

Γh−1. The induction hypothesis then asserts that
rh−1

dh
≥ 1

3(5 · 22(h−1)−1 − 1). By using that

ek ≥ 2 for all k (Lemma 16), we deduce that dh−1 ≥ 4. By putting all this together, we get

rh ≥ 4(13 (5 · 22(h−1)−1 − 1)) + 1 = 1
3(5 · 22h−1 − 1). �

Proposition 24. Let Γ 6= N be the semigroup associated to an irreducible plane curve singularity
minimally generated by {r0 < · · · < rh} and with conductor c. Then

c ≥ 5

3
22h − 3 · 2h + 4

3
.

Proof. The case h = 1 is evident.
Assume that h ≥ 2 and that our inequality holds for h−1. We have: c = dhch−1+(dh−1)(rh−1).

By induction hypothesis ch−1 ≥ 5
32

2h−2 − 3 · 2h−1 + 4
3 . Notice that dh ≥ 2. Thus our assertion

follows from Proposition 23. �
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We proceed now as we did in the telescopic case to obtain also an upper bound for rh. Note that

for all h ≥ 2, ch−1 =
c−(dh−1)(rh−1)

dh
is an even integer, and that ch−1 ≥ 5

32
2h−2 − 3 · 2h−1 + 4

3 . Thus

−ch−1dh ≤ −
(

5

3
22h−2 − 3 · 2h−1 +

4

3

)

dh.

Hence

(rh − 1)(dh − 1) ≤ c−
(

5

3
22h−2 − 3 · 2h−1 +

4

3

)

dh.

This gives us the following upper bound for rh.

rh ≤ c

dh − 1
−

(

5

3
22h−2 − 3 · 2h−1 +

4

3

)

dh
dh − 1

+ 1.

Corollary 25. For all h ≥ 2, we have

5

3
22h−1 − 1

3
≤ rh ≤ c

dh − 1
−

(

5

3
22h−2 − 3 · 2h−1 +

4

3

)

dh
dh − 1

+ 1 ≤ c− 5

3
22h−2 − 3 · 2h−1 +

7

3
.

A bound for the embedding dimension also follows from the above proposition.

Corollary 26. If h ≥ 2, then

h ≤ log2

(
√
60 c + 1 + 9

10

)

.

Proof. From Proposition 24, 5
32

2h − 3 · 2h + 4
3 ≤ c. Write x = 2h, we get 5/3x2 − 3x + 4

3 ≤ c.

By solving 5/3x2 − 3x + 4
3 − c = 0, we get x ∈

{

−
√
60 c+1−9

10 ,
√
60 c+1+9

10

}

. As the minimum of

5/3x2−3x+ 4
3 −c is reached in x = 9/10, and in our setting x = 2h > 1, we have that the maximum

possible x > 0 such that 5
32

2h − 3 · 2h + 4
3 ≤ c is x =

√
60 c+1+9

10 . �

Remark 27. The set of all numerical semiogrups with fixed Frobenius number associated to an
irreducible planar curve singularity is calculated as in the free case, by imposing the condition
ekrk < rk+1.

6. Experimental results

With the ideas given in the preceding sections, we implemented in GAP ([8]), with the help of
the numericalsgps package ([7]), functions to compute the set of all complete intersection, free
and telescopic numerical semigroups, as well as the set of all numerical semigroups associated to
irreducible planar curve singularities with fixed Frobenius number (these functions will be included
in the next release of this package).

The following table was computed in 6932 milliseconds on a 2.5GHz desktop computer, and it
shows, for fixed genus g, the number of complete intersections (ci(g)), free (fr(g)), telescopic (tl(g)),
associated to an irreducible planar curve singularity (pc(g)) numerical semigroups, respectively.
Recall that for a symmetric numerical semigroup its conductor is twice its genus.

Observe that almost all complete intersections in this table are free. This is due to the fact that
the embedding dimension of all numerical semigroups appearing there is small, and for embedding
dimension three or less, the concepts of free and complete intersections coincide (among the complete
intersection numerical semigroups represented in the table 158 of them have embedding dimension
2, 1525 have embedding dimension 3, 1862 have embedding dimension 4, and 205 have embedding
dimension 5).
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g ci(g) fr(g) tl(g) pc(g) g ci(g) fr(g) tl(g) pc(g) g ci(g) fr(g) tl(g) pc(g)
0 1 1 1 1 19 24 24 12 5 38 61 61 37 12
1 1 1 1 1 20 16 16 11 6 39 100 100 52 16
2 1 1 1 1 21 27 27 18 9 40 110 109 54 19
3 2 2 2 2 22 31 31 19 8 41 80 79 47 12
4 3 3 2 2 23 21 21 13 6 42 122 120 61 20
5 2 2 2 1 24 36 35 20 11 43 120 120 60 17
6 4 4 4 3 25 38 38 22 9 44 94 94 48 15
7 5 5 3 2 26 27 27 16 8 45 143 142 73 22
8 3 3 2 2 27 46 46 24 11 46 151 149 72 21
9 7 7 5 4 28 45 45 25 10 47 108 106 57 15
10 8 8 6 4 29 34 33 20 7 48 158 157 75 24
11 5 5 4 2 30 57 57 32 13 49 179 179 84 23
12 11 11 8 5 31 62 62 31 9 50 128 128 68 20
13 11 11 8 3 32 43 43 25 10 51 197 194 86 26
14 9 9 7 4 33 65 65 37 14 52 209 207 89 27
15 14 14 10 6 34 77 76 39 13 53 142 142 76 20
16 17 17 9 5 35 53 52 29 11 54 229 227 101 30
17 12 12 8 3 36 84 83 43 17 55 238 235 104 29
18 18 18 12 6 37 90 90 47 13 56 172 169 83 24

The largest genus, for which the set of numerical semigroups with this genus is known, is 55,
and the number of numerical semigroups with genus 55 is 1142140736859 ([6]), while there are just
2496 symmetric numerical semigroup with genus 55 (this last amount can be computed by using the
IrreducibleNumericalSemigroupsWithFrobeniusNumber command of the numericalsgps pack-
age). The proportion of complete intersections among symmetric numerical semigroups is small,
and tiny compared with the whole set of numerical semigroups.
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Also as one of the referees observed, local minimums in the graph are attained when the genus
is congruent with 2 modulo 3. We have not a proof for this fact. May be this behavior is inherited
from the symmetric case. The sequence

1, 1, 1, 2, 3, 3, 6, 8, 7, 15, 20, 18, 36, 44, 45, 83, 109, 101, 174, 246, 227, 420, 546, 498, 926, 1182, 1121,
2015, 2496, 2436, 4350, 5602, 5317, 8925, 11971, 11276,

represents the number of symmetric numerical semigroups with genus ranging from 0 to 35.
The following table shows that the proportion between complete intersections and free numerical

semigroups remains similar even for larger genus. Observe that for genus 310 it takes 70 minutes
to compute the set of all complete intersections, while it takes approximately 8 minutes and 30
seconds to determine all free numerical semigroups with this genus. For genus 55, computing the
set of all numerical semigroups with this genus might take several months and a few terabytes (this
was communicated to us by Manuel Delgado, see [6]).

g ci(g) milliseconds fr(g) milliseconds fr(g)/ci(g)

220 18018 538213 17675 94134 0.98
230 16333 660838 16026 108187 0.98
240 24862 924409 24359 153069 0.98
250 28934 1167901 28355 158706 0.98
260 25721 1389167 25186 177691 0.98
310 66335 4206374 64959 509691 0.98
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[15] J. C. Rosales, P. A. Garćıa-Sánchez, On free affine semigroups, Semigroup Forum 58 (1999), no. 3, 367-385.
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