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CONSTRUCTING THE SET OF COMPLETE INTERSECTION NUMERICAL
SEMIGROUPS WITH A GIVEN FROBENIUS NUMBER

A. ASSI AND P. A. GARCIA-SANCHEZ

ABSTRACT. Delorme suggested that the set of all complete intersection numerical semigroups can
be computed recursively. We have implemented this algorithm, and particularized it to several
subfamilies of this class of numerical semigroups: free and telescopic numerical semigroups, and
numerical semigroups associated to an irreducible plane curve singularity. The recursive nature of
this procedure allows us to give bounds for the embedding dimension and for the minimal generators
of a semigroup in any of these families.

1. INTRODUCTION

Let N denote the set of nonnegative integers. A numerical semigroup I is a submonoid of N with
finite complement in N (this condition is equivalent to ged(I') = 1). If T' is a numerical semigroup,
the elements in N\T" are the gaps of T, and its cardinality is the genus of T', g(T"). The largest integer
not in I is called the Frobenius number of ', and will be denoted by F(T'). Clearly, F(I')+1+N C T,
and this is why ¢(I") = F(T') 4+ 1 is known as the conductor of I'.

e

Since for every x € I', F(I') — 2 cannot be in I', we deduce that g(I') > =5=. We say that I is
symmetric when the equality holds, or equivalently, for every integer x, x ¢ I" implies F(I') —x € T".
In this setting, ¢(I") is an even integer, and thus F(T") is odd.

It can be easily proved that any numerical semigroup admits a unique minimal generating system
(every element is a linear combination of elements in this set with nonnegative integer coefficients and
none of its proper subsets fulfills this condition; see for instance [13, Chapter 1]). If A = {ro,...,m}
is the minimal generating set of I', then its elements are called minimal generators, and its cardinality
is the embedding dimension of I, e(T").

The map

N@) = T, o(ag,...,an) = agro + -+ + anrh,

is a monoid epimorphism. Hence T is isomorphic to Ne(') / ker o, where ker ¢ = {(a,b) € Ne() x
N | p(a) = p(b)} (which is a congruence on Ne()),

A presentation for I' is a set of generators of the congruence ¢, and a minimal presentation is
a set of generators minimal with respect to set inclusion (actually, in our setting also with respect
to cardinality; see [13, Corollary 8.13]). It can be shown that the cardinality of any minimal
presentation is greater than or equal to e(I') — 1, [13, Theorem 9.6]. A numerical semigroup is a
complete intersection if this equality holds.

Given A a set positive integers, and A = A; U As a non trivial partition of A, we say that A
is the gluing of A; and Aj if lem(d;,d2) € (A1) N (Ag), where d; = ged(4;) and (A;) denotes
the monoid generated by A;, ¢ = 1,2. If A is the minimal system of generators of I', and I'; is
the numerical semigroup generated by A;/d;, i = 1,2, we also say that I' is the gluing of T'; and
[y. Tt turns out that dy € Ty, do € T'q, ged(dy,d2) = 1, and neither d; is a minimal generator of
I’y nor dy is a minimal generator of I'; ([13, Section 8.3]). Delorme proved in [4, Proposition 9]
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2 A. ASSI AND P. A. GARCIA-SANCHEZ

that a numerical semigroup is a complete intersection if and only if it is a gluing of two complete
intersection numerical semigroups (though with a different notation; the concept of gluing was
introduced in [11]). The gluing of symmetric numerical semigroups is symmetric ([4, Proposition
10 (iii)]), and as a consequence of this, complete intersections are symmetric.

In [14] there is a procedure to construct the set of all numerical semigroups with a given Frobenius
number. We show in this manuscript how can we use the concept of gluing to compute the set of all
complete intersection numerical semigroups with a given Frobenius number (or equivalently with
fixed genus). Recently there have been some experimental results that point out to the possibility
that the number of numerical semigroups with a fixed genus has a Fibonacci like behaviour ([3]).
However there is not even a proof that there are more numerical semigroups with genus g + 1
than numerical semigroups with genus g. This is not the case for complete intersection numerical
semigroups, as we see in the last section.

We also show how to calculate the set of all free (in the sense of [1]) numerical semigroups, which a
special subclass of complete intersections, the set of all telescopic numerical semigroups (contained in
the set of free numerical semigroups), and that of numerical semigroups associated to an irreducible
plane curve singularity (these are a particular case of telescopic numerical semigroups).

The recursive nature of gluing also allows us to give some bounds for the generators and embed-
ding dimension for these families of semigroups when we fix the Frobenius number. The deeper we
go in the chain of inclusions given in the preceding paragraph, the smaller are the bounds.

2. THE FROBENIUS NUMBER AND MULTIPLICITY OF A COMPLETE INTERSECTION

Let I" be a numerical semigroup. We know that I is a complete intersection if and only if it is the
gluing of two complete intersections. Delorme (though with a different notation) highlighted in [4,
Section 11] that this fact can used to determine if a numerical semigroup is a complete intersection
(this idea has already been exploited in [2]; and for affine semigroups in [12]), and also to compute the
set of all complete intersections. In order to construct the set of all complete intersection numerical
semigroups with given Frobenius number, we can proceed recursively by using the following formula
for the Frobenius number of the gluing of two numerical semigroups, which is just a reformulation
of Delorme’s description of the conductor of a gluing.

Proposition 1. Assume that T is a numerical semigroup minimally generated by A = A1 U Aa,
and that A is the gluing of A1 and Ay. Let di = ged(Ay), do = ged(Az), and d = didy. Define
Fl = <A1/d1> and FQ = (Ag/d2> Then

F(F) = le(Fl) + dgF(Fg) + dqds.
Proof. Observe that I' = d;I'y + daI's. By [4, Proposition 10 (i)],
C(P) = dlc(Fl) + dgC(Fg) + (dl — 1)(d2 — 1).

Having in mind the relationship between Frobenius number and conductor, the formula follows
easily. ([l

If we repeat the process with I'y and I's in this result, we construct a decomposition tree of
', whose leaves are copies of N. Assume that d(V),... d" are the possible d’s appearing in this
splitting. The Frobenius number of I is precisely S d® — Y aca @ (see [4, Section 11]).

Example 2. We construct a complete intersection numerical semigroup with four generators, by
gluing two embedding dimension two numerical semigroups.

gap> s:=NumericalSemigroup(10,11);;

gap> t:=NumericalSemigroup(7,9);;

gap> g:=NumericalSemigroup(16+%10,16%11,21%7,21%9);;

gap> FrobeniusNumber(g) ;

2747
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gap> 16*FrobeniusNumber (s)+21*FrobeniusNumber (t)+16%21;
2747

Proposition 3. IfI' is a complete intersection, then
m(T) > 2¢(—1,

Proof. Let h = e(I') — 1. We use induction on h. For h = 1, the statement follows trivially.
As T is a complete intersection, if A is its minimal set of generators, we can find a partition of
A = Ay U As such that A is the gluing of A; and As. Set as above d; = ged(A4;), and T'; = (A;/d;).
Let h; = e(I';) — 1. Hence h = hy +hy +1. By induction hypothesis m(I';) > 2", Recall that d; € T,
and dy € 'y, and they are not minimal generators. Thus d; > 2m(Ty) > 2"2*! and analogously
dy > 2M+1 For every a € Ay, a/d; is a minimal generator of I'y, whence a/d; > 2™ . Therefore

a > 2Mmthatl — 9h  The same argument shows that any element in A, is greater than or equal to
2h. O

Corollary 4. If I is a complete intersection numerical semigroup other than N, then
e(T") <logy(c(T)) + 1.

Proof. By Proposition 3, 2201 < m(I"). Since I' # N, we have that m(T') < ¢(I'), and the bound
follows. .

Proposition 5. Let I' be a complete intersection numerical semigroup other than N, minimally
generated by {ro,...,rp}. If m(T") # 2, for all k, r, < F(T).

Proof. The numerical semigroup I' is symmetric and thus for every i > 0, F(I') + rg —r; € I'. If
ri > F(T'), for some k > 0, then F(T") 4+ ro — ry < 1o, which forces F(T'") + ro = ry.

If h > 1, choose 0 < i # k. Then r, —r; = F(I') + 19 — r; € T, contradicting that 7 is a minimal
generator. This proves rp < F(I'), whenever h > 1.

For h=1,F() = (ro—1)(r;1 —1) — 1. In this setting, I' = (2, f +2) has F(T') = f. For m(T") > 2,
assume without loss of generality that rg < 7. Then F(I') = (ro —1)(r;1 = 1) —=1>2(r —1) -1 =
(T1—1)+(T1—2)ZT1. O

Remark 6. If we want to compute the set of all complete intersection numerical semigroups with
Frobenius number f, then we can use the formula given in Proposition 1. Hence f = di f1 + da fo +
dids, and we recursively construct all possible numerical semigroups with Frobenius number f;, and
then the set with Frobenius number fo. We next give some useful bounds and facts to perform this
task. Denote f + 1 by c.

i) di # 1 # dp. This is because d; € I'y and it is not a minimal generator of I's. The only
possibility to have d; = 1 € 'y would be I'y = N = (1). But then d; would be a minimal
generator. The same argument is valid for ds.

ii) Since ged{d;,ds} = 1, we can assume without loss of generality that 2 < dy < d;.

iii) Since fl,fg > —1, f > —dl — d2 + d1d2 = (dl - 1)(d2 - 1) — 1. Hence
a) ¢ > (do —1)2, and thus dy < /e + 1;
b) dy < g5 + 1
and consequently dy < min{d; — 1,/c+ 1, Tc—l + 1}

iv) If f; = —1, then f —d;f; =0 mod f;, {i,j} = {1,2}.

v) dy < f, except in the case I' = (2 = dy, f + 2 = d3).

a) If fi = fo = —1, then 'y =T’y = N, and the gluing is (dy < d;). If dy # 2, then Proposition
5, asserts that do < f.

b) If fo >0, then f > —d; +do +dydy = (dy + 1)(da — 1) +1 > dy + 2. Hence d; < f — 2.

c) If f1 >0, then f > d; —dy + didy :(dl—l)(d2+1)+l >3(dy — 1) > d;.
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vi) If f1 # —1 # fo, then f — dydy € (dy,d2). We are only interested in factoriations f — dijds =
a1dy + asda, a1,a2 € N, with a1 = a9 = 1 mod 2, since the Frobenius number of a complete
intersection is an odd integer.

Example 7. We compute the set of all complete intersection numerical semigroups with Frobenius
number 11. First not that (2,13) is in this set. The possible d; belong to {3,...,10}.

e di = 10. Then 2 < dp < min{9, [2] + 1, [V12] + 1} = 2. Hence dp must be 2, but then
ged{dy,ds} # 1, and we have no complete intersections under these conditions.
e d; =9. Then 2 < dp < min{8, |22] +1,|V12] + 1} = 2. This forces dy = 2, which in
addition is coprime with 9.
— 1149 = 0mod 2, and thus fi = —1 (I'; = N) is a possible choice. In this setting
fo=(11-18+0) / 2 =1, whence Fg (2,3). We obtain a new complete intersection
' =9N +2(2,3) = (4,6, 9> because 9 € (2,3) is not a minimal generator.
— 11 +2#0mod 9, so fy cannot be —1.
— 11— 19 ¢ (2,9), so we have no more complete intersections with this data.
e For di = 8, we have 2 < dy < min{7, |2 + 1, [V/12] + 1} = 2. However gcd{dy,d>} # 1.
o If dy =7, then 2 < dy < min{6, [22| + 1, [V12] + 1} = 3.
—do = 2.
% 11 +7 = 0mod 2, and thus I'y can be N. But then fo = (11 — 144 7)/2 = 2,
which is even. So this case cannot occur.
* 1142 # 0 mod 7, and so I's will not be N.
« Finally, 11—14 & (2,7), so no complete intersections can be found with properties.
—dy = 3.
* 1147 =0 mod 3, and thus I'; could be N. In this setting fo = (11 —-21+7)/3 =
—1, and so I'g is also N. We get a new complete intersection I' = TN+ 3N = (3,7)
with Frobenius number 14.
x 11 —21 ¢ (3,7), so no more complete intersections are obtained for this choice of

)

dl and dg.
e For d; =6, 2 < dy < min{5, [22] +1,[V12] 4+ 1} = 3, but both 2 and 3 are not coprime
with 6.
o dy = 5. Then ds € {2,3,4).
— do = 2.

% 11 +5 = 0 mod 2, and so I'; can possibly be N. Hence fo = (11 — 10+ 5)/2 =
3. The only possible complete intersection numerical semigroup with Frobenius
number 3 is (2,5). But 5 is a minimal generator of this semigroup.
* 1142 #Z 0 mod 5.
x 11 —10 ¢ (2,5).
— dy = 3. In this case 11+ 5 # 0 mod 3, 11 + 3 # 0 mod 5, and 11 — 15 ¢ (3, 5).
—doy = 4.
%« 114+5 =0mod 4, and fo = (11 =20+ 5)/4 = —1. SoI' = 5N +4N = (4,5) is
another complete intersection with Frobenius number 11.
« 11— 20 & (4,5).
o di =4,2<dy <min{3, [ ] +1,[VI2] + 1} = 3, and as gcd{2,4} # 1, we get dp = 3.
— 1144 = 0mod 3. So I'y could be N. If this is the case, fo = (11 — 12+ 4)/3 =1,
which forces T'y to be (2,3), and 4 € I's is not a minimal generator. So we obtain
I' = 4N+ 3(2,3) = (4,6,9), which was already computed before.
— 1143 # 0 mod 4.
—11-12¢ (3,4)
e d3 =3 and dy = 2.



COMPLETE INTERSECTIONS WITH FIXED FROBENIUS NUMBER 5

— 1143 =0mod 2, and I'y = N can be a possibility. Then fo = (11—-6+3)/2 = 7. If we
apply this procedure recursively for f = 7, we obtain that {(2,9), (3,5),(4,5,6)} is the
set of all possible complete intersection numerical semigroups with Frobenius number
7. However, 3 ¢ (2,9), 3 is a minimal generator of (3,5), and 3 & (4,5,6).

— 11+ 2 # 0 mod 3.

—11-6=5€(2,3),and 5=1-2+1-3 is the only factorization. So the only possible
choice for fi and fo is 1. This means that I’y and T'y must be (2,3). Again we obtain
no new semigroups, since 2 and 3 are minimal generators of (2, 3).

Thus the set of complete intersection numerical semigroups with Frobenius number 11 is

{(2,13),(4,6,9), (3,7), (4,5)}.

3. FREE NUMERICAL SEMIGROUPS

Throughout this section, let I be the numerical semigroup I minimally generated by {rg,...,7}.
For k€ {1,...,h+ 1}, set d, = ged{ro,...,rk—_1} (d1 = ro).

Write 'y, = <%,...,ﬁil>, and ¢ = c(I'y) for all k € {1,...,h}. Set c = ¢, = c(I').

We say that T is free if either A = 0 (and thus ro = 1) or I is the gluing of the free numerical semi-

group I',_1 and N. Free numerical semigroups were introduced in [1]. For other characterizations
and properties of free numerical semigroups see [13, Section 8.4].

Example 8. Notice that the order in which the generators are given is crucial. For instance,
S = (8,10,9) is free for the arrangement (8,10,9) but it is not free for (8,9,10). And a numerical
semigroup can be free for different arrangements, for example, S = (4,6,9) has this property.

If we take cg, . . . , ¢ pairwise coprime integers greater than one, and r; = H?ZO’i# ¢, j=0,...,h,
then the numerical semigroup generated by {rg,...,r,} is free for any arrangement of its minimal
generating set (see [8]).

According to Proposition 1, with As = {r,}, we obtain the following consequence.
Corollary 9. If T is free, then
F(T) = dp,F(Ty-1) + ra(dp — 1).

In this way we retrieve Johnson’s formula ([9]). Notice also that IV is again free, so if we expand
recursively this formula we obtain the formula given by Bertin and Carbonne for free numerical
semigroups (see [1]; these authors named these semigroups in this way).

This equation can be reformulated in terms of the conductor as
(1) o(T) = cp = dpep—1 + (dp — 1) (rp, — 1).

Lemma 10. If I is free, then
(1) ng{dh,T‘h} =1
(2) dp, | F(T') + 7y, (consequently d fF(T));
(8) if we define e, = dfﬁ,k =1,...,h, then exry € (ro,...,15—-1), for all k = 1,...,h; in
particular, ep > 2;
(4) dq >d2(? e >dp =15
r
(5) dp, < - 1 +1;

Th

(6) for h>1, (dy — 1)(ry, — 1) > 2",

Proof. (1) This follows from the fact that I" is a numerical semigroup, and thus ged{dp,r,} =
dp+1 =1
(2) F(Ph_l) = (F(P) + Th(l — dh))/dh = (F(F) + Th)/dh — 1.
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(3) As T is the gluing of T'y_; and N, we have tha (TQy . vy Th—1)-
If e, =1, then ri € (ro,...,rk-1), contradicting that T 1S a nnnlrnal generator.

(4) By definition, dj > dgy1. As e = d

(5) Notice that F(I') > (r, — 1)(dp, — 1) — 1 since F(T'p,_1) > —1.

(6) If dp, = 2, then we show that r;, > m(I"). Assume to the contrary that r, = m(I"). Then we
already proved above that epry € (ro, .. rh 1). Since e}, = dh and 7; is a minimal generator
of T for all 7, we deduce that 2r), = Z? o ;T, with ZZ o @i > 2. As r; > 7y, for every
1 =0,...,h—1, we get 2r, > 1y, ZZ o @i, and thus ZZ o @i < 2, a contradiction. Thus in
view of Proposition 3, we have that r, > 2", and if dj, = 2, then rj, > 2"+1. Hence for dj, = 2
the proof follows easily, and for dj, > 2 we get (dj, — 1)(7’h —1)>2(rp—1) >2(2h —1) > 2"
(we are assuming h > 1).

O
The following result gives a bound for the embedding dimension of a free numerical semigroup.

Proposition 11. Let I' be a free numerical semigroup. If I' # N, then
(e() — 1)2¢M=1 < ¢(T).

Proof. Assume that I is minimally generated by {rg,...,r,}, and write ¢ = ¢(I"). We use induction
on h. For h=1,c= (ro —1)(r1 — 1), ro > 2, and 7 > ro (otherwise I' = N, and h = 0). Hence
max(rg,71) > 3, and our assertion follows.

Suppose that A > 2, and that our inequality holds for h—1. By (1), ¢ = dpcp—1+ (dp — 1) (rp —1).
By induction hypothesis, c;—; > (h — 1)2"7!, and as dj, > 2, and (dj, — 1)(r, — 1) > 2" (Lemma
10), we deduce ¢ > 2(h — 1)2/=1 + 2k = p2h, O

For all h > 2, ¢j,_1 = % is an even integer, and ¢ = ¢, > h2". In particular,

—cp_1dy, < —(h—1)2"1dy,.
Hence
(rn = 1)(dp — 1) < c— (h—1)2"""d,
This gives us the following upper bound for r,.
dp,

(h— 1)1
(h—1)2 i

< C
h dh —
Corollary 12. For all h > 2,

d

4 l<m<— —(h—12"1- M 1< (h—1)2 41
dp —1 dp—1

Remark 13. In order to compute the set of all free numerical semigroups with a given Frobenius

number, we make use of the formula given in Corollary 9, by taking into account the restrictions

given in this section for dj and rp,.

4. TELESCOPIC NUMERICAL SEMIGROUPS

We keep using the same notation as in the preceding section. We say that the numerical semigroup
I’ minimally generated by {ro < --- < 7} is telescopic if it is free for the arrangement of the
generators {rg, ..., } (see for instance [10]).

Notice that in addition to the properties we had for free numerical semigroups, if I is telescopic,
then

(1) dp < rp, because dy, | rp—1 < 1p;
(2) F(T') > (rp, —1)(dp, — 1) —1 > (dj, — 1)®> — 1, whence d;, < min {rh -1, C(Fl +1,4/c(l) + 1}
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Proposition 14. Let T be a telescopic numerical semigroup minimally generated by {ro < --- < rp}.
If h > 2, then r, > 21 — 1.

Proof. Let h =2, and let 'y = <2—g, 2—;> Since 2—; > 3 and dy > 2, we have r; > 6. Besides, ro > rq,
whence r9 > 7. Note that this bound is attained for I'y = (4,6, 7).

Assume that h > 3, and that the formula is true for h — 1. We have r, > r,_1 + 1 and rp, €
<2—° ol T’C‘[l > By induction hypothesis, we have T’Zi—*l > 2" 1. Hence rj, > 2(2" —1)4+1 = 2"+ 1.
h h h

Note that this bound is reached by I';, = (2",3.20=1 7.2h=2  (2k+1 _1).2h=k  oh+l_1) 0O

As in the free case, we can describe a bound for the embedding dimension of a telescopic numerical
semigroup.

Proposition 15. Let I' be a telescopic numerical semigroup other than N. Then
(e(T') — 2)2¢M) 42 < ¢(T).

Proof. Assume that I' is minimally generated by {ro < --- < r,}. Denote as usual ¢(I") by ¢. We
use once more induction on h.

Embedding dimension two telescopic numerical semigroups are free, and thus the case h = 1
follows from Proposition 11.

Suppose that h > 2, and that our inequality is true for h — 1. By (1), we have ¢ = dpcp—1 + (dp, —
1)(r, — 1). By induction hypothesis, c;_1 > (h — 2)2" +2, and as dj, > 2, and 7, > 2" — 1, we
get ¢ > (h —2)2Mt 4420 — 2 = (b —1)2h*1 42, O

c—(dp—1)(rp — 1)
dp

Note that for all A > 2, ¢;_1 = is an even integer, and that ¢ = ¢, >

(h —1)2"*1 + 2. In particular
—cpordy < —((h —2)2" +2)dy,.
Hence
(rn, — 1)(dp, — 1) < ¢ — ((h — 2)2" + 2)d,.
This gives us the following upper bound for ry:

dp,

1<c—(h—2)2" 1.
dh_1+ <c—( )

C
rhgdh_l—((h—2)2h+2)

Corollary 16. For all h > 2, we have

c dy,
—((h—2)2" +2

dp, — 1 (( ) + ) dp, — 1

Remark 17. For computing the set of all telescopic numerical semigroups with fixed Frobenius

number, we proceed as in the free case, ensuring that rj is larger than the largest generator of I'y

multiplied by dj,. Notice that d; must now be smaller than 7.

ohtl 1<, < +1<c—(h—2)2"—1.

5. PLANE CURVE SINGULARITIES

Let T' be the numerical semigroup minimally generated by {ro < r1 < ... < rp}. Let d, Ty,
¢k, and e, be as in the preceding section. The numerical semigroup I is the numerical semigroup
associated to an irreducible plane curve singularity if I' is telescopic and exry < rp41 for all k =
1,...,h —1 (see [16]).

Proposition 18. Let I' be the semigroup associated to an irreducible a plane curve singularity
minimally generated by {ro < --- < rp}, with h > 2. Thenry, > 12-4}‘_2—1—2?:_02 4t = %(5-2%_1—1).
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Proof. For h = 2, as 'y = <2—g < 2—;>, we obtain 3 > 3. Since dp > 2, we deduce that r; > 6.
The plane singularity condition implies ro > ey > 12, because we know that e; > 2 (Lemma 10).
Hence ro > 13.

Assume that h > 3, and that the formula is true for h — 1. The plane singularity condition for
k = h — 1 implies that r;, > T’Zi;ldh_l + 1. The quotient T’C‘l: is the largest generator of I'j,_1. The
induction hypothesis then asserts that 1“2_;1 > 12,403 4 Z?:_(? 4*. By using that e; > 2 for all k
(Lemma 10), we deduce that dj,_; > 4. By putting all this together, we get r, > 4(12 - 43 4
Sy 1 =12.4h2 4 240 O
Proposition 19. Let I' # N be the semigroup associated to an irreducible plane curve singularity
minimally generated by {ro < --- < ah} and with conductor c. Then

2h—4
4
c>2+4+2) 4412 2 = 2% 3.2 .
Z +12 ) +3
i=h—2
Proof. Since for h = 1 the plane singularity condition adds nothing to the telescopic condition, the
embedding dimension two case follows from Proposition 11.

Assume that h > 2 and that our inequality holds for h—1. We have: ¢ = dpcp_1+ (dp—1)(rp—1).
By induction hypothesis ¢;,_1 > 2+2 Z?:_g’ 4412 Z?Z;E?) 2¢. Notice that dj, > 2. Thus our assertion
follows from Proposition 18. O

We proceed now as we did in the telescopic case to obtain also an upper bound for r;. Note that
forall h > 2, ¢j_1 = C_(d%h)(rh_l) is an even integer, and that ¢,_1 > %2%_2 —3.2h-1 4 %. Thus

5 4
—Ch_ldh é - <§22h_2 - 3 . 2h_1 + §> dh

Hence

5 4
(rp—1)(dp —1) < c— <§22h—2 —3.21 §> dp.

This gives us the following upper bound for ry,.
c 5 4 dh
< 292h-2 _ g oh-1
TS ST (3 T3 a1
Corollary 20. For all h > 2, we have

5. 0n-1 1 c 5 2h—2 -1, 4\ dn 5 jon—2 h—1
-2 < < -2 —-3-2 — 1< -2 —-3-2
3 T3 o1 <3 T3 dh—1+ 73 +

A bound for the embedding dimension also follows from the above proposition.

Corollary 21. If h > 2, then

Wl

V60c+1+9
h<logy (75— ).

Proof. From Proposition 19, 52 —3.2" + 3 < c. Write z = 2", we get 5/32% — 3z + § < c.

By solving 5/32% — 3z + % —c =0, we get x € {—‘/60%'“'9, \/60?01-1—1—9}' As the minimum of

5/3x% — 3z + % —cis reached in z = 9/10, and in our setting = 2" > 1, we have that the maximum
possible x > 0 such that gZQh—3-2h+% gcisxziw). O

Remark 22. The set of all numerical semigroups with fixed Frobenius number associated to an
irreducible planar curve singularity is calculated as in the free case, by imposing the condition
exTr < Thks1-
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6. EXPERIMENTAL RESULTS

With the ideas given in the preceding sections, we implemented in GAP ([7]), with the help of
the numericalsgps package ([6]), functions to compute the set of all complete intersection, free
and telescopic numerical semigroups, as well as the set of all numerical semigroups associated to
irreducible planar curve singularities with fixed Frobenius number (these functions will be included
in the next release of this package).

The following table was computed in 6932 milliseconds on a 2.5GHz desktop computer, and it
shows, for fixed genus g, the number of complete intersections (ci(g)), free (fr(g)), telescopic (tl(g)),
associated to an irreducible planar curve singularity (pc(g)) numerical semigroups, respectively.
Observe that almost all complete intersections in this table are free. This is due to the fact that
the embedding dimension of all free semigroups appearing here is at most 4, because of the bound
given in Proposition 11 (4 - 2* = 64 > 55). For embedding dimension three or less, the concepts of
free and complete intersections coincide.

g |ci(g) | fr(g) | tl(g) | pe(e) | & | ci(g) | fr(g) | tl(g) | pe(e) | & | ci(g) | fr(g) | tl(g) | pc(g)
0 |1 1 T |1 1924 |24 [12 |5 3861 |61 |37 |12
1|1 1 1|1 20016 |16 |11 |6 39(100 | 100 |52 |16
2 |1 1 1|1 21127 |27 |18 |9 40 | 110 | 109 |54 |19
312 |2 |2 |2 2231 |31 |19 |8 41180 |79 |47 |12
413 |3 |2 |2 23121 |21 |13 |6 420122 [120 |61 |20
512 |2 |2 |1 24136 |35 |20 |11 [43]120 [120 |60 |17
6 (4 |4 |4 |3 2538 |38 |22 |9 4494 |94 |48 |15
715 |5 |3 |2 2|27 |27 |16 |8 45 (143 [142 |73 |22
8 [3 [3 |2 |2 27146 |46 |24 |11 [ 46|151 [149 |72 |21
9 |7 |7 |5 |4 2845 |45 |25 |10 | 47]108 |106 |57 |15
108 |8 |6 |4 2934 |33 |20 |7 48 | 158 | 157 |75 |24
1|5 |5 |4 |2 30 (57 |57 [32 |13 [ 49|179 |179 |84 |23
12011 |11 |8 |5 31162 |62 |31 |9 50 (128 | 128 |68 |20
13011 |11 |8 |3 32043 |43 |25 |10 | 51(197 |194 |86 |26
4|9 |9 |7 |4 33065 |65 [37 |14 | 52]209 |207 |89 |27
15|14 |14 |10 |6 34|77 |76 |39 |13 | 53|142 [142 |76 |20
16|17 |17 |9 |5 35(53 |52 [20 |11 | 54(229 |227 |101 |30
17012 |12 |8 |3 36 (84 |83 [43 |17 | 55(238 |235 |104 |29
1818 |18 |12 |6 37090 |90 |47 |13 || 56|172 |169 |83 |24

The largest genus, for which the set of numerical semigroups with this genus is known, is 55,
and the number of numerical semigroups with genus 55 is 1142140736859 ([5]), while there are just
2496 symmetric numerical semigroup with genus 55 (this last amount can be computed by using the
IrreducibleNumericalSemigroupsWithFrobeniusNumber command of the numericalsgps pack-
age). The average of complete intersections among symmetric numerical semigroups is small, and
tiny compared with the whole set of numerical semigroups.
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