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Abstract

We study a class of Piecewise Deterministic Markov Processes with state space
Rd × E where E is a finite set. The continuous component evolves according to a
smooth vector field that is switched at the jump times of the discrete coordinate.
The jump rates may depend on the whole position of the process. Working under
the general assumption that the process stays in a compact set, we detail a possible
construction of the process and characterize its support, in terms of the solutions set of
a differential inclusion. We establish results on the long time behaviour of the process,
in relation to a certain set of accessible points, which is shown to be strongly linked
to the support of invariant measures. Under Hörmander-type bracket conditions, we
prove that there exists a unique invariant measure and that the processes converges to
equilibrium in total variation. Finally we give examples where the bracket condition
does not hold, and where there may be one or many invariant measures, depending on
the jump rates between the flows.

Keywords: Piecewise deterministic Markov Process, convergence to equilibrium,
differential inclusion, Hörmander bracket condition

AMS Classification: 60J99, 34A60

1 Introduction
Piecewise deterministic Markov processes (PDMPs in short) are intensively used in many
applied areas (molecular biology [27], storage modelling [6], Internet traffic [14, 17, 18],
neuronal activity [7, 25],...). Roughly speaking, a Markov process is a PDMP if its
randomness is only given by the jump mechanism: in particular, it admits no diffusive
dynamics. This huge class of processes has been introduced by Davis [10]. See [11, 19] for
a general presentation.

In the present paper, we deal with an interesting subclass of the PDMPs that plays a
role in molecular biology [27, 7] (see also [29] for other motivations). We consider a PDMP
evolving on Rd × E, where d > 1 and E is a finite set, as follows: the first coordinate
moves continuously on Rd according to a smooth vector field that depends on the second
coordinate, whereas the second coordinate jumps with a rate depending on the first one.
Of course, most of the results in the present paper should extend to smooth manifolds.
This class of Markov processes is reminiscent of the so-called iterated random functions in
the discrete time setting (see [12] for a good review of this topic).

We are interested in the long time qualitative behaviour of these processes. A recent
paper by Bakhtin and Hurth [2] considers the particular situation where the jump rates are
constant and prove the beautiful result that, under a Hörmander type condition, if there
exists an invariant measure for the process, then it is unique and absolutely continuous
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with respect to the “Lebesgue” measure on Rd × E. Here we consider a more general
situation and focus also on the convergence to equilibrium. We also provide a basic proof
of the main result in [2].

Let us define our process more precisely. Let E be a finite set, and for any i ∈ E,
F i : Rd 7→ Rd be a smooth vector field. We assume throughout that each F i is bounded
and we denote by Csp an upper bound for the “speed” of the deterministic dynamics:

sup
x∈Rd,i∈E

‖F i(x)‖ 6 Csp <∞.

We let Φi = {Φi
t} denote the flow induced by F i. Recall that

t 7→ Φi
t(x) = Φi(t, x)

is the solution to the Cauchy problem ẋ = F i(x) with initial condition x(0) = x. Moreover,
we assume that there exists a compact set M ⊂ Rd that is positively invariant under each
Φi, meaning that:

∀i ∈ E, ∀t > 0, Φi
t(M) ⊂M. (1)

We consider here a continuous time Markov process (Zt = (Xt, Yt)) living on M ×E whose
infinitesimal generator acts on functions

g : M × E → R,
(x, i) 7→ g(x, i) = gi(x),

smooth1 in x, according to the formula

Lg(x, i) = 〈F i(x),∇gi(x)〉+
∑
j∈E

λ(x, i, j)(gj(x)− gi(x)) (2)

where

(i) x 7→ λ(x, i, j) is continuous;

(ii) λ(x, i, j) > 0 for i 6= j and λ(x, i, i) = 0;

(iii) for each x ∈M , the matrix (λ(x, i, j))ij is irreducible.

The process is explicitly constructed in Section 2 and some of its basic properties
(dynamics, invariant and empirical occupation probabilities) are established. In Section 3.1
we describe (Theorem 3.4) the support of the law of the process in term of the solutions
set of a differential inclusion induced by the collection {F i : i ∈ E}. Section 3.2 introduces
the accessible set which is a natural candidate to support invariant probabilities. We show
(Proposition 3.9) that this set is compact, connected, strongly positively invariant and
invariant under the differential inclusion induced by {F i : i ∈ E}. Finally, we prove that,
if the process has a unique invariant probability measure, its support is characterized in
terms of the accessible set.

Section 4 contains the main results of the present paper. We begin by a slight
improvement of the regularity results of [2]: under Hörmander-like bracket conditions, the
law of the process after a large enough number of jumps or at a sufficiently large time
has an absolutely continuous component with respect to the Lebesgue measure on Rd ×E.
Moreover, this component may be chosen uniformly with respect to the initial distribution.

1meaning that gi is the restriction to M of a smooth function on Rd.
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The proofs of these results are postponed to Sections 6 and 7. We use these estimates
in Section 4.2 to establish the exponential ergodicity (in the sense of the total variation
distance) of the process under study. In Section 5, we show that our assumptions are sharp
thanks to several examples. In particular, we stress that, when the Hörmander condition
is violated, the uniqueness of the invariant measure may depend on the jump mechanism
between flows, and not only on the flows themselves.

Remark 1.1 (Quantitative results). In the present paper, we essentially deal with qual-
itative properties of the asymptotic behavior for a large class of PDMPs. Under more
stringent assumptions, [5] gives an explicit rate of convergence in Wasserstein distance,
via a coupling argument.

Remark 1.2 (Compact state space). The main results in the present paper are still valid
even if the state space is no longer compact provided that the excursions out of some
compact sets are suitably controlled (say with a Lyapunov function). Nevertheless, as shown
in [4], the stability of Markov processes driven by an infinitesimal generator as (2) may
depend on the jump rates. As a consequence, it is difficult to establish, in our general
framework, sufficient conditions for the stability of the process under study without the
invariance assumption (1); results in this direction may however be found in the recent [8].

2 Construction and basic properties
In this section we explain how to construct explicitly the process (Zt)t>0 driven by (2).
Standard references for the construction and properties of more general PDMPs are the
monographs [11] and [19]. In our case the compactness allows a nice construction via
a discrete process whose jump times follow an homogeneous Poisson process, similar
to the classical “thinning” method for simulating non-homogeneous Poisson processes
(see [22, 28]).

2.1 Construction

Since M is compact and the maps λ(·, i, j) are continuous, there exists λ ∈ R+ such that

max
x∈M,i∈E

∑
j∈E,j 6=i

λ(x, i, j) < λ.

Let us fix such a λ, and let

Q(x, i, j) = λ(x, i, j)
λ

, for i 6= j and Q(x, i, i) = 1−
∑
j 6=i

Q(x, i, j) > 0.

Note that Q(x) = (Q(x, i, j))i,j∈E is an irreducible aperiodic Markov transition matrix and
that (2) can be rewritten as

Lg = Ag + λ(Qg − g)

where
Ag(x, i) = 〈F i(x),∇gi(x)〉 and Qg(x, i) =

∑
j∈E

Q(x, i, j)gj(x). (3)

Let us first construct a discrete time Markov chain (Z̃n)n>0. Let (Nt)t>0 be a homogeneous
Poisson with intensity λ; denote by (Tn)n>0 its jump times and (Un)n>0 its interarrival times.
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Let Z̃0 ∈M × E be a random variable independent of (Nt)t>0. Define (Z̃n)n = (X̃n, Ỹn)n
on M × E recursively by:

X̃n+1 = ΦỸn
(
Un+1, X̃n

)
,

P
[
Ỹn+1 = j

∣∣∣X̃n+1, Ỹn = i
]

= Q
(
X̃n+1, i, j

)
.

Now define (Zt)t>0 via interpolation by setting

∀t ∈ [Tn, Tn+1), Zt =
(
ΦỸn

(
t− Tn, X̃n

)
, Ỹn

)
. (4)

The memoryless property of exponential random variables makes (Zt)t>0 a continuous
time càdlàg Markov process. We let P = (Pt)t>0 denote the semigroup induced by (Zt)t>0.
Denoting by C0 (resp. C1) the set of real valued functions f : M × E → R that are
continuous (resp continuously differentiable) in the first variable, we have the following
result.

Proposition 2.1. The infinitesimal generator of the semigroup P = (Pt)t>0 is the operator
L given by (2). Moreover, Pt is Feller, meaning that it maps C0 into itself and, for f ∈ C0,
limt→0 ‖Ptf − f‖ = 0.

The transition operator P̃ of the Markov chain Z̃ also maps C0 to itself, and if Kt and
K̃ are defined by

Ktg(x, i) = g
(
Φi
t(x), i

)
and K̃f =

∫ ∞
0

λe−λtKtfdt, (5)

then P̃ can be written as:

P̃ g(x, i) = E
[
g(Z̃1)

∣∣∣Z0 = (x, i)
]

=
∫ ∞

0
KtQg(x, i)λe−λtdt

= K̃Qg(x, i). (6)

Proof. For each t > 0, Pt acts on bounded measurable maps g : M × E → R according to
the formula

Ptg(x, i) = E [g(Zt)|Z0 = (x, i)] .

For t > 0 let Jt = KtQ. It follows from (4) that

Ptg =
∑
n>0

E
[
1{Nt=n}JU1 ◦ · · · ◦ JUn ◦Kt−Tng

]
(7)

By Lebesgue continuity theorem and (7), Ptg ∈ C0 whenever g ∈ C0. Moreover, setting
apart the first two terms in (7) leads to

Ptg = e−λtKtg + λe−λt
∫ t

0
KuQKt−ug du+R(g, t) (8)

where |R(g, t)| 6 ‖g‖P [Nt > 1] = ‖g‖ (1− e−λt(1 + λt)). Therefore limt→0 ‖Ptg − g‖ = 0.
The infinitesimal generator of (Kt) is the operator A defined by (3). Thus 1

t (Ktg−g)→
Ag, therefore, by (8),

Ptg − g
t

−−→
t→0

Ag − λg + λQg,

and the result on (Pt) follows. The expression (6) of P̃ is a consequence of the definition
of the chain. From (6) one can deduce that P̃ is also Feller.
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Remark 2.2 (Discrete chains and PDMPs). The chain Z̃ records all jumps of the discrete
part Y of the PDMP Z, but, since Q(x, i, i) > 0, Z̃ also contains “phantom jumps” that
cannot be seen directly on the trajectories of Z.

Other slightly different discrete chains may crop up in the study of PDMPs. The
most natural one is the process observed at (true) jump times. In another direction, the
chain (Θn)n∈N introduced in [9] corresponds (in our setting) to the addition of phantom
jumps at rate 1. For this chain (Θn), the authors prove (in a more general setting)
equivalence between stability properties of the discrete and continuous time processes.

Similar equivalence properties will be shown below for our chain Z̃ (Proposition 2.4,
Lemma 2.5). Its advantage lies in the simplicity of its definition; in particular it leads to a
simulation method that does not require the integration of jump rates along trajectories.

Notation. Throughout the paper we may write Px,i [·] for P [·|Z0 = (x, i)] and Ex,i [·] for
E [·|Z0 = (x, i)].

2.2 First properties of the invariant probability measures

Let M(M × E) (respectively M+(M × E) and P(M × E)) denote the set of signed
(respectively positive, and probability) measures on M × E. For µ ∈M(M × E) and f ∈
L1(µ) we write µf for

∫
fdµ. Given a bounded operator K : C0 → C0 and µ ∈M(M × E)

we let µK ∈M(M × E) denote the measure defined by duality :

∀g ∈ C0, (µK)g = µ(Kg).

The mappings µ 7→ µPt and µ 7→ µP̃ preserve the setsM+(M × E) and P(M × E).

Definition 2.3 (Notation, stability). We denote by Pinv (resp. P̃inv) the set of invariant
probabilities for (Pt) (resp. P̃ ),

µ ∈ Pinv ⇐⇒ ∀t > 0, µPt = µ;
µ ∈ P̃inv ⇐⇒ µP̃ = µ.

We say that the process Z (or Z̃) is stable if it has a unique invariant probability measure.
For n ∈ N∗ and t > 0 we let Π̃n and Πt the (random) occupation measures defined by

Π̃n = 1
n

n∑
k=1

δZ̃k and Πt = 1
t

∫ t

0
δZt .

By standard results for Feller chains on a compact space (see e.g. [13]), the set P̃inv is
non empty, compact (for the weak-? topology) and convex. Furthermore, with probability
one every limit point of (Πn)n>1 lies in P̃inv.

The following result gives an explicit correspondence between invariant measures for
the discrete and continuous processes.

Proposition 2.4 (Correspondence for invariant measures). The mapping µ 7→ µK̃
maps P̃inv homeomorphically onto Pinv and extremal points of P̃inv (i.e. ergodic probabili-
ties for P̃ ) onto extremal points of Pinv (ergodic probabilities for Pt).

The inverse homeomorphism is the map µ 7→ µQ restricted to Pinv.
Consequently, the continuous time process (Zt) is stable if and only if the Markov chain

(Z̃n) is stable.
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Proof. For all f ∈ C1, integrating by parts
∫∞

0
dKtf
dt e−λtdt and using the identities dKtf

dt =
AKtf = KtAf leads to

K̃(λI −A)f = λf = (λI −A)K̃f. (9)

Let µ ∈ P(M × E). Then, using (9) and the form of L gives

µK̃Lf = µK̃(A− λI)f + λµK̃Qf = λ
(
−µf + µP̃f

)
, (10)

µL(K̃f) = µ(A− λI)K̃f + λµQK̃f = λ
(
−µf + µQK̃f

)
. (11)

If µ ∈ P̃inv, (10) implies (µK̃)Lf = 0 for all f ∈ C1 and since C1 is dense in C0 this proves
that µK̃ ∈ Pinv. Similarly, if µ ∈ Pinv, (11) implies µ = µQK̃. Hence (µQ) = (µQ)K̃Q =
(µQ)P̃ proving that µQ ∈ P̃inv. Furthermore the identity µ = µQK̃ for all µ ∈ Pinv shows
that the maps µ 7→ µK̃ and µ 7→ µQ are inverse homeomorphisms.

Lemma 2.5 (Comparison of empirical measures). Let f : M × E 7→ R be a bounded
measurable function. Then

lim
t→∞

Πtf − Π̃NtK̃f = 0 and lim
n→∞

ΠTnf − Π̃nK̃f = 0

with probability one.

Proof. Decomposing the continuous time interval [0, t] along the jumps yields:

Πtf = Nt

t

(
1
Nt

Nt−1∑
i=0

∫ Ti+1

Ti

f(Zs)ds+ rt

)

where ‖rt‖ 6 ‖f‖
UNt+1
Nt

.
Since limt→∞

Nt
t = λ almost surely and P [Un/n > ε] = e−λnε, rt

a.s.−−−→
t→∞

0, one has

Πtf −
1
Nt

Nt−1∑
i=0

∫ Ti+1

Ti

f(Zs)ds
a.s.−−−→
t→∞

0.

Now, note that ∫ Ti+1

Ti

f(Zs)ds =
∫ Ui+1

0
f
(
φỸ

i

s (X̃i), Ỹi
)
ds,

therefore

Mn =
n−1∑
i=0

(∫ Ti+1

Ti

f(Zs)ds− K̃f(X̃i, Ỹi)
)

is a martingale with increments bounded in L2: E
[
(Mn+1 −Mn)2] 6 2‖f‖2/λ2. Therefore,

by the strong law of large numbers for martingales, limn→∞
Mn
n = 0 almost surely, and the

result follows.

As in the discrete time framework, the set Pinv is non empty compact (for the weak-?
topology) and convex. Furthermore, with probability one, every limit point of (Πt)t>0 lies
in Pinv.

Finally, one can check that an invariant measure for the embedded chain and its
associated invariant measure for the time continuous process have the same support. Given
µ ∈ P(M × E) let us denote by supp(µ) its support.
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Lemma 2.6. Let µ ∈ P̃inv. Then µ and µK̃ have the same support.

Proof. Let (x, i) ∈ supp(µ) and let U be a neighborhood of x. Then for t0 > 0 small
enough and 0 6 t 6 t0, Φi

−t(U) is also a neighborhood of x. Thus

(µK̃)(U × {i}) =
∫ ∞

0
λe−λtµ(Φi

−t(U)× {i}) dt > λ

∫ t0

0
e−λtµ(Φi

−t(U)× {i}) dt > 0.

This proves that supp(µ) ⊂ supp(µK̃). Conversely, let ν = µK̃ and (x, i) ∈ supp(ν) and
let U be a neighborhood of x. Then

µ(U × {i}) = (νQ)(U × {i}) =
∑
j∈E

∫
U
Qji(x)ν(dx× {j}) >

∫
U
Qii(x)ν(dx× {i}) > 0.

As a consequence, supp(µ) ⊃ supp(µK̃).

2.3 Law of pure types

Let λM and λM×E denote the Lebesgue measures on M and M × E.

Proposition 2.7 (Law of pure types). Let µ ∈ P̃inv (respectively Pinv) and let µ = µac+µs
be the Lebesgue decomposition of µ with µac the absolutely continuous (with respect to
λM×E) measure and µs the singular (with respect to λM×E) measure. Then both µac and
µs are in P̃inv (respectively Pinv), up to a multiplicative constant. In particular, if µ is
ergodic, then µ is either absolutely continuous or singular.

Proof. The key point is that K̃ and Q, hence P̃ = K̃Q, map absolutely continuous measures
into absolutely continuous measures. For µ ∈ P̃inv the result now follows from the following
simple Lemma 2.8 applied to P̃ .

Lemma 2.8. Let (Ω,A, P ) be a probability space. LetM (respectivelyM+,P,Mac) denote
the set of signed (positive, probability, absolutely continuous with respect to P ) measures
on Ω. Let K :M→M, µ 7→ µK be a linear map that maps each of the preceding sets into
itself. Then if µ ∈ P is a fixed point for K with Lebesgue decomposition µ = µac + µs, both
µac and µs are fixed points for K.

Proof. Write µK = µacK + µsK = µacK + νac + νs with µsK = νac + νs the Lebesgue
decomposition of µsK. Then, by uniqueness of the decomposition, µac = µacK+νac. Thus,
µac > µacK. Now either µac = 0 and there is nothing to prove or, we can normalize by
µac(Ω) and we get that µac = µacK.

3 Supports and accessibility

3.1 Support of the law of paths

In this section, we describe the shape of the support of the distribution of (Xt)t>0 and
we show that it can be linked to the set of solutions of a differential inclusion (which is a
generalisation of ordinary differential equations).

Let us start with a definition that will prove useful to encode the paths of the process Zt.

Definition 3.1 (Trajectories and adapted sequences). For all n ∈ N∗ let

Tn =
{

(i,u) = ((i0, . . . , in), (u1, . . . , un)) ∈ En+1 × Rn+
}
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and
Ti,jn = {(i,u) ∈ Tn : i0 = i, in = j}.

Given (i,u) ∈ Tn and x ∈ M , define (xk)06k6n by induction by setting x0 = x and
xk+1 = Φik−1

uk (xk): these are the points obtained by following F i0 for a time u0, then F i1
for a time u1, etc.

We also define a corresponding continuous trajectory. Let t = (t0, . . . , tn) be defined by
t0 = 0 and tk = tk−1 + uk for k = 1, 2, . . . , n and let (ηx,i,u(t))t>0 be the function (η(t))t>0
given by

ηx,i,u(t) = η(t) =


x if t = 0,
Φik−1
t−tk−1

(xk−1) if tk−1 < t 6 tk for k = 1, . . . , n,
Φin
t−tn(xn) if t > tn.

(12)

Finally, let p(x, i,u) = Q(x1, i0, i1)Q(x2, i1, i2) · · ·Q(xn, in−1, in), and

Tn,ad(x) = {(i,u) ∈ Tn : p(x, i,u) > 0}.

An element of Tn,ad(x) is said to be adapted to x ∈M .

Lemma 3.2. Let (i,u) ∈ Tn. Then, for any (x, i) ∈M × E, any T > 0, and any δ > 0,

Px,i

[
sup

06t6T

∥∥Xt − ηx,i,u(t)
∥∥ 6 δ

]
> 0.

Proof. Suppose first that (i,u) ∈ Tn is adapted to x and that i starts at i. By continuity,
there exist δ1 and δ2 such that

max
i=1,...,n

|si − ui| 6 δ1 =⇒
{

sup06t6T
∥∥ηx,i,s(t)− ηx,i,u(t)

∥∥ 6 δ,

p(x, i, s) > δ2.

Let (U1, . . . , Un, Un+1) be n+ 1 independent random variables with an exponential law of
parameter λ and U = (U1, . . . , Un). Then,

Px,i

[
sup

06t6T

∥∥Xt − ηx,i,u(t)
∥∥ 6 δ

]

> P
[

max
l=1,...,n

|Ul − ul| 6 δ1, Un+1 > T − tn + δ1, (Ỹ0, . . . , Ỹn) = i
]

> δ2P
[

max
l=1,...,n

|Ul − ul| 6 δ1, Un+1 > T − tn + δ1

]
> δ2

[
n∏
l=1

(
e−λ(ul−δ1) − e−λ(ul+δ1)

)]
e−λ(T−tn+δ1) > 0.

In the general case, (i,u) ∈ Tn is not necessarily adapted and may start at an arbitrary i0.
However, for any T > 0 and δ > 0, there exists (j,v) ∈ Tn′,ad(x) (for some n′ > n) such
that j0 = i and

sup
06t6T

∥∥ηx,j,v(t)− ηx,i,u(t)
∥∥ 6 δ,

since Q(x) is, by construction, irreducible and aperiodic (this allows to add permitted
transitions from i to i0 and where i has not permitted transitions, with times between the
jumps as small as needed).
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After these useful observations, we can describe the support of the law of (Xt)t>0 in
terms of a certain differential inclusion induced by the vector fields {F i : i ∈ E}.

For each x ∈ Rd, let co(F )(x) ⊂ Rd be the compact convex set defined as

co(F )(x) =
{∑
i∈E

αiF
i(x) : αi > 0,

∑
i∈E

αi = 1
}
.

Let C(R+,Rd) denote the set of continuous paths η : R+ 7→ Rd equipped with the topology
of uniform convergence on compact intervals. A solution to the differential inclusion

η̇ ∈ co(F )(η) (13)

is an absolutely continuous function η ∈ C(R+,Rd) such that η̇(t) ∈ co(F )(η(t)) for
almost all t ∈ R+. We let Sx ⊂ C(R+,Rd) denote the set of solutions to (13) with initial
condition η(0) = x.

Lemma 3.3. The set Sx is a non empty compact connected set.

Proof. Follows from standard results on differential inclusion, since the set-valued map
co(F ) is upper-semi continuous, bounded with non empty compact convex images; see [1]
for details.

Theorem 3.4. If X0 = x ∈M then, the support of the law of (Xt)t>0 equals Sx.

Proof. Obviously, any path of X is a solution of the differential inclusion (13). Let η ∈ Sx,
and ε > 0. Set

Gt(x) =
{
v ∈

{
F i(x), i ∈ E

}
: 〈v − η̇(t), x− η(t)〉 < ε

}
.

Since η̇(t) ∈ co(F )(η(t)) almost surely, Gt(x) is non empty. Furthermore, (t, x) 7→ Gt(x) is
uniformly bounded, lower semicontinuous in x, and measurable in t. Hence, using a result
by Papageorgiou [26], there exists ξ : R → Rd absolutely continuous such that ξ(0) = x
and ξ̇(t) ∈ Gt(ξ(t)) almost surely. In particular,

d

dt
‖ξ(t)− η(t)‖2 = 2〈ξ̇(t)− η̇(t), ξ(t)− η(t)〉 < 2ε

so that
sup

06t6T
‖ξ(t)− η(t)‖2 6 2εT.

Thus, without loss of generality, one can assume that η is such that

η̇(t) ∈
⋃
i∈E

{
F i(η(t))

}
for almost all t ∈ R+. Set

∀i ∈ E, Ωi =
{
t ∈ [0, T ] : η̇(t) = F i(η(t))

}
.

Let C be the algebra consisting of finite unions of intervals in [0, T ]. Since the Borel
σ-field over [0, T ] is generated by C, there exists, for all i ∈ E, Ji ∈ C such that, the set
{Ji : i ∈ E} forms a partition of [0, T ], and for i ∈ E

λ(Ωi∆Ji) 6 ε

9



where λ stands for the Lebesgue measure over [0, T ] and A∆B is the symmetric difference
of A and B. Hence, there exist numbers 0 = t0 < t1 < · · · < tN+1 = T and a map
i : k 7→ ik from {0, . . . , N} to {1, . . . , n0}, such that (tk, tk+1) ⊂ Jik . Introduce ηx,i,u given
by Formula (12). For all tk 6 t 6 tk+1,

ηx,i,u(t)− η(t) =ηx,i,u(tk)− η(tk)

+
∫ t

tk

(
F ik(ηx,i,u(s))− F ik(η(s))

)
ds+

∫ t

tk

(
F ik(η(s))− η̇(s)

)
ds.

Hence, by Gronwall’s lemma, we get that

‖ηx,i,u(t)− η(t)‖ 6 eK(tk+1−tk)(∥∥ηx,i,u(tk)− η(tk)
∥∥+mk

)
where K is a Lipschitz constant for all the vector fields (F i) and

mk = 2Cspλ([tk, tk+1] \ Ωik).

It then follows that, for all k = 0, . . . , N and tk 6 t 6 tk+1,

∥∥ηx,i,u(t)− η(t)
∥∥ 6 k∑

l=0
eK(tk+1−tl)ml 6 eKT

N∑
l=0

ml 6 eKT
|E|∑
i=1

λ(Ji \ Ωi) 6 eKT ε.

This, with Lemma 3.2, shows that Sx is included in the support of the law of (Xt)t>0 and
concludes the proof.

In the course of the proof, one has obtained the following result which is stated separately
since it will be useful in the sequel.

Lemma 3.5. If η : R+ → Rd is such that

η̇(t) ∈
⋃
i∈E

{
F i(η(t))

}
for almost all t ∈ R+, then, for any ε > 0 and any T > 0, there exists (i,u) ∈ Tn (for
some n) such that ∥∥ηx,i,u(t)− η(t)

∥∥ 6 ε.

3.2 The accessible set

In this section we define and study the accessible set of the process X as the set of points
that can be “reached from everywhere” by X and show that long term behavior of X is
related to this set.

Definition 3.6 (Positive orbit and accessible set).
For (i,u) ∈ Tn, let Φi

u be the “composite flow”:

Φi
u(x) = Φin−1

un ◦ . . . ◦ Φi0
u1(x). (14)

The positive orbit of x is the set

γ+(x) =

Φi
u(x) : (i,u) ∈

⋃
n∈N∗

Tn

.
The accessible set of (Xt) is the (possibly empty) compact set Γ ⊂M defined as

Γ =
⋂
x∈M

γ+(x).

10



Remark 3.7. If y = Φi
u(x) for some (i,u) then y is the limit of points of the form Φj

v(x)
where (j,v) is adapted to x. It implies that

Γ =
⋂
x∈M
{Φi

u(x) : (i,u) adapted to x}. (15)

Remark 3.8. The accessible set Γ is called the set of D-approachable points and is denoted
by L in [2].

3.2.1 Topological properties of the accessible set

The differential inclusion (13) induces a set-valued dynamical system Ψ = {Ψt} defined by

Ψt(x) = Ψ(t, x) = {η(t) : η ∈ Sx}

enjoying the following properties

(i) Ψ0(x) = {x},

(ii) Ψt+s(x) = Ψt(Ψs(x)) for all t, s > 0,

(iii) y ∈ Ψt(x)⇒ x ∈ Ψ−t(y).

For subsets I ⊂ R and A ⊂ Rd we set

Ψ(I, A) =
⋃

(t,x)∈I×A
Ψt(x).

A set A ⊂ Rd is called strongly positively invariant under Ψ if Ψt(A) ⊂ A for t > 0. It is
called invariant if for all x ∈ A there exists η ∈ SxR such that η(R) ⊂ A. Given x ∈ Rd, the
(omega) limit set of x under Ψ is defined as

ωΨ(x) =
⋂
t>0

Ψ[t,∞[(x).

Lemma 3.9. The set ωΨ(x) is compact connected invariant and strongly positively invariant
under Ψ.

Proof. It is not hard to deduce the first three properties from Lemma 3.3. For the last
one, let p ∈ ωΨ(x), s > 0 and q ∈ Ψs(p). By Lemma 3.5, for all ε > 0, there exists n ∈ N
and (i,u) ∈ Tn such that

∥∥∥Φi
u(p)− q

∥∥∥ < ε. Continuity of Φi
u makes the set

Wε = {z ∈M :
∥∥∥Φi

u(z)− q
∥∥∥ < ε}

an open neighborhood of p. Hence Wε ∩ Ψ[t,∞[(x) 6= ∅ for all t > 0. This proves that
the distance between the sets {q} and Ψ[t,∞[(x) is smaller than ε. Since ε is arbitrary, q
belongs to Ψ[t,∞[(x).

Remark 3.10. For a general differential inclusion with an upper semi-continuous bounded
right-hand side with compact convex values, the omega limit set of a point is not (in general)
strongly positively invariant, see e.g. [3].

Proposition 3.11 (Properties of the accessible set). The set Γ satisfies the following:

(i) Γ =
⋂
x∈M ωΨ(x),
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(ii) Γ = ωΨ(p) for all p ∈ Γ,

(iii) Γ is compact, connected, invariant and strongly positively invariant under Ψ,

(iv) either Γ has empty interior or its interior is dense in Γ.

Proof. (i) : Let x ∈ M and y ∈ Ψt(x). Then γ+(y) ⊂ Ψ[t,∞](x). Hence Γ ⊂ Ψ[t,∞[(x) for
all x. This proves that Γ ⊂

⋂
x∈M ωΨ(x). Conversely let p ∈

⋂
x∈M ωΨ(x). Then, for all

t > 0 and x ∈M , p ∈ Ψ[t,∞[(x) ⊂ γ+(x) where the latter inclusion follows from Lemma 3.5.
This proves the converse inclusion.

(ii) : By Lemma 3.5, ωΨ(p) ⊂ Γ. The converse inequality follows from (i).
(iii) : This follows from (ii) and Lemma 3.9.
(iv) : Suppose int(Γ) 6= ∅. Then there exists an open set U ⊂ Γ and

⋃
t,i Φi

t(U) is an
open subset of Γ dense in Γ.

An equilibrium p for the flow Φ1 is a point in M such that F 1(p) = 0. It is called an
attracting equilibrium if there exists a neighborhood U of p such that

lim
t→∞
‖Φ1

t (x)− p‖ = 0

uniformly in x ∈ U . In this case, the basin of attraction of p is the open set

B(p) =
{
x ∈ Rd : lim

t→∞
‖Φ1

t (x)− p‖ = 0
}
.

Proposition 3.12 (Case of an attracting equilibrium). Suppose the flow Φ1 has an
attracting equilibrium p with basin of attraction B(p) that intersects all orbits: for all
x ∈M \ B(p), γ+(x) ∩ B(p) 6= ∅. Then

(i) Γ = γ+(p),

(ii) If furthermore Γ ⊂ B(p), then Γ is contractible. In particular, it is simply connected.

Proof. The proof of (i) is left to the reader. To prove (ii), let h : [0, 1]× Γ→ Γ be defined
by

h(t, x) =

Φ1
− log(1−t)(x) if t < 1,

p if t = 1.

It is easily seen that h is continuous. Hence the result.

3.2.2 The accessible set and recurrence properties

In this section, we link the accessibility (which is a deterministic notion) to some recurrence
properties for the embedded chain Z̃ and the continuous time process Z.

Proposition 3.13 (Returns near Γ — discrete case). Assume that Γ 6= ∅. Let p ∈ Γ and U
be a neighborhood of p. There exist m ∈ N and δ > 0 such that for all i, j ∈ E and x ∈M

Px,i
[
Z̃m ∈ U × {j}

]
> δ.

In particular,
Px,i

[
∃l ∈ N, Z̃l ∈ U × {j}

]
= 1.

12



Note that, in the previous proposition, the same discrete time m works for all x ∈M .
In the continuous time framework, one common time t does not suffice in general; however
one can prove a similar statement if one allows a finite number of times:

Proposition 3.14 (Returns near Γ — continuous case). Assume that Γ 6= ∅. Let p ∈ Γ
and U be a neighborhood of p. There exist N ∈ N, a finite open covering O1, . . .ON of M ,
N times t1, . . . , tN > 0 and δ > 0 such that, for all i, j ∈ E and x ∈ Ok,

Px,i [Ztk ∈ U × {j}] > δ.

Since Γ is positively invariant under each flow Φi we deduce from Proposition 3.14 the
following result.

Corollary 3.15. Assume Γ has non empty interior. Then

Px,i [∃t0 > 0,∀t > t0, Zt ∈ Γ× E] = 1.

Propositions 3.13 and 3.14 are direct consequences of Lemma 3.2 and of the following
technical result.

Lemma 3.16. Assume Γ 6= ∅. Let p ∈ Γ, U be a neighborhood of p and i, j ∈ E. There
exist m ∈ N∗, ε, β > 0, finite sequences (i1,u1) . . . , (iN ,uN ) ∈ Tijm and an open covering
O1, . . . ,ON of M (i.e. M = O1 ∪ . . . ∪ ON ) such that for all x ∈M and τ ∈ Rm+ :

x ∈ Ok and
∥∥∥τ − uk

∥∥∥ 6 ε =⇒ Φik
τ (x) ∈ U and p(x, ik, τ) > β.

Furthermore, m, ε and β can be chosen independent of i, j ∈ E.

Proof. Fix i and j, and let V be a neighborhood of p with closure V ⊂ U . For all β > 0,
define the open sets

O(i,u, β) = {x ∈M : Φi
u(x) ∈ V, p(x, i,u) > β}.

By (15), one has

M =
⋃
n

⋃
β>0

⋃
(i,u)∈Tijn

O(i,u, β)

 (16)

Now, since one can add “false” jumps (i does not change and u equals 0) to (i,u) without
changing Φi

u(x),

∀(i,u) ∈ Tijn ,∀n′ > n, ∀β, ∃β′ > 0, (i′,u′) ∈ Tijn′ such that O(i,u, β) ⊂ O(i′,u′, β′)

(just add n′−n false jumps at the beginning and let β′ = β(infM Q(x, i, i))n′−n). Therefore
the union over n in (16) is increasing: by compactness, there exists m such that

M ⊂
⋃
β>0

⋃
(i,u)∈Tijm

O(i,u, β).

Note that by monotonicity, m can be chosen uniformly over i and j. The union in β
increases as β decreases, so by compactness again there exists β0 (independent of i, j) such
that

M ⊂
⋃

(i,u)∈Tijm

O(i,u, β0).
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A third invocation of compactness shows that for some finite N ,

M ⊂
N⋃
k=1
Ok,

where Ok = O(ik,uk, β0) for some (ik,uk) in Tijm. Since V ⊂ U , the distance between V and
Uc is positive (once more by compactness). Choosing ε small enough therefore guarantees
that for x ∈ Ok and

∥∥∥v− uk
∥∥∥ < ε, Φv

i (x) ∈ U . This concludes the proof.

3.3 Support of invariant probabilities

The following proposition relates Γ to the support of the invariant measures of Z̃ or Z.
We state and prove the result for Z̃ and rely on Lemma 2.6 for Z.

Proposition 3.17 (Accessible set and invariant measures).

(i) If Γ 6= ∅ then Γ× E ⊂ supp(µ) for all µ ∈ P̃inv and there exists µ ∈ P̃inv such that
supp(µ) = Γ× E.

(ii) If Γ has non empty interior, then Γ× E = supp(µ) for all µ ∈ P̃inv.

(iii) Suppose that Z̃ is stable with invariant probability π, then supp(π) = Γ× E.

Proof. (i) follows from Proposition 3.13. Also, since Γ is strongly positively invariant,
there are invariant measures supported by Γ× E. (ii) follows from (i) and Corollary 3.15.
To prove (iii), let (p, i) ∈ supp(π). Let U ,V be open neighborhoods of p with U ⊂ V
compact. Let 0 6 f 6 1 be a continuous function on M which is 1 on U and 0 outside V
and let f̃(x, j) = f(x)δj,i. Suppose Z0 = (x, j). Then, with probability one,

lim inf
n→∞

1
n
]
{

1 6 k 6 n : Z̃k ∈ V × {i}
}
> lim
n→∞

1
n

n∑
k=1

f̃(Z̃k) > π(U × {i}) > 0.

Hence (Z̃n) visits infinitely often U × {i}. In particular, p ∈ γ+(x). This proves that
supp(π) ⊂ Γ× E. The converse statement follows from (i).

Remark 3.18. The example given in Section 5.4 shows that the inclusion Γ×E ⊂ supp(µ)
may be strict when Γ has empty interior. On the other hand, the condition that Γ has
non empty interior is not sufficient to ensure uniqueness of the invariant probability since
there exist smooth minimal flows that are not uniquely ergodic. An example of such a
flow can be constructed on a 3-manifold by taking the suspension of an analytic minimal
non uniquely ergodic diffeomorphism of the torus constructed by Furstenberg in [16] (see
also [24]). As shown in [2] (see also Section 4) a sufficient condition to ensure uniqueness
of the invariant probability is that the vector fields verify a Hörmander bracket property at
some point in Γ.

4 Absolute continuity and ergodicity

4.1 Absolute continuity of the law of the processes

Let x0 be a point in M . The image of u 7→ Φu(x0) is a curve; one might expect that, if
i 6= j, the image of (s, t) 7→ Φj

t (Φi
s(x0)) should be a surface. Going on composing the flow

functions in this way, one might fill some neighbourhood of a point in Rd.
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Recall that, if i is a sequence of indices i = (i0, . . . im) and u is a sequence of times
u = (u1, . . . um), Φi

u : M →M is the composite map defined by (14).
Suppose that for some x0 the map v 7→ Φi

v(x0) is a submersion at u. Then the image
of the Lebesgue measure on a neighbourhood of u is a measure on a neighbourhood of
Φi

u(x0) equivalent to the Lebesgue measure. If the jump rates λi are constant functions,
the probability Px0,i0

[
Z̃m ∈ · × {im}

]
is just the image by u ∈ Rm 7→ Φi

u(x0) ∈ Rd of the
product of exponential laws on Rm. We get that there exist U0 a neighborhood of x0, V0 a
neighborhood of Φi

u(x0), and a constant c > 0 such that:

∀x ∈ U0, Px,i0
[
Z̃m ∈ · × {im}

]
> cλRd(· ∩ V0).

Let us fix a t > 0 and consider now the function v 7→ Φim
t−v1−...−vk(Φi

v(x0)) defined on
v1 + . . .+ vm < t. For the same reason, if this function is a submersion at u, then the law
of Xt has an absolutely continuous part with respect to λRd .

The two following results state a stronger result (with a local uniformity with respect
to initial and final positions) both for the embedded chain and the continuous time process.

Theorem 4.1 (Absolute continuity — discrete case). Let x0 and y be two points in M
and a sequence (i,u) such that Φi

u(x0) = y. If v 7→ Φi
v(x0) is a submersion at u, then

there exist U0 a neighborhood of x0, V a neighborhood of y, an integer m and a constant
c > 0 such that

∀x ∈ U0, ∀i, j ∈ E, Px,i
[
Z̃m ∈ · × {j}

]
> cλRd(· ∩ V). (17)

Theorem 4.2 (Absolute continuity — continuous case). Let x0 and y be two points in
M and a sequence (i,u) ∈ Tm such that Φi

u(x0) = y. If v 7→ Φim
s−(v1+···+vm)Φ

i
v(x0) is a

submersion at u for some s > u1 + · · ·+ um, then for all t0 > u1 + · · ·+ um, there exist U0
a neighborhood of x0, V a neighborhood of y and two constants c, ε > 0 such that

∀x ∈ U0, ∀i, j ∈ E, ∀t ∈ [t0, t0 + ε], Px,i [Zt ∈ · × {j}] > cλRd(· ∩ V). (18)

The proofs of these results are postponed to Section 6.
Unfortunately, the hypotheses of these two theorems are not easy to check, since one

needs to “solve” the flows. However, they translate to two very nice local conditions. To
write down these conditions, we need a bit of additional notation. Let F0 the collection of
vector fields

{
F i : i ∈ E

}
. Let Fk = Fk−1 ∪ {[F i, V ], V ∈ Fk−1} (where [F,G] stands for

the Lie bracket of two vector fields F and G) and Fk(x) the vector space (included in Rd)
spanned by {V (x), V ∈ Fk}.

Similarly, starting from G0 = {F i−F j , i 6= j}, we define Gk by taking Lie brackets with
the vector fields

{
F i : i ∈ E

}
, and Gk(x) the corresponding subspace of Rd.

Definition 4.3. We say that the weak bracket condition (resp. strong bracket condition)
is satisfied at x ∈M if there exists k such that Fk(x) = Rd (resp. Gk(x) = Rd).

These two conditions are called A (for the stronger) and B (for the weaker) in [2]. Since
Gk(x) is a subspace of Fk(x), the strong condition implies the weak one. The converse is
false, a counter-example is given below in Section 5.1.

Theorem 4.4. If the weak (resp. strong) bracket condition holds at x0 ∈ M , then the
conclusion of Theorem 4.1 (resp. Theorem 4.2) holds.

This theorem is a version of Theorem 2 from [2] with an additional uniformity with
respect to the initial point and the time t. Thanks to Theorems 4 and 5 in [2], one can
deduce the hypotheses of Theorems 4.1 and 4.2 from the bracket conditions. The proofs in
[2] are elegant but non-constructive; we give a more explicit proof in Section 7.
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4.2 Ergodicity

4.2.1 The embedded chain

Theorem 4.5 (Convergence in total variation — discrete case). Suppose there exists p ∈ Γ
at which the weak bracket condition holds. Then the chain Z̃ admits a unique invariant
probability π̃, absolutely continuous with respect to the Lebesgue measure λM×E on M ×E.
Moreover, there exist two constants c > 1 and ρ ∈ (0, 1) such that, for any n ∈ N,∥∥∥P [Z̃n ∈ ·]− π̃∥∥∥TV

6 cρn

where ‖·‖TV stands for the total variation norm.

Proof. By Proposition 3.13 and Theorem 4.4, there exist a neighborhood U0 of p, integers
m and K, a measure ψ on M ×E absolutely continuous with respect to λM×E and c > 0
such that, setting A = U0 × E,

(i) Px,i
[
Z̃m ∈ A

]
> δ for all (x, i) ∈M × E,

(ii) Px,i
[
Z̃K ∈ ·

]
> cψ(·) for all (x, i) ∈ A.

These two properties make Z̃ an Harris chain with recurrence set A (see e.g. [15, Section 7.4]).
It is recurrent, aperiodic (by (i)) and the first hitting time of A has geometric tail (by (i)
again). Therefore, by usual arguments, two copies of Z̃ may be coupled in a time T that
has geometric tail; this implies the exponential convergence in total variation toward its
(necessarily unique) invariant probability π̃ (see e.g. the proof of Theorem 4.10 in [15,
Section 7.4] or [23, Section I.3], for details).

Finally, observe that, by (ii) and Theorem 4.4, π̃ > δcψ. Therefore π̃ac (the absolutely
continuous part of π̃ with respect to λM×E) is non zero. Then, Proposition 2.8 ensures
that π̃ is absolutely continuous with respect to λM×E .

As pointed out in [2, Theorem 1] (see also Theorem 2.4), under the hypotheses of
Theorem 4.5, (Zt)t>0 admits a unique invariant probability measure π, and π is absolutely
continuous with respect to λM×E . Moreover, under the hypotheses of Theorem 4.5, with
probability one

lim
n→∞

Π̃n = π̃ and lim
t→∞

Πt = π̃K̃.

Under the strong bracket assumption, we prove in the next section that the distribution
of Zt itself converges, and not only its empirical measure.

4.2.2 The continuous time process

Theorem 4.6 (Convergence in total variation — continuous case). Suppose that there is a
point p ∈ Γ at which the strong bracket condition is satisfied. Let π be the unique invariant
probability measure of Z. Then there exist two constants c > 1 and α > 0 such that, for
any t > 0,

‖P [Zt ∈ ·]− π‖TV 6 ce−αt. (19)

Proof. The proof consists in showing that there exist a neighborhood U of p, t > 0, j ∈ E
and β > 0 such that for all x ∈M and i ∈ E,

Px,i [Zt ∈ U × {j}] > β. (20)

16



This property and (18) ensure that two processes starting from anywhere can be coupled
in some time t with positive probability. This, combined with Theorem 4.4, implies (19)
by the usual coupling argument (see [23]).

Theorem 4.4 gives us two open sets U0, V (with p ∈ U0), a time s0 and ε > 0 such that

∀x ∈ U0,∀t ∈ [s0, s0 + ε], ∀i,∀j, Px,i [Zt ∈ · × {j}] > cλRd(· ∩ V). (21)

Moreover, we have seen in Proposition (3.14) that there exist m times t1, . . . , tm > 0, m
open sets O1, . . . ,Om (covering M) and δ > 0 such that, for all i, j ∈ E and x ∈ Ok,

Px,i [Ztk ∈ U0 × {j}] > δ. (22)

We can suppose that V is included in one of the Ok (just shrink V if necessary). Then,
there exists s ∈ {t1, . . . , tm} such that

∀y ∈ V,∀i,∀j, Py,i [Zs ∈ U0 × {j}] > β1. (23)

From (21) and (23), we get a time t0(= s0 + s) and β2 > 0, such that

∀x ∈ U0,∀t ∈ [t0, t0 + ε], ∀i,∀j, Px,i [Zt ∈ U0 × {j}] > β2.

The Markov property then gives that, for every integer n, one has

∀x ∈ U0, ∀t ∈ [nt0, nt0 + nε], ∀i,∀j, Px,i [Zt ∈ U0 × {j}] > βn2 . (24)

We can suppose that t1 is the largest of the m times (tk)16k6m. Let n be such that for
every k between 1 and m there exists vk ∈ [0, nε] such that t1 = tk+vk. Take such numbers
(vk)16k6m. If x belongs to Ok, by (22) and (24), for all i and j,

Px,i [Zt1+nt0 ∈ U0 × {j}] = Px,i [Ztk+nt0+vk ∈ U0 × {j}] > δβn2 .

This concludes the proof.

5 Examples

5.1 On the torus

Consider the system defined on the torus Td = Rd/Zd by the constant vector fields F i = ei,
where (e1, . . . ed) is the standard basis on Rd. Then, as argued in [2], the weak bracket
condition holds everywhere, and the strong condition does not hold. Therefore the chain Z̃
is ergodic and converges exponentially fast, the empirical means of (Z̃n) and (Zt) converge,
but the law of Zt is singular with respect to the invariant measure for any t > 0 provided
it is true for t = 0.

5.2 Two planar linear flows

Let A be a 2×2 real matrix whose eigenvalues η1, η2 have negative real parts. Set E = {0, 1}
and consider the process defined on R2 × E by

F 0(x) = Ax and F 1(x) = A(x− a)

for some a ∈ R2. The associated flows are Φ0
t (x) = etAx and Φ1

t (x) = etA(x− a) + a. Each
flow admits a unique equilibrium (which is attracting): 0 and a respectively.
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First note that, by using the Jordan decomposition of A, it is possible to find a scalar
product 〈 · 〉 on R2 (depending on A) and some number 0 < α 6 min(−Re(η1),−Re(η2))
such that 〈Ax, x〉 6 −α〈x, x〉. Therefore

〈A(x− a), x〉 6 −α〈x, x〉 − 〈Aa, x〉 6 ‖x‖(−α‖x‖+ ‖Aa‖).

This shows that, for R > ‖Aa‖/α, the ball M = {x ∈ R2, ‖x‖ 6 R} is positively invariant
by Φ0 and Φ1. Moreover every solution to the differential inclusion induced by {F 0, F 1}
eventually enters M . In particular M × E is an absorbing set for the process Z.

Another remark that will be useful in our analysis is that

det(F 0(x), F 1(x)) = det(A) det(a, x),

so that
det(F 0(x), F 1(x)) > 0 (resp. = 0)⇔ det(a, x) > 0 (resp. = 0). (25)

Case 1: a is an eigenvector

If a is an eigenvector of A, then the line Ra is invariant by both flows, so that

Γ = γ+(0) = [0, a]

and there is a unique invariant probability π (and its support is Γ by Proposition 3.17).
Indeed, it is easily seen that Γ is an attractor for the set-valued dynamics induced by F 0

and F 1. Therefore the support of every invariant measure equals Γ. If we consider the
process restricted to Γ, it becomes one-dimensional and the strong bracket condition holds,
proving uniqueness.

Remark 5.1. If X0 6∈ Ra, X will never reach Γ. As a consequence, the law of Xt and π
are singular for any t > 0. In particular, their total variation distance is constant, equal to
1. Note also that, the strong bracket condition being satisfied everywhere except on Ra, the
law of Xt at any positive finite time has a non trivial absolutely continuous part.

Remark 5.2. Consider the following example: A = −I, a = (1, 0) and Ra is identified to
R. If the jump rates are constant and equal to λ, it is easy to check (see [20, 27]) that the
invariant measure µ on [0, 1]× {0, 1} is given by:

µ = 1
2 (µ0 × δ0 + µ1 × δ1) ,

where µ0 and µ1 are Beta laws on [0, 1]:

µ0(dx) = Cλx
λ−1(1− x)λ dx,

µ1(dx) = Cλx
λ(1− x)λ−1 dx.

In particular, this example shows that the density of the invariant measure (with respect
to the Lebesgue measure) may be unbounded: when the jump rate λ is smaller than 1, the
densities blow up at 0 and 1.

18



Case 2: Eigenvalues are reals and a is not an eigenvector

Suppose that the two eigenvalues η1 and η2 of A are negative real numbers and that a is
not an eigenvector of A.

Let γ0 = {Φ0
t (a), t > 0} and γ1 = {Φ1

t (0), t > 0}. Note that γ1 and γ0 are image of
each other by the transformation T (x) = a− x. The curve γ0 (respectively γ1) crosses the
line Ra only at point a (respectively 0). Otherwise, the trajectory t 7→ Φ0

t (a) would have to
cross the line Ker(A− λ1I) which is invariant. This makes the curve γ = γ0 ∪ γ1 a simple
closed curve in R2 crossing Ra at 0 and a. By Jordan curve Theorem, R2 \ γ = B ∪ U
where B is a bounded component and U an unbounded one. We claim that

Γ = B.

To prove this claim, observe that thanks to (25), F 0 and F 1 both point inward B at every
point of γ. This makes B positively invariant by Φ0 and Φ1. Thus Γ ⊂ B. Conversely,
γ ⊂ Γ (because 0 and a are accessible from everywhere). If x ∈ B there exists s > 0
such that Φ0

−s(x) ∈ γ (because limt→−∞
∣∣Φ0

t (x)
∣∣ = +∞) and necessarily Φ0

−s(x) ∈ γ1. This
proves that x ∈ γ+(0). Finally note that the strong bracket condition is verified in Γ \ Ra,
proving uniqueness and absolute continuity of the invariant probability.

Remark 5.3. Note that if the jump rates are small, the situation is similar to the one
described in Remark 5.2: the process spends a large amount of time near the attractive
points, and the density is unbounded at these points. By the way, this is also the case on
the boundary of Γ.

Case 3: Eigenvalues are complex conjugate

Suppose now that the eigenvalues have a nonzero imaginary part. By Jordan decomposition,
it is easily seen that trajectories of Φi converge in spiralling, so that the mappings
τ i(x) = inf{t > 0 : Φi

t(x) ∈ Ra} and hi(x) = Φi
τ i(x) are well defined and continuous.

Let H : Ra→ Ra be the map h0 ◦ h1 restricted to Ra. Since two different trajectories of
the same flow have empty intersection, the sequence xn = Hn(0) is decreasing (for the
ordering on Ra inherited from R). Being bounded (recall that M is compact and positively
invariant), it converges to x∗ ∈ Ra such that x∗ = H(x∗). Let now γ0 = {Φ1

t (x∗), 0 6 t 6
τ1(x∗)}, γ1 = {Φ0

t (h1(x∗)), 0 6 t 6 τ0(h1(x∗))} and γ = γ0 ∪ γ1. Reasoning as previously
shows that Γ is the bounded component of R2 \ γ and that there is a unique invariant and
absolutely continuous invariant probability.

We illustrate this situation in Figure 1, with

A =
(
−1 −1
1 −1

)
and a =

(
1
0

)
. (26)

Remark 5.4. Once again, if the jump rates are small, then the density is unbounded at 0
but also on the set {

Φ1
t (0), t > 0

}
∪
{

Φ0
t (a), t > 0

}
.

5.3 A simple criterion for the accessible set to have a non empty interior

Here is a simple criteria in dimension 2 that ensures that Γ has a non empty interior.

Proposition 5.5. Assume that M ⊂ R2, E = {0, 1} and that F 1 has a globally attracting
equilibrium p such that the eigenvalues of DF 1(p) have negative real parts and that F 0(p) 6=
0. Then p lies in the interior of Γ.
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Figure 1: A sample path of Xt (red and blue lines) and the boundary of the support of the
invariant probability (black line) for the third case in Section 5.2, where A and a are given
by (26).

p x

Figure 2: The flows near the attracting point p in Proposition 5.5.

Proof. Proposition 3.12 ensures that p belongs to Γ. As illustrated by Figure 2, from the
equilibrium p, one can follow F 0 and reach x, then follow F 1, and switch back to F 0 to
reach any point in the shaded region.

5.4 Knowing the flows is not enough

In this section we study a PDMP on R2 × {0, 1} such that the strong bracket condition
holds everywhere except on Γ and which may have one or three ergodic invariant probability
measures, depending on the jump rates of the discrete part of the process.

This model has been suggested by O. Radulescu. The continuous part of the process
takes its values on R2 whereas its discrete part belongs to {0, 1}. For sake of simplicity we
will denote (in a different way than in the beginning of the paper) by (Xt, Yt) ∈ R2 the
continuous component. The discrete component (It)t>0 is a continuous time Markov chain
on E = {0, 1} with jump rates (λi)i∈E . Let α > 0. The two vector fields F 0 and F 1 are
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given by

F 0(x, y) =
(
−x+ α
−y + α

)
and F 1(x, y) =

 −x+ α

1 + y2

−y + α

1 + x2


with (x, y) ∈ R2. Notice that the quarter plane (0,+∞)2 is positively invariant by Φ0 and
Φ1. See Figure 3. In the sequel we assume that (X0, Y0) belongs to (0,+∞)2.

5.4.1 Properties of the two vector fields

Obviously, the vector fields F 0 has a unique stable point (α, α). The description of F 1 is
more involved and depends on α.
Lemma 5.6. Let us define

a = α+
√
|α2 − 4|
2 and b =

(√
4/27 + α2 + α

2

)1/3

−
(√

4/27 + α2 − α
2

)1/3

. (27)

Notice that b is positive and is the unique real solution of b3 + b = α. One has
• if α 6 2, then F 1 admits a unique critical point (b, b) and it is stable,

• if α > 2, then F 1 admits three critical points: (b, b) is unstable whereas (a, a−1) and
(a−1, a) are stable.

Proof. If (x, y) is a critical point of F 1 then (x, y) is solution of{
x(1 + y2) = α

y(1 + x2) = α.

As a consequence, x is solution of

0 = x5 − αx4 + 2x3 − 2αx2 + (1 + α2)x− α = (x2 − αx+ 1)(x3 + x− α).

The equation x3 + x − α = 0 admits a unique real solution b given by (27). It belongs
to (0, α). Obviously, if α 6 2, (b, b) is the unique critical point of F 1 whereas, if α > 2
then a and a−1 are the roots of x2 − αx+ 1 = 0 and F 1 admits the three critical points:
(b, b), (a, a−1) and (a−1, a). Let us have a look to the stability of (b, b). The eigenvalues of
Jac(F 1)(b, b) are given by

η1 = −3 + 2b
α

= −1− 2α− b
α

and η2 = 1− 2b
α

= b3 − b
α

and are respectively associated to the eigenvectors (1, 1) and (1,−1). Since b < α, η1 is
smaller than −1. Moreover, η2 has the same sign as b− 1 i.e. the same sign as α− 2. As a
conclusion, (b, b) is stable (resp. unstable) if α < 2 (resp. α > 2).

Assume now that α > 2. Then Jac(F 1)(a, a−1) has two negative eigenvalues −1±2α−1.
Then, the critical points (a, a−1) and (a−1, a) are stable.

In the sequel, we assume that α > 2. One can easily check that the sets

D = {(x, x) : x > 0}, L = {(x, y) : 0 < y < x}, U = {(x, y) : 0 < x < y}

are strongly positively invariant by Φ0 and Φ1. Moreover, thanks to Proposition 3.12, the
accessible set of (X,Y ) is

Γ = {(x, x) : x ∈ [b, α]}.
In the sequel, we prove that Γ may, or may not, be the set of all recurrent points, depending
on the jump rates λ0 and λ1.
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Figure 3: Vector fields F 0 (grey lines) and F 1 (blue lines) of the example in Section 5.4
with α = 3. The shaded region is γ+(a, a−1)× E.

Proposition 5.7. If λ1 > λ0(cα − 1), with c = 3
√

3/8 then (X,Y, I) admits a unique
invariant measure and its support is Γ× E.

If λ1/λ0 is small enough, then (X,Y, I) admits three ergodic measures and they are
supported by

Γ× E = γ+(α, α)× E, γ+(a, a−1)× E and γ+(a−1, a)× E.

Remark 5.8. This dichotomy is essentially due to the fact that the stable manifold
{(x, x) : x ∈ R} of the unstable critical point (b, b) of F 1 is strongly positively invariant
by Φ0 (see Figure 3). Moreover, γ+(a, a−1)×E can be written as the union of the segment[
(a, a−1), (α, α)

]
and Γ and the unstable manifold (included in L) of (b, b) for Φ1.

The following two sections are dedicated to the proof of Proposition 5.7.

5.4.2 Transience

The goal of this section is to prove the first part of Proposition 5.7.

Lemma 5.9. Assume that (X0, Y0) ∈ L. Then, for any t > 0,

0 < Xt − Yt 6 (X0 − Y0) exp
(
−
∫ t

0
α(Is) ds

)
,

with α(0) = 1 and α(1) = 1− cα < 0 with c = (3/8)
√

3.

Proof. If It = 0 then
d

dt
(Xt − Yt) = −(Xt − Yt).
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On the other hand, if It = 1 then

d

dt
(Xt − Yt) = −(Xt − Yt) + α

X2
t − Y 2

t

(1 +X2
t )(1 + Y 2

t )
= −(1− αh(Xt, Yt))(Xt − Yt)

where the function h is defined on [0,∞)2 by

h(x, y) = x+ y

(1 + x2)(1 + y2) .

The unique critical point of h on [0,∞)2 is (1/
√

3, 1/
√

3) and h reaches its maximum at
this point:

c := sup
x,y>0

h(x, y) = 3
√

3
8 .

As a consequence, for any t > 0,

d

dt
(Xt − Yt) 6 −α(It)(Xt − Yt) where

{
α(0) = 1,
α(1) = 1− cα.

Integrating this relation concludes the proof.

Corollary 5.10. Assume that (X0, Y0) ∈ L. If λ1 > λ0(cα − 1) then (Xt, Yt) converges
exponentially fast to D almost surely. More precisely,

lim sup
t→∞

1
t

log (Xt − Yt) 6 −
λ1 − (cα− 1)λ0

λ0 + λ1
< 0 a.s. (28)

In particular, the process (X,Y, I) admits a unique invariant measure µ. Its support is the
set

S = {(x, x, i) : x ∈ [b, α], i ∈ {0, 1}}.

Proof. The ergodic theorem for the Markov process (It)t>0 ensures that

1
t

∫ t

0
α(Is) ds

a.s.−−−→
t→∞

∫
α(i)dν(i)

where the invariant measure ν of the process (It)t>0 is the Bernoulli measure with parameter
λ0/(λ0 + λ1). The upper bound (28) is a straightforward consequence of Lemma 5.9. This
ensures that the sets L and U are transient.

5.4.3 Recurrence

In this section, we aim at proving the second part of Proposition 5.7. Let us define the
following new variables:

Ut = Xt + Yt
2 and Vt = Xt − Yt

2 .

Of course (U, V, I) is still a PDMP. If

d

dt

(
Xt

Yt

)
= F 1(Xt, Yt) then d

dt

(
Ut
Vt

)
= G1(Ut, Vt),
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with

G1(u, v) = 1
2

(
1 1
1 −1

)
F 1(u+ v, u− v) =


−u+ α(1 + u2 + v2)

(1 + (u+ v)2)(1 + (u− v)2)

−v + 2αuv
(1 + (u+ v)2)(1 + (u− v)2)

 .

Corollary 5.10 ensures that, if λ1/λ0 is large enough, then Vt goes to 0 exponentially fast.
Let us show that this is no longer true if λ1/λ0 is small enough. Let ε > 0. Assume
that, with positive probability, Vt ∈ (0, ε) for any t > 0. Then, for any time t > 0,
(Ut, Vt) ∈ [b, α]× [0, ε]. Indeed, one can show that Ut ∈ [b, α] for any t > 0 as soon as it is
true at t = 0. The following lemma states that the vector fields G1 can be compared to a
vector fields H1 (which is simpler to study).

Lemma 5.11. Assume that (u, v) ∈ [b, α] × [0, ε]. Then there exist uc ∈ (b, α) and
K, δ, γ, γ̃ > 0 (that do not depend on ε) such that bε = b+Kε2 and

G1
1(u, v) 6 H1

1 (u, v) with H1
1 (u, v) = −δ(u− bε).

and
G1

2(u, v) > H1
2 (u, v) with H1

2 (u, v) =
(
(γ + γ̃)1{u6uc} − γ̃

)
v.

Proof. Notice firstly that there exists c > 0 such that

∀(u, v) ∈ [b, α]× [0, ε],
∣∣∣(1 + (u+ v)2)(1 + (u− v)2)− (1 + u2)2

∣∣∣ 6 cε2. (29)

Thus, using that u3 + u− α = (u− b)(u2 + bu+ α/b) and u > b we get that

G1
1(u, v) 6 −u+ α

1 + u2 + cε2

6 −(u− b)u
2 + bu+ α/b

1 + u2 + cε2

6 −(u− b)2b2 + α/b

1 + α2 + cε2.

We get the desired upper bound for G1
1 with

δ = 2b2 + α/b

1 + α2 , K = c/δ and bε = b+Kε2.

Similarly, Equation (29) ensures that

G1
2(u, v) > vg(u) with g(u) = 2αu

(1 + u2)2 − 1− cε2.

Obviously, if ε is small enough, g(b) > 0, g(α) < 0 and g is decreasing on [b, α]. Thus, if ũ
is the unique zero of g on (b, α), then one can choose

uc = ũ+ b

2 , γ = g(uc) and γ̃ = g(α).

To get a simpler bound in the sequel we can even set γ̃ = g(α) ∨ 1.
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Finally, define H0
1 (u, v) = G0

1(u, v) = −(u − α) and H0
2 (u, v) = G0

2(u, v) = −v and
introduce the PDMP (Ũ , Ṽ , Ĩ) where Ĩ = I is the switching process of (U, V, I) and (Ũ , Ṽ )
is driven by H0 and H1 instead of G0 and G1. From Lemma 5.11, we get that

∀t > 0, Ut 6 Ũt and Ṽt 6 Vt

assuming that (Ũ0, Ṽ0, Ĩ0) = (U0, V0, I0). The last step is to study briefly the process
(Ũ , Ṽ , Ĩ). From the definition of the vector fields that drive (Ũ , Ṽ , Ĩ), one has

d

dt
Ṽt =

−Ṽt if It = 0,
((γ + γ̃)1{Ũt6uc} − γ̃)Vt if It = 1.

This ensures that
1
t

log Ṽt
Ṽ0

>
1
t

∫ t

0
((γ + γ̃)1{Is=1,Ũs6uc} − γ̃) ds (30)

since γ̃ > 1. If λ1/λ0 is small enough, then (Is, Ũs) spends an arbitrary large amount of
time near (1, bε) (and it can be assumed that bε < uc if ε is small enough). Thus, the
right-hand side of (30) converges almost surely to a positive limit as soon as λ1/λ0 is small
enough. As a consequence, V cannot be bounded by ε forever. The Markov property
ensures that (X,Y ) can reach any neighborhood of (a, a−1) with probability 1 and thus,
(a, a−1) belongs to the support of the invariant measure. This concludes the proof of the
second part of Proposition 5.7.

6 Absolute continuity — proofs of global criteria
This section is devoted to the proof of Theorems 4.1 and 4.2. The main idea of the proof
has already been given before the statements; the main difficulty lies in providing estimates
that are (locally) uniform in the starting point (x, i), the region of endpoints V × E, and
the discrete time m or the continuous time t.

After seeing in Section 6.1 what the submersion hypothesis means in terms of vector
fields, we establish in Section 6.2 a parametrized version of the local inversion lemma. This
provides the uniformity in the continuous part x of the starting point, and enables us to
prove in Section 6.3 a weaker version of Theorem 4.1. In Section 6.4 we show how to prove
the result in its full strength. Finally, the fixed time result (Theorem 4.2) is proved in
Section 6.5.

6.1 Submersions, vector fields and pullbacks

Before going into the details of the proof, let us see how one can interpret the submersion
hypotheses of our regularity theorems.

Recall that, for x and i fixed, we are interested in the map

ψ : Rm → Rd

v 7→ Φi
v(x).

To see if this is a submersion at u, we compute the partial derivatives with respect to the
vi: these are elements of TxmM , and ψ is a submersion if and only if these m vectors span
TxmM . This is the case if and only if their inverse image by DΦi

u span Tx0M . An easy
computation (see also Figure 4) shows that these vectors are given by:
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F1

F2
F3

Φ?
2F3

Φ?
1F2

x2

x0

x1
In this picture (i0, i1, i2) = (1, 2, 3).
The trajectory starts at x0, and follows
F i0 = F 1 for a time u1. At the first
jump, it starts following F i1 = F 2; we
pull this tangent vector, depicted in red,
back to x0. The next (green) tangent
vector F i2 = F 3 (at x2) has to be pulled
back by the two flows. If the three tan-
gent vectors we obtain at x0 span Tx0M ,
v 7→ Φi

v(x0) is a submersion.

Figure 4: The global condition

C̃(i,u) =
{
F i0(x0), Φ?

1F
i1(x0), . . . , Φ?

mF
im(x0)

}
, (31)

where Φ?
k is the composite pullback:

Φ?
k = Φi0,?

u1 ◦ · · · ◦ Φik−1,?
uk . (32)

Note that Φ?
k depends on i and u, but we hide this dependence for the sake of readability.

6.2 Parametrized local inversion

Let us first prove a “uniform” local inversion lemma, for functions of t that depend on a
parameter x.

Remark 6.1. Even if x lives in some Rd, we do not write it in boldface, for the sake of
coherence with the rest of the paper.

Lemma 6.2. Let d and m be two integers, and let f be a C1 map from Rm × Rd to Rm,

f : (t, x) 7→ f(t, x) = fx(t).

For any fixed x, fx maps Rm to itself; we denote its derivative at t by (Dfx)t. Suppose
that, for some points x0 and t0, (Dfx0)t0 is invertible. Then we can find a neighborhood
J ⊂ Rd of x0, an open set I ⊂ Rm and, for all x ∈ J , an open set Wx ⊂ Rm, such that:

f̃x :
{
Wx → I,

t 7→ fx(t)

is a diffeomorphism. Moreover, for any integer k 6 m, and any neighborhood W of t0, we
can choose I, J and the Wx so that:

i) I is a cartesian product I1 × I2 where I1 ⊂ Rk, I2 ⊂ Rm−k ;

ii) ∀x ∈ J, Wx ⊂W .

Proof. We “complete” the map f by defining:

H :
{
Rm × Rd → Rm × Rd

(t, x) 7→ (fx(t), x).

The function H is C1, and its derivative can be written in block form:

DH(t,x) =
(

(Dfx)t ?
0 Ik

)
.
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Since (Dfx0)t0 is invertible, (DH)t0,x0 is invertible. We apply the local inversion theorem
to H: there exist open sets U0, V0 such that H maps U0 to V0 diffeomorphically. In order to
satisfy the properties i) and ii), we restrict H two times. First we define U1 = U0∩(W×Rd),
and V1 = H(U1). Since V1 is open it contains a product set V = I1 × I2 × J , and we
let U = H−1(V). For any (y, x) ∈ I × J , define gx(y) the first component of H−1(y, x):
composing by H, we see that fx(gx(y)) = y.

The set Wx = {t ∈ Rm; (t, x) ∈ U} is open, and included in W . Since fx maps Wx to
I, gx is its inverse and both are continuous, so f̃x is a diffeomorphism.

Lemma 6.3. Let T be a continuous random variable in Rm, with density hT . Let d 6 m,
and let φ be a C1 map from Rm × Rd to Rd:

φ : (t, x) 7→ φx(t).

Suppose that, for some x0, t0, (Dφx0)t0 : Rm → Rd has full rank d. Suppose additionally
that hT is bounded below by c0 > 0 on a neighborhood of t0.

Then there exist a constant c > 0, a neighborhood J of x0 and a neighborhood I1 of
φx0(t0) such that:

∀x ∈ J, P [φ(T, x) ∈ ·] > cλRd(· ∩ I1). (33)

In other words, φ(T, x) has an absolutely continuous part with respect to the Lebesgue
measure.

Proof. We know that (Dφx0)t0 has rank d. Without loss of generality, we suppose that
the first d columns are independent. In other words, writing t = (u,v) ∈ Rd × Rm−d, we
suppose that the derivative of ψx,v : u 7→ φx0(u,v) is invertible in u0 for v = v0.

Once more, we “complete” φ and define:

fx :
{
Rd × Rm−d → Rd × Rm−d

(u,v) 7→ (φx(u,v),v).

By Lemma 6.2 applied with k = d, we can find I1 ⊂ Rd, I2 ⊂ Rm−d, J ⊂ Rd and (Wx)x∈J ⊂
Rm such that fx maps diffeomorphically Wx to I1 × I2. Call f̃x this diffeomorphism. By
property ii) of the lemma, we can ensure that Wx is included in a given neighborhood of

t0. Since Dfx =
(
Dψx,v ?

0 I

)
, we can choose this neighborhood so that:

∀x ∈ J,∀t ∈Wx, hT (t) |det((Dfx)t)|−1 > c′ > 0. (34)

for some strictly positive constant c′.
Write the random variable T as a couple (U, V ), and let A be a Borel set included in I1.

P [φ(T, x) ∈ A] > P [φ(T, x) ∈ A, V ∈ I2]
= P [fx(U, V ) ∈ A× I2]

> P
[
(U, V ) ∈ f̃x

−1(A× I2)
]

=
∫
f̃−1
x (A×I2)

hT (u,v)dudv

=
∫
f̃−1
x (A×I2)

hT (u,v)
∣∣∣det((Df̃x)u,v)

∣∣∣−1
·
∣∣∣det((Df̃x))u,v

∣∣∣ dudv.
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Since f̃−1
x (A× I2) ⊂ Wx, we may use the bound (34). Then we can change variables by

defining (s,v) = f̃x(u,v). We obtain:

P [φ(T, x) ∈ A] > c′
∫
f̃−1
x (A×I2)

∣∣∣det((Df̃x))u,v
∣∣∣ dudv

= c′
∫
A×I2

dsdv

> c′λRd(A)λRm−d(I2).

Therefore (33) holds with c = c′λRm−d(I2).

6.3 A slightly weaker global condition

Proposition 6.4 (Regularity at jump times — weak form). Let x0 be a point in M , and
(i,u) an adapted sequence in Tm, such that min06i6m ui > 0.

If v 7→ Φi
v(x0) is a submersion at u, then there exists U0 a neighborhood of x0, V0 a

neighborhood of Φi
u(x0) and a constant c > 0 such that:

∀x ∈ U0, Px,i0
[
Z̃m ∈ · × {im}

]
> cλRd(· ∩ V0), (35)

where i0 and im are the first and last elements of i.
Remark 6.5. This result is a weaker form of Theorem 4.1:
• the hypothesis is stronger — the sequence (i,u) must be adapted with strictly positive
terms;

• the conclusion is weaker — it lacks uniformity for the discrete component, for the
starting point and the final point.

Proof. Recall (Ui)i>1 is the sequence of interarrival times of a homogeneous Poisson
process. Let FPoi be the sigma field generated by (Ui)i>1. Set U = (U1, . . . , Um) and
Ỹ = (Ỹ0, . . . , Ỹm). By continuity, there exists a neighborhood U0 of x0, and numbers
δ1, δ2 > 0 such that p(x, i,v) > δ2 for all x ∈ U0 and v ∈ Rm such that ‖v− u‖ =
max16i6m |vi − ui| 6 δ1. Therefore

Px,i0
[
X̃m ∈ ·, Ỹm = im

]
> P

[
Φi

U(x) ∈ ·, Ỹ = i, ‖U− u‖ 6 δ1
]

= E
[
P
[
Φi

U(x) ∈ ·, Ỹ = i, ‖U− u‖ 6 δ1
∣∣∣FPoi]]

> δ2P
[
Φi

U(x) ∈ ·, ‖U− u‖ 6 δ1
]

= δ2δ3P
[
Φi

U(x) ∈ ·
∣∣∣‖U− u‖ 6 δ1

]
= δ2δ3P

[
Φi

T(x) ∈ ·
]

where δ3 = P [‖U− u‖ 6 δ1] > 0 and T = (T1, . . . , Tm) is a vector of independent random
variables such that for each i, the distribution of Ti is given by

P [Ti < t] = P
[
Ui < t

∣∣ |Ui − ui| 6 δ1
]
.

On [ui − δ1, ui + δ1] this is eλδ1−e−λ(t−ui)

eλδ1−e−λδ1 so Ti has the density

fTi(t) = 1[ui−δ1,ui+δ1](t)
λe−λ(t−ui)

eλδ1 − e−λδ1
(36)

which is continuous at the point ui.
Lemma 6.3 then applies, yielding (17), with U0 and V0 given by J and I1 of Lemma 6.3.
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6.4 Gaining uniformity

6.4.1 Uniformity at the beginning

The uniformity on the discrete component follow from two main ideas:

• use the irreducibility and aperiodicity to move the discrete component,

• use the finite speed given by compactness to show that this can be done without
moving too much.

The vector fields F i are continuous and the space is compact, so the speed of the
process is bounded by a constant Csp.

Definition 6.6 (Shrinking). For any open set U and any t > 0, define Ut the shrunk set:

Ut = {x ∈ A, d(x,Uc) > Cspt} (37)

This set is open, and non empty for 0 < t < t(U). If x ∈ Ut, then Px,i [Xt ∈ U ] = 1.

Lemma 6.7 (Uniformity at the beginning). Let U be a non empty open set. There exist
0 < ε1 < ε2, an integer mb, an open set U ′ ⊂ U and a constant c such that:

∀x ∈ U ′, ∀i, j, Px,i [∀t ∈ [ε1, ε2], Zt ∈ U × {j}] > c,

∀x ∈ U ′,∀i, j Px,i
[
Z̃mb ∈ U × {j}

]
> c.

Proof. Let ε2 < t(U), U ′ = Uε2 and ε1 = ε2/2. There is a positive probability that between
t = 0 and t = ε1, the index jumps from i to j, and does not jump again before time t = ε2;
the fact that Xt ∈ U is guaranteed by the definition of U ′. The second result is similar; if
all jump rates are positive, we can even choose mb = 1.

6.4.2 Uniformity at the end

Lemma 6.8 (Gain of discrete uniformity). If V is an open set and i ∈ E, then there exist
c′, V ′, te and me such that, if µ > c(λV × δi),

µPte > c′(λV ′×E),
µP̃me > c′(λV ′×E).

The proof will use the following result:

Lemma 6.9 (Propagation of absolute continuity). There is a constant Cdiv that only
depends on the set M and the vector fields F i such that, for all V, i,

(λV × δi)Kt > e−Cdivt(λVt × δi),

where Vt is the shrunk set defined in (37) and Ktf(x, i) = Φi
tf(x, i).

Proof. Since Φi
t is a diffeomorphism from Rd to itself, for any positive map f on Rd ×E

we get by change of variables:∫
f(Φi

t(x), i)dλV(x) =
∫
f(x, i)

∣∣∣DΦi
t

∣∣∣−1
dλΦit(V)(x).
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If we let h(t) =
∣∣DΦi

t

∣∣, one of the classical interpretation of the divergence operator (see
e.g. [21], Proposition 16.33) yields h′(t) = h(t) divF i(Φi

t(x)). By compactness,

∃Cdiv, ∀x ∈M,∀i,
∣∣∣divF i(x)

∣∣∣ 6 Cdiv.

Therefore h(t)−1 > exp(−Cdivt).
Since by definition of the shrunk set, Φi

t(V) ⊃ Vt,∫
f(Φi

t(x), i)dλV(x) > exp(−Cdivt)
∫
f(x, i)dλVt(x),

and Lemma 6.9 follows.

Proof of Lemma 6.8. Fix a point x ∈ V. Since the matrix Q(x) = Q(x, i, j) is irreducible
and aperiodic, there exists an integerm such that for all i, j, there exists a sequence i(i, j) =
(i0 = i, i1(i, j), . . . , im−1(i, j), im(i, j) = j) that satisfies

∏m
l=1Q(x, il−1(i, j), il(i, j)) > 0.

Without loss of generality (since we can always replace V by a smaller set) we suppose that

∀x ∈ V,∀i, j, ∀l, Q(x, il−1(i, j), il(i, j)) > cQ > 0. (38)

Fix i and j. From (7) we can rewrite Pt as:

Pt =
∑
n>0

λne−λt
∫
{u∈Rn:

∑n

i=1 ui<t}

(
Ku1QKu2Q · · ·KunQKt−

∑
ui

)
du1 . . . dun.

Therefore:

(λV ⊗ δi)Pt > λme−λt
∫

u∈Rm:
∑

ui<t
(λV ⊗ δi)Ku1Q · · ·KumQKt−

∑
ui
du1 · · · dun.

By Lemma 6.9 and the lower bound (38),

(λV ⊗ δi)Ku1Q > e−Cdivu1(λVu1
⊗ δi)Q

> cQe
−Cdivu1(λVu1

⊗ δi1).

Repeating these two lower bounds m times yields:

(λV ⊗ δi)Pt > λme−λte−CdivtcmQ

(∫
u∈Rm:

∑
ui<t

du1 · · · dun

)
λVt ⊗ δj

>
(λcQt)m

m! e−(λ+Cdiv)tλVt ⊗ δj .

Since the measures λVt ⊗ δj are mutually singular for different indices j, this implies
that

(λV ⊗ δi)Pt > c(λ, t, cQ,m)λVt×E .

For t small enough, Vt = V ′ is non empty, and the first part of the lemma follows.
The statement for P̃m is proved similarly, starting from the bound

P̃m >
∫
{u∈Rm:

∑m

i=1 ui<t}
(Ku1QKu2Q · · ·KunQ)du1 . . . dum,

written for a t small enough so that Vt is non empty.
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6.4.3 Proof of Theorem 4.1

The hypothesis gives the existence of (i,u) such that v 7→ Φi
v(x0) is a submersion at u, or

in other words that the family C̃(i,u) defined by (31) has full rank. If (i,u) is not adapted
to x0, by the irreducibility hypothesis, there exists an m and a sequence (i′,u′) ∈ Tm
such that (i′,u′) is adapted and describes the same trajectory (just add instantaneous
transitions where it is needed). The new family C̃(i′,u′) contains all vectors from C̃(i,u), so

rank(C̃(i′,u′)) > rank(C̃(i,u)).

Now, for any m, the mapping: (i,u) 7→ C̃(i,u) from Tm to (Rd)m is continuous. Since the
rank is a lower semicontinuous function, the mapping

Tm → N

(i,u) 7→ rank
(
C̃(i,u)

)
is lower semi-continuous. Since being adapted is an open condition, there exists a sequence
(i′′,u′′) ∈ Tm such that every component of u′′ is strictly positive, and rank

(
C̃(i′′,u′′)

)
>

rank
(
C̃(i′,u′)

)
.

In other words, if the submersion hypothesis of Theorem 4.1 holds, then the stronger
hypothesis of Proposition 6.4 holds for a (possibly longer) adapted sequence with non-zero
terms.

By Proposition 6.4, there exists U , V and c such that

∀x ∈ U , Px,i0
[
Z̃m ∈ · × {im}

]
> cλV(·).

Using Lemma 6.7 to gain uniformity at the beginning, we get the existence of m′ = mb+m,
U ′ and c′ such that:

∀x ∈ U ′,∀i ∈ E, Px,i
[
Z̃m′ ∈ · × {im}

]
> c′λV(·),

or in other words:
∀x ∈ U ′,∀i ∈ E, (δx,i)P̃m

′
> c′λV ⊗ δim .

Finally we apply Lemma 6.8 to i = im and the measure µ = δx,iP̃
m′ to get uniformity at

the end: for m′′ = m′ +me,

∀x ∈ U ′,∀i ∈ E, (δx,i)P̃m
′′
> c′′λV ′×E ,

which is exactly the conclusion of Theorem 4.1.

6.5 Absolute continuity at fixed time

The hypothesis of Theorem 4.2 is that ψ : v 7→ Φi
t−
∑

vi
◦Φi

v has full rank at u. Reasoning
as in Section 6.1, we can compute the derivatives with respect to the vi, and write the rank
condition at the initial point x0: the submersion hypothesis holds if and only if the family

C(i,u) =
{(
F i0 −Φ?

mF
im
)
(x0),

(
Φ?

1F
i1 −Φ?

mF
im
)
(x0),

· · · ,
(
Φ?
m−1F

im−1 −Φ?
mF

im
)
(x0)

} (39)

has full rank.
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Let us now turn to the proof of (18),
By the same continuity arguments as above, we suppose without loss of generality that

the sequence (i,u) is adapted to x0 and that all elements of u are positive. Moreover, there
exist U0, δ1 and δ2 such that, if x ∈ U0 and v ∈ Rm satisfies ‖v− u‖ 6 δ1, then

∑
vi < t0

and p(x,v, i) > δ2.
Define two events

A = “the process jumps exactly m times before time t0” ∩ {‖U− u‖ 6 δ1},

B =
{
Ỹ = i

}
The event A is FPoi-measurable. By definition of δ1, δ2,

1APx,i0 [B|FPoi] > δ21A

> δ21{Uk+1>t0}1{‖U−u‖6δ1}

> δ2e
−λt01{‖U−u‖6δ1}.

On the event B, Zt0 = (ψ(U), im), so:

Px,i0 [Zt0 ∈ · × {im}] > Px,i0 [A ∩B ∩ (Zt0 ∈ · × {im})]
= Px,i0 [A ∩B ∩ (ψ(U) ∈ ·)]

= E
[
Px,i0 [B|FPoi]1A1ψ(U)∈·

]
> δ2e

−λt0P [{‖U− u‖ 6 δ1} ∩ ψ(U) ∈ ·]
> δ2δ3e

−λt0P
[
ψ(U) ∈ ·

∣∣ ‖U− u‖ 6 δ1
]
.

where δ3 = P [‖U− u‖ 6 δ1]. The reasoning leading to Equation (36) still applies. Thanks
to Lemma 6.3, this implies (18), but only with i = i0, j = im and ε = 0.

To prove the general form of (18) with the additional freedom in the choice of i, j and
t, we first use Lemma 6.7 to find a neighborhood U ′0 of x0, and three constants 0 < ε1 < ε2
and c > 0 such that:

∀x ∈ U ′0, Px,i [∀t ∈ [ε1, ε2], Zt ∈ U0 × {i0}] > c.

Let t′0 = t0− ε1 and ε = ε2− ε1, so that [t′0, t′0 + ε] = [t0 + ε1, t0 + ε2]. Then, for any x ∈ U ′0,
and any t ∈ [t′0, t′0 + ε],

Px,i [Xt ∈ ·] > Ex,i
[
1{Zt−t0∈U0×{i1}}PZt−t0 [Xt0 ∈ ·]

]
> c′λRm(· ∩ V0).

An application of Lemma 6.8 proves that we can also gain uniformity at the end; this
concludes the proof of Theorem 4.2.

7 Constructive proofs for the local criteria

7.1 Regularity at jump times

To prove the local criteria, we show that they imply the global ones for appropriate (and
small) times u1, . . . um. We introduce some additional notation for some families of vector
fields.
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Definition 7.1. The round letters F , G, H will denote families of vector fields on M . For
a family F , Fx is the corresponding family of tangent vectors at x.

If i = (i0, . . . , im) is a sequence of indices and u = u(t) = (u1(t), . . . um(t)) is a sequence
of “time” functions, we denote by Fi,u = Fi,u(t) the family of vector fields:{

F i0 ,Φ?
1F

i1 , . . .Φ?
mF

im
}
. (40)

This family depends on t via the Φ?
k (see (32)).

We begin by a simple case where there are just two vector fields, F 1 and F 2, and we
want regularity at a jump time, starting from (say) (x, 1). To simplify matters further,
suppose that the dimension d is two.

In the simplest case, F 1(x) and F 2(x) span the tangent plane R2. Then, for t small
enough, these vectors “stay independent” along the flow of X2: F 2(x) and (Φ2,?

t F 1)(x) are
independent. So the global condition holds for t small enough.

Suppose now that F 1 and F 2 are collinear at x, but that F 1(x) and [F 1, F 2](x) span
R2. The Lie bracket [F 2, F 1] can be seen as a Lie derivative: [F 2, F 1] = LF 2F 1 which
shows how F 1 evolves under the flow of F 2. In other words:

Φ2,?
t (F 1) = F 1 + t[F 2, F 1] + o(t).

Let u(t) = (t, t) and i = (1, 2, 1), and look at Fi,u(t).

Fi,u(t) = (F 1, Φ1,?
t (F 2), Φ1,?

t Φ2,?
t (F 1))

=
(
F 1, F 2 + t[F 1, F 2] + o(t), F 1 + t[F 2, F 1] + o(t) + t[F 1, F 1] + t2[F 1, [F 2, F 1]] + o(t2)

)
=
(
F 1, F 2 + t[F 1, F 2] + o(t), F 1 + t[F 2, F 1] + o(t)

)
.

By hypothesis, rank
(
F 1(x), [F 2, F 1](x)

)
= 2. Therefore, for t small enough, the lower-

semicontinuity of the rank ensures:

rank
(
Fi,u(t)

)
= rank

(
F 1, F 2 + t[F 1, F 2] + o(t), t[F 2, F 1] + o(t)

)
= rank

(
F1, F2 + t[F 1, F 2] + o(t), [F 2, F 1] + o(1)

)
> rank(F 1, F 2, [F 2, F 1])
= 2,

and the global condition holds.

The previous case shows two main ingredients in the proof:

• to introduce the brackets, we have to alternate between flows,

• the method works because we can express various vectors and Lie brackets as
(approximate) linear combinations of vectors in Fi,u(t), for good choices of u and i.

Let us abstract the last property in a definition.

Definition 7.2. Let G = {G1, . . . Gn} be a fixed family of vector fields and H(t) a family
depending on t. If there exist continuous functions λij : (0,∞) → R , and a vector field
R(t), such that:

∀i 6 n, Gi =
∑

λij(t)Hj(t) +Ri(t),
and ‖Ri(t)‖ −−→

t→0
0, we say that H(t) (asymptotically) generates G.
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i0 i1 i2 i3 i i0 i1 i2 i3

u1 u2 u3 u1 u2 u3v u

Figure 5: The Hanoï construction
The sequence (̃i; ũ) is obtained by inserting the sequence (i; (u, v)), depicted in red, in-between two
copies of the original sequence (i; u). The “middle” time u is much larger than all the other times.

Remark 7.3. We allow the λij(t) to blow up when t→ 0. Because of this, even if the Hj(0)
are defined, Gi does not necessary lie in their linear span. For example, if H1(t) = (1, 0)
and H2(t) = (0, t), H(t) asymptotically generates any family of constant vector fields in
R2, even if H2(0) = (0, 0) degenerates.

Lemma 7.4. If H(t) generates G, then for any point x, there is a tx such that:

∀t < tx, rank(H(t)x) > rank(Gx).

This result will be proved below. The last ingredient in the proof is to introduce
different time scales in the alternation between vector fields:

Lemma 7.5 (Towers of Hanoï). Suppose that, for some i = (i0, . . . im) and u(t) =
(u1(t), . . . um(t)) such that limt→0 uj(t) = 0, Fi,u(t) generates G. Choose two functions
u(t) and v(t) such that v(t)� u(t), and uj(t)� u(t)� 1, for all j. Define ũ(t) and ĩ by
concatenation (see Figure 5):

ũ(t) = (u1(t), u2(t), . . . , um(t), v(t), u(t), u1(t), . . . , um(t));
ĩ = (i0, i1, . . . im, i, i0, i1, . . . im).

(41)

Then Fĩ,ũ(t) generates G ∪ {F i} ∪ {[F i, G], G ∈ G}.

The name comes from the fact that, in analogy with the towers of Hanoï, in order to
gain brackets by F i (the lower disk), we have to move according to i,u (move all the upper
disks), then move the lower disk, then move the upper disks once again.

Once these lemmas are known, Theorem 4.4 follows quite easily.

Proof of Theorem 4.4. Let us reason by induction. Starting from the empty family, we can
construct thanks to Lemma 7.5 a u(t) and an i such that Fi,u(t) generates any number of F i
and iterated brackets [F i1 , [F i2 , . . . F ik ]]. If Rd is generated by these brackets, Lemma 7.4
shows that Fi,u(t) has full rank for some tx. Therefore, the global condition is satisfied for
the choice of times (u1(tx), u2(tx), . . . um(tx)).

Let us turn to the proofs of the lemmas.

Proof of Lemma 7.4. Define a family H̃(t) by H̃i =
∑
λij(t)Hj(t) = Gi −Ri(t). At every

point x, every vector in H̃x is a combination of vectors in Hx. Therefore

rank(H(t)) > rank(H̃(t))
> rank(G),

where the second line follows from the lower semi-continuity of the rank.
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Proof of Lemma 7.5. Recalling the composite pullback notation Φ?
k from (32), let us define,

for 0 6 j 6 m, F̃j = Φ?
jF

ij so that Fi,u(t) = (F̃0, F̃1, . . . F̃m). All these quantities, as well
as u, depend on t, but we drop this dependence in the notation. The “Hanoï” construction
yields:

Fĩ,ũ =
(

F i0 , Φ?
1F

i1 , . . . , Φ?
mF

m,

Φ?
mΦim,?

v F i,

Φ?
mΦim,?

v Φi,?
u F

i0 , Φ?
mΦim,?

v Φi,?
u Φ?

1F
i1 , . . . , Φ?

mΦim,?
v Φi,?

u Φ?
mF

im
)

=
(

F̃0, F̃1, . . . , F̃m,

Φ?
mΦim,?

v F i,

Φ?
mΦim,?

v Φi,?
u F̃0, Φ?

mΦim,?
v Φi,?

u F̃1, . . . , Φ?
mΦim,?

v Φi,?
u F̃m

)
.

Consider first the middle term, recalling that v = v(t) and the ui(t) go to zero when t is
small:

Φim,?
v F i = F i +O(v),

Φ?
mΦim,?

v F i = F i +O(v) +O(‖u‖)
= F i + o(1).

For the m+ 1 last terms, we have successively:

Φi,?
u F̃j = F̃j + u[F i, F̃j ] + o(u),

Φim,?
v Φi,?

u F̃j = F̃j + u[F i, F̃j ] + o(u) +O(v),
Φ?
mΦim,?

v Φi,?
u F̃j = F̃j + u[F i, F̃j ] + o(u) +O(v) +O(‖u‖)

= F̃j + u[F i, F̃j ] + o(u)

since v(t)� u(t) and uj(t)� u(t)� 1 for all j. Therefore we can rewrite:

Fĩ,ũ =
(
F̃0, F̃1, . . . , F̃m, F

i + o(1), F̃0 + u[F i, F̃0] + o(u), . . . , F̃m + u[F i, F̃m] + o(u)
)
(42)

Now consider G = (G1, . . . GL). Since Fi,u(t) generate G, Gl may be written as:

Gl =
∑
j

λlj(t)F̃j(t) +Rl(t).

This is an equality of vector fields, and we can take the bracket with F i:

[F i, Gl] =
∑
j

λlj(t)[F i, F̃j(t)] + [F i, Rl(t)].

However,
[F i, F̃j ] = 1

u

(
F̃j + u[F i, F̃j ] + o(u)− F̃j

)
+ o(1).

Therefore [F i, Gl] can be written as the sum of a linear combination of vector fields in
Fĩ,ũ, and a remainder. This is also true of F i = (F i +O(‖u‖)−O(‖u‖)). This shows that
G∪{F i}∪{[F i, G], G ∈ G} is generated by Fĩ,ũ, and concludes the proof of Lemma 7.5.
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7.2 Regularity at a fixed time

Once more, we show that if the local criterion holds, then the global one holds for a
good choice of indices and times. The global criterion is expressed in terms of the family
described by (39). It will be easier to work with a slightly different family, namely:

Gi,u =
(
F i0 −Φ?

1F
i1 ,Φ?

1F
i1 −Φ?

2F
i2 , . . . ,Φ?

m−1F
im−1 −Φ?

mF
im
)
. (43)

It is easy to see that Gi,u and the original family span the same space at each point (the
kth vector in the original family is the sum of the last m − k + 1 vectors of Gi,u). The
analogue of Lemma 7.5 is the following:

Lemma 7.6 (More Towers of Hanoï). Suppose that, for some i and some time functions
u(t), Gi,u(t) asymptotically generates G. Choose u(t), v(t) as in Lemma 7.5 and define ĩ,
ũ(t) by concatenation as in (41).

Then Gĩ,ũ(t) asymptotically generates G ∪ {F i − F im , F i − F i0} ∪ {[F i, G], G ∈ G}.

Proof. For 1 6 j 6 m, call F̃j the jth vector field in Gi,u: F̃j = Φ?
j−1F

ij−1 − Φ?
jF

ij .
Following the argument that led us to (42), we get:

Gĩ,ũ =
(

F̃1, F̃2, . . . , F̃m,

Φ?
m(F im − Φim,?

v F i), Φ?
mΦim,?

v

(
F i − Φi,?

u F
i0
)
,

F̃1 + u[F i, F̃1] + o(u), F̃2 + u[F i, F̃2] + o(u), . . . , F̃m + u[F i, F̃m] + o(u)
)
.

The two vector fields in the middle give, at zero-th order as t goes to zero, F im − F i and
F i − F i0 . The end of the proof is the same as in lemma 7.5.

With this lemma in hand, we know we can generate F 1−F 2 (starting from i = (i0) = (1),
an empty u = (), and choosing i = 2). In all successive “enrichments” of i,u by the Hanoï
procedure, the first and last components of i will always be 1, therefore given enough
enrichments, we generate all the F i − F 1. Consequently we also get all differences:
F i − F j = F i − F 1 + F 1 − F j . Finally, by taking the bracket by F i, we generate [F i, F j ],
and then all subsequent higher order brackets. This concludes the proof of Theorem 4.4.
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