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Markov processes

Michel Benaïm, Stephane Leborgne, Florent Malrieu, Pierre-André Zitt

April 18, 2012

Abstract

We study a class of Piecewise Deterministic Markov Processes with state space
R

m × E where E is a finite set. The continous component evolves according to a
smooth vector field that it switched at the jump times of the discrete coordinate.
The jump rates may depend on the whole position of the process. Working under
the general assumption that the process stays in a compact set, we detail a possible
construction of the process and characterize its support, in terms of the solutions set of
a differential inclusion. We establish results on the long time behaviour of the process,
in relation to a certain set of accessible points, which is shown to be strongly linked
to the support of invariant measures. Under Hörmander-type bracket conditions, we
prove that there exists a unique invariant measure and that the processes converges to
equilibrium in total variation. Finally we give examples where the bracket condition
does not hold, and where there may be one or many invariant measures, depending
on the jump rates between the flows.

1 Introduction and main results

Piecewise deterministic Markov processes (PDMPs in short) are intensively used in many
applied areas (molecular biology [22], storage modelling [7], Internet traffic [13, 15, 16],
neuronal activity [8, 20],...). Roughly speaking, a Markov process is a PDMP if its random-
ness is only given by the jump mechanism: in particular, it admits no diffusive dynamics.
This huge class of processes has been introduced by Davis (see [9, 10]) in a general frame-
work.

In the present paper, we deal with an interesting subclass of the PDMPs that plays a
role in molecular biology (see [22, 8]) and elsewhere [23]. We consider a PDMP evolving
on R

m × E, where E is a finite set, as follows: the first coordinate moves continuously
on R

m according to a smooth vector field that depends on the second coordinate whereas
the second coordinate jumps with a rate depending on the first one. We are interested
in the long time qualitative behaviour of these processes. A recent paper by Bakhtin and
Hurth [2] consider the particular situation where the jump rates are constants and prove
the beautiful result that, under an Hörmander type condition, if there exists an invariant
measure for the process, then it is unique and absolutely continuous with respect to the
"Lebesgue" measure on R

m × E. Here we consider a more general situation and focus on
different questions. However certain of our results heavily rely on Bakhtin and Hurth’s
paper. This class of Markov processes is reminiscent of the so-called iterated random
functions in the discrete time setting (see [11] for a good review of this topic).

Let us define our process more precisely. Let E be a finite set, and for any i ∈ E,
F i : Rm 7→ R

m be a smooth vector field. We assume throughout that each F i is bounded
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(i.e. supx ‖Fi(x)‖ 6 L < ∞) and we let Φi = {Φi
t} denote the flow induced by F i. Recall

that
t 7→ Φi

t(x) = Φi(t, x)

is the solution to the Cauchy problem ẋ = F i(x) with initial condition x(0) = x. We
furthermore assume that there exists a compact set M ⊂ R

m positively invariant under
each Φi. That is

∀t > 0, Φi
t(M) ⊂ M. (1)

We consider here a continuous time Markov process (Zt = (Xt, Yt)) living on M × E
whose infinitesimal generator acts on functions

g : M × E → R,

(x, i) 7→ g(x, i) = gi(x),

smooth1 in x, according to the formula

Lg(x, i) = 〈F i(x),∇gi(x)〉 +
∑

j∈E

λ(x, i, j)(gj (x) − gi(x)) (2)

where

(i) x 7→ λ(x, i, j) is continuous;

(ii) λ(x, i, j) > 0 for i 6= j and λ(x, i, i) = 0;

(iii) For each x ∈ M , the matrix (λ(x, i, j))ij is irreducible.

The process is explicitly constructed in Section 2 and some of its basic properties are
established. In Section 3 we describe (Theorem 3.2) the support of the law of the process
in term of the solutions set of a differential inclusion induced by the collection {F i : i ∈ E}.
Section 4 introduces the accessible set which is a natural candidate to support invariant
probabilities. We show (Proposition 4.8) that this set is compact, connected, strongly
positively invariant and invariant under the differential inclusion induced by {F i : i ∈ E}.
In Section 5 basic properties of invariant and empirical occupation probabilities of the
processes are established and their support is characterized in terms of the accessible set.
In Section 6 we prove the regularity results of [2] in a slightly stronger form that is needed
for the convergence estimates. We use these results in Section 7 to show that, under
some Hörmander bracket conditions, the law of jump chain and the process converge
exponentially in total variation toward the unique invariant probability of the process.
Section 8 gives elementary examples, and we show in Section 9 that when the Hörmander
condition is violated, the uniqueness of the invariant measure may depend on the jump
mechanism between flows, and not only on the flows themselves.

Let us note here that we address related questions in two companion papers: [6] gives
under more stringent assumptions an explicit rate of convergence in Wasserstein distance,
via a coupling argument; [5] studies in detail an example where the invariance assumption
(1) does not hold, and where the behaviour of the process depends strongly on the jump
rates.

1meaning that gi is the restriction to M of a smooth function on R
m
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2 Construction and Basic properties

Since M is compact and the maps λ(·, i, j) are continuous, there exists λ ∈ R+ such that

max
x∈M,i∈E

∑

j∈E,j 6=i

λ(x, i, j) < λ.

Let us fix such a λ, and let

Qij(x) =
λ(x, i, j)

λ
for i 6= j and Qii(x) = 1 −

∑

j 6=i

Qij(x).

Note that Q(x) is an irreducible aperiodic Markov transition matrix and that (2) can be
rewritten as

Lg = Ag + λ(Qg − g)

where
Ag(x, i) = 〈F i(x),∇gi(x)〉

and
Qg(x, i) =

∑

j∈E

Qij(x)gj(x)

The process (Zt) can be constructed as follows. Let U1, U2, . . . be a sequence of inde-
pendent identically distributed random variables having an exponential distribution with
parameter λ: for any t > 0,

P(Ui < t) = 1 − e−λt;

and let Z0 ∈ M × E be a random variable independent of (Ui)i>1. Define a discrete time
Markov chain (Z̃n = (X̃n, Ỹn)) on M × E recursively by Z̃0 = Z0,

X̃n+1 = ΦỸn(Un+1, X̃n),

and
P(Ỹn+1 = j|X̃n+1, Ỹn = i) = Qij(X̃n+1).

Now, set T0 = 0 and Tn+1 = Tn + Un+1 for any n > 0 and define (Zt)t>0 by

ZTn+s = (ΦỸn(s, X̃n), Ỹn) (3)

for all 0 6 s < Un+1. The memoryless property of exponential random variables make
(Zt)t>0 a continuous time càd-làg Markov process.

Let us prove that the generator of this process is indeed given by (2).
We let P = (Pt)t>0 denote the semigroup induced by (Zt)t>0. For each t > 0, Pt acts

on bounded measurable maps g : M × E → R according to the formula

Ptg(x, i) = E(g(Zt)|Z0 = (x, i)).

Let Kt and Qt be the operators defined by

Ktg(x, i) = g(Φi
t(x), i)

and
Qt = KtQ.

Set Q0 = Id and let Qn be the random operator QU1 ◦ . . . ◦QUn . It follows from (3) that

Ptg =
∑

n>0

E

(

1{Nt=n}Q
nKt−Tng

)

(4)

where Nt =
∑

n>1 1{Tn6t} is the Poisson process induced by (Tn).
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Remark 2.1. Note that Pt can be rewritten as

Pt =
∑

n>0

λne−λt
∫

{u∈Rn
+:
∑n

i=1
ui<t}

(

Qu1 ◦ . . . ◦QunKt−
∑

ui

)

du1 . . . dun. (5)

Let C0 = C0(M×E) denote the set of real valued functions f : M×E → R continuous
in the first variable equipped with the uniform norm ‖·‖. We also let C1 ⊂ C0 denote the
set of C0 functions which are C1 in the x variable. We say that P is Feller provided that,
for any t > 0, Pt maps C0 into itself and limt→0 ‖Ptf − f‖ = 0.

Proposition 2.2. The semigroup P = (Pt) is Feller. Furthermore, for all g ∈ C1,

lim
t→0

∥

∥

∥

∥

Ptg − g

t
− Lg

∥

∥

∥

∥

= 0.

Proof. By Lebesgue continuity theorem and (4), Ptg ∈ C0 whenever g ∈ C0. Moreover,
setting apart the first two terms in (4) leads to

Ptg = e−λtKtg + λe−λt
∫ t

0
QuKt−ugdu+R(g, t) (6)

where |R(g, t)| 6 |g|P(Nt > 1) = |g|(1 − e−λt(1 + λt)). Therefore limt→0 ‖Ptg − g‖ = 0.
Let us call A the infinitesimal generator of (Kt). If g is C1 in x, it is in the domain of

A and

lim
t→0

Ktg − g

t
= Ag : (x, i) 7→ 〈∇gi(x), F i(x)〉.

Therefore, by (6), Ptg−g
t −−→

t→0
Ag − λg + λQ0g, and the result follows.

Similarly, we let P̃ denote the discrete time semigroup of Z̃. It is defined by the formula

P̃ g(x, i) = E(g(Z̃1)|Z0 = (x, i)) =

∫ ∞

0
Qtg(x, i)λe

−λtdt. (7)

Note that
P̃ = K̃Q

where

K̃f =

∫ ∞

0
λe−λtKtfdt.

It follows from (7) that P̃ is Feller, meaning that it maps C0 into itself.

Notation. Throughout the paper we may write Px,i(·) for P(·|Z0 = (x, i)) and Ex,i(·)
for E(·|Z0 = (x, i)).

3 Support of the law of paths

In this section we shall describe the support of the law of {Xt : t > 0} in terms of a certain
differential inclusion induced by {F i}.

For each x ∈ R
m, let co(F )(x) ⊂ R

m be the compact convex set defined as

co(F )(x) =

{

∑

i∈E

αiF
i(x) : αi > 0,

∑

i∈E

αi = 1

}

.
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Let C(R,Rm) denote the set of continuous paths η : R 7→ R
m equipped with the topology

of uniform convergence on compact intervals. A solution to the differential inclusion

η̇ ∈ co(F )(η) (8)

is an absolutely continuous function η ∈ C(R,Rm) such that η̇(t) ∈ co(F )(η(t)) for almost
all t ∈ R. We let Sx ⊂ C(R,Rm) denote the set of solutions to (8) with initial condition x.

Lemma 3.1. The set Sx is a nonempty compact connected set.

Proof. Follows from standard results on differential inclusion, since the set-valued map
co(F ) is upper-semi continuous, bounded with nonempty compact convex images; see [1]
for details.

For I = [0, T ] with T > 0, or I = R
+ we let πI : C(R,Rm) 7→ C(I,Rm) denote the

canonical projection defined by πI(η)(s) = η(s); and we set SxI = πI(S
x).

Theorem 3.2. Assume X0 = x. Then the support of the law of {Xt : t > 0} equals Sx
R+ .

Obviously, any path of X is a solution of the differential inclusion (8). The proof of
Theorem 3.2 is made of several steps that consist in different approximations of a solution
of (8).

Let Rx ⊂ Sx
R+ denote the set of paths η such that

η̇(t) ∈
⋃

i∈E

{

F i(η(t))
}

for almost all t ∈ R
+.

Lemma 3.3. The set Rx is dense in Sx
R+ .

Proof. Clearly Rx ⊂ Sx
R+ . Conversely let η ∈ Sx

R+, and ǫ > 0. Set

Gt(x) =

{

v ∈
⋃

i∈E

F i(x) : 〈v − η̇(t), x− η(t)〉 < ǫ

}

.

Since η̇(t) ∈ co(F )(η(t)) almost surely, Gt(x) is non empty. Furthermore, (t, x) 7→ Gt(x) is
uniformly bounded, lower semicontinuous in x, and measurable in t. Hence, using a result
by Papageorgiou [21], there exists ξ : R 7→ R

m absolutely continuous such that ξ(0) = x
and ξ̇(t) ∈ Gt(ξ(t)) almost surely. In particular,

d

dt
‖ξ(t) − η(t)‖2 = 2〈ξ̇(t) − η̇(t), ξ(t) − η(t)〉 < 2ǫ

so that
sup

06t6T
‖ξ(t) − η(t)‖2

6 2ǫT.

Let Qx ⊂ Sx
R+ denote the set of paths that are obtained by successive integrations of

the F i over positive intervals. More precisely, η ∈ Qx if there exist points i0, i1, . . . ∈ E
and numbers 0 = σ0 6 σ1 6 . . . 6 σn ↑ ∞ such that

{

η(0) = x,

η(σk + s) = Φik
s (η(σk)) for all s ∈ [0, σk+1 − σk].

(9)
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Lemma 3.4. The set Qx is dense in Sx
R+ .

Proof. By Lemma 3.3, it suffices to show that for all ξ ∈ Rx, T > 0 and ε > 0 there exists
η ∈ Qx such that sup06t6T ‖η(t) − ξ(t)‖ 6 ε. Set E = {1, . . . , d}, and define by induction

Ω1 =
{

t ∈ [0, T ] : ξ̇(t) = F 1(ξ(t))
}

∀i = 1, . . . , d− 1, Ωi+1 =
{

t ∈ [0, T ] \ (Ω1 ∪ . . . ∪ Ωi) : ξ̇(t) = F i+1(ξ(t))
}

.

Let C be the algebra consisting of finite union of intervals in [0, T ]. Since the Borel σ-field
over [0, T ] is generated by C there exists, for all i = 1, . . . , d, Ii ∈ C such that

Leb(Ωi∆Ii) 6 ǫ

where Leb stands for the normalized Lebesgue measure over [0, T ] and A∆B is the sym-
metric difference of A and B: A∆B = (A \B) ∪ (B \A).

Now, set
J1 = I1,

Ji+1 = Ii+1 \ (J1 ∪ . . . ∪ Ji)

for i = 1, . . . , d− 1 and
Jd+1 = [0, T ] \ (J1 ∪ . . . ∪ Jd).

The family {Ji : i = 1, . . . d + 1} forms a partition of [0, T ]. Hence, there exists numbers
0 = σ0 < σ1 < . . . < σN+1 = T and a map i : {0, . . . , N} 7→ {1, . . . , d + 1}, k 7→ ik such
that ]σk, σk+1[⊂ Jik . Set F d+1 = F 1 and define η ∈ Qx by Formula (9) for k = 0, . . . , N .
For all σk 6 t 6 σk+1,

η(t) − ξ(t) = η(σk) − ξ(σk) +

∫ t

σk

(

F ik(η(s)) − F ik(ξ(s))
)

ds+

∫ t

σk

(

F ik (ξ(s)) − ξ̇(s)
)

ds.

Hence, by Gronwall’s lemma, we get that

‖η(t) − ξ(t)‖ 6 eK(σk+1−σk)(vk +mk)

where K is a Lipchitz constant for all the vector fields (F i), vk = ‖η(σk) − ξ(σk)‖ and

mk = LLeb([σk, σk+1] \ Ωik),

with ‖F i‖ 6 L and the convention Ωd+1 = ∅. It then follows that, for all k = 0, . . . , N and
σk 6 t 6 σk+1,

‖η(t) − ξ(t)‖ 6

k
∑

l=0

eK(σk+1−σl)ml 6 eKT
N
∑

l=0

ml 6 eKT
d+1
∑

i=1

Leb(Ji \ Ωi). (10)

The lemma will follow once we prove the following claim:

Claim. Leb(Ωi∆Ji) 6 Cε for some constant C depending only on d.

For i 6 d, Ji \ Ωi ⊂ Ii ⊂ Ωi so that Leb(Ji \ Ωi) 6 ε. Now,

Ωi \ Ji = Ωi ∩ [Ici ∪ J1 ∪ . . . ∪ Ji−1] = Ωi \
(

Ii ∪ (
i−1
⋃

l=1

Ωi ∩ Jl)

)

.

For l 6= i, Ωi ∩ Jl ⊂ Ωi ∩ Il = Ωi ∩ (Il \ Ωl) ⊂ Il \ Ωl. Hence

Leb(Ωi \ Ji) 6 iε 6 dε.

We then have shown that Leb(Ωi∆Ji) 6 (d + 1)ε for i = 1, . . . , d. It then follows that
Leb(Jd+1) 6 d(d + 1)ε. This proves the claim and the lemma.

6



Let us complete the

Proof of Theorem 3.2. In view of Lemma 3.4 it suffices to show that for all ε > 0, T > 0
and η ∈ Qx the event sup06t6T ‖Xt − η(t)‖ 6 ε has positive probability. The map η is
determined by sequences (in), (σn) and the formula (9). Set tk = σk−σk−1. Since we allow
tk to be zero we may assume without loss of generality that Q(η(σk+1))(ik , ik+1) > 0 for
all k.

Let n be such that σn < T 6 σn+1 and

Σ(n, T ) =

{

(s1, . . . , sn) ∈ R
n
+ :

∑

i

si 6 T

}

.

For s ∈ Σ(n, T ) set σk(s) = s1 + . . .+sk for k = 1, . . . , n, σ0(s) = 0 and σn+1(s) = T . Now
let ηs ∈ C([0, T ],Rm) be the function defined by (9) for k = 0, . . . , n and σk = σk(s). The
mapping s 7→ ηs is easily seen to be continuous. Hence, there exist δ1, δ2 > 0 such that

‖ηs − η‖[0,T ] 6 ε (11)

and
Q(η(σk+1(s))(ik, ik+1) > δ2 (12)

whenever
max
i=1,...,n

|si − ti| 6 δ1.

Let Ek be the event defined for k = 1 . . . n by

Ek =

{

max
i=1,...,k

‖Ui − ti‖ 6 δ1, Ỹ1 = i1, . . . , Ỹn = in

}

.

It follows from (11) that ‖Xt − η‖[0,T ] 6 ε on the event En ∩ {τn+1 > T}. Now, there
exists r > 0 such that

P(Un+1 > T ) > r and P(|Uk − tk| 6 δ1) > r.

Therefore,

P(En ∩ {τn+1 > T}) > rP(En)

= rE(En−1;E(Q(X̃n)(in−1, in)|Fn−1)P(|Un − tn| 6 δ1)

> δ2r
2
P(En−1).

By induction we get
P(En) > r(rδ2)n > 0.

This concludes the proof.

4 The accessible set

In order to describe the long term behavior of (Xt) it is natural to define the accessible set
of the process (Xt) as the set of points that can be "reached from everywhere" by (Xt).
The purpose of this section is to make such a definition precise and to investigate some of
its basic properties.

For all n ∈ N∗ let Tn = En+1 × R
n
+. Given

(i, t) = ((i0, . . . , in); (t1, . . . , tn)) ∈ Tn

7



and x ∈ M we let
Φi

t(x) = Φ
in−1
tn ◦ . . . ◦ Φi0

t1(x). (13)

The positive trajectory of x is the set

γ+(x) = {Φi

t(x) : (i, t) ∈
⋃

n∈N∗

Tn}.

The accessible set of (Xt) is the (possibly empty) compact set Γ ⊂ M defined as

Γ =
⋂

x∈M

γ+(x).

Remark 4.1. The accessible set Γ is called the set of D-approachable points and is denoted
by L in [2].

4.1 The accessible set and recurrence properties

The following lemmas relate the accessible set to the behavior of the processes Z̃ and Z.

Lemma 4.2. Assume that Γ 6= ∅. Let p ∈ Γ and U be a neighborhood of p. There exists
m ∈ N and δ > 0 such that for all i, j ∈ E and x ∈ M

Px,i(Z̃m ∈ U × {j}) > δ.

In particular,
Px,i(∃m ∈ N, Z̃m ∈ U × {j}) = 1.

Similarly we have

Lemma 4.3. Assume that Γ 6= ∅. Let p ∈ Γ and U be a neighborhood of p. There exists
m ∈ N, t1, . . . , tm > 0 and δ > 0 such that for all i, j ∈ E and x ∈ M

m
∑

i=1

Px,i(Zti ∈ U × {j}) > δ.

Since Γ is positively invariant under each flow Φi we deduce from Lemma 4.3 the
following result.

Corollary 4.4. Assume Γ has nonempty interior. Then

Px,i(∃t0 > 0,∀t > t0, Zt ∈ Γ × E) = 1.

In order to provide the proof of Lemmas 4.2 and 4.3 we firstly establish two technical
lemmas. For all x ∈ M, (i, t) ∈ Tn let

p(x, i, t) = Q(x1)(i0, i1) ×Q(x2)(i1, i2) × . . .×Q(xn)(in−1, in)

where x0 = x and xk = Φ
ik−1
tk

(xk−1) for k = 1, . . . , n.

Definition 4.5. The sequence (i, t) ∈ Tn is said adapted to x ∈ M if p(x, i, t) > 0.

For i, j ∈ E, let T
ij
n denote the subset of Tn consisting of sequences (i, t) for which

i0 = i and in = j. The next lemma show that the positive trajectory of x can be obtained
with adapted sequences.
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Lemma 4.6. There exists r ∈ N∗ such that for all x ∈ M, i, j ∈ E

γ+(x) = {Φi
t(x) : (i, t) ∈

⋃

n∈N∗

T
ij
nr with (i, t) adapted to x}.

Proof. By ergodicity of Q(x) there exists r ∈ N such that P r(x) has positive entries.
By continuity of P and compactness we can choose such an r to be independent of x.
Now, given (i, t) ∈ Tn we can construct a new sequence in T

ij
r(n+1) as follows. Insert

before i0 a sequence of the form (i, j1, . . . , jr−1) with Q(x)(i, j1) × . . . ×Q(x)(jr−2, jr) ×
Q(x)(jr−1, i0) > 0 and insert before t1 a sequence (0, . . . , 0) of length r. Replace in by j
and for all 0 6 k 6 n − 1 insert after ik a sequence (j1

k , . . . , j
r−1
k ) with Q(xk)(ik, j

1
k) ×

. . .×Q(xk)(j
r−2
k , jr−1

k ) ×Q(xk)(j
r−1, ik+1) > 0 and insert after tk a sequence (0, . . . , 0) of

length r. Such a procedure doesn’t affect the value of Φi
t
(x). Hence the result.

Lemma 4.7. Assume Γ 6= ∅. Let p ∈ Γ, U be a neighborhood of p and i, j ∈ E. There
exist m ∈ N

∗, ǫ, η > 0, finite sequences (i1, t1) . . . , (iN , tN ) ∈ T
ij
m and a open covering

O1, . . . , ON of M (i.e. M = O1 ∪ . . . ∪ON ) such that for all x ∈ M and τ ∈ R
m
+ :

x ∈ Ok and
∥

∥

∥τ − tk
∥

∥

∥ 6 ǫ ⇒ Φik

τ (x) ∈ U and p(x, ik, τ) > η.

Furthermore, m, ǫ and η are independent of i, j ∈ E.

Proof. Let V be a neighborhood of p with closure V ⊂ U . Define open sets

O(i, t, η) = {x ∈ M : Φi

t(x) ∈ V and p(x, i, t) > η},
O(i, t) =

⋃

η>0

O(i, t, η)

and Onij =
⋃

O(i, t),

where the union is taken over all (i, t) ∈ T
ij
nr with r like in Lemma 4.6. Now On+1

ij ⊃ Onij
(the proof is similar to the proof of Lemma 4.6) and, by Lemma 4.6, M =

⋃

nO
n
ij. It then

follows, by compactness of M that M = O
n(i,j)
ij for some integer n(i, j) and also

M = Onij

for n = maxn(i, j). By compactness again M can be rewritten as

M = Onij =
N
⋃

l=1

Ol

where Ok = O(ik, tk, ηk) for some ηk > 0 and (ik, tk) ∈ T
ij
nr. The results follows with

m = nr and 0 < η < mink=1,...,N η
k and ǫ sufficiently small.

Proof of Lemma 4.2. We use the notation of Lemma 4.7. Suppose x ∈ Ok and to shorten
notation write t for tk and i for ik. By Lemma 4.7, if

‖(U1, . . . , Um) − t‖ 6 ǫ and (Ỹ0, Ỹ1, . . . , Ỹm) = i

then X̃m ∈ U and
Q(X̃1)(i, i1) × . . .×Q(X̃m)(im−1, j) > η. (14)

9



Therefore

P(X̃m ∈ U, Ỹm = j|X̃0 = x, Ỹ0 = i) > P

(

‖(U1, . . . , Um) − t‖ 6 ǫ, (Ỹ0, Ỹ1, . . . , Ỹm) = i
)

= P





m
⋂

j=1

{|Uj − tj| 6 ǫ, Ỹj = ij}


 .

Now
P(|Um − tkm| 6 ǫ, Ỹm = j|Fm−1) = Q(X̃m)(Ỹm−1, j)P(|Um − tm| 6 ε)

on the event
m−1
⋂

j=1

{|Uj − tj | 6 ǫ and Ỹj = ij}.

Hence, using (14),

P





m
⋂

j=1

{|Uj − tj| 6 ǫ and Ỹj = ij}


 > ηP





m
⋂

j=1

{|Uj − tj| 6 ǫ





= ηe
−
∑m

j=1
tj (eε − e−ε).

The proof of Lemma 4.3 is similar. Details are left to the reader.

4.2 Topological properties of the accessible set

The differential inclusion (8) induces a set-valued dynamical system Ψ = {Ψt} defined by

Ψt(x) = Ψ(t, x) = {η(t) : η ∈ Sx}

enjoying the following properties

(i) Ψ0(x) = {x},

(ii) Ψt+s(x) = Ψt(Ψs(x)) for all t, s > 0,

(iii) y ∈ Ψt(x) ⇒ x ∈ Ψ−t(y).

For subsets I ⊂ R and A ⊂ R
m we set

Ψ(I,A) =
⋃

(t,x)∈I×A

Ψt(x).

A set A ⊂ R
m is called strongly positively invariant under Ψ if Ψt(A) ⊂ A for t > 0. It is

called invariant if for all x ∈ A there exists η ∈ Sx such that η(R) ⊂ A. Given x ∈ R
m,

the limit set of x under Ψ is defined as

ωΨ(x) =
⋂

t>0

Ψ[t,∞[(x).

Lemma 4.8. The set ωΨ(x) is compact connected invariant and strongly positively invari-
ant.

10



Proof. It is not hard to deduce the first three properties from Lemma 3.1. For the last
one, let p ∈ ωΨ(x), s > 0 and q ∈ Ψs(p). By Lemma 3.4, for all ε > 0 there exists n ∈ N

and (i, t) ∈ Tn such that d(Φi
t
(p), q) < ε. Continuity of Φi

t
makes the set

W = {z ∈ M : d(Φi

t
(z), q) < ε}

an open neighborhood of p. Hence W ∩ Ψ[t,∞[(x) 6= ∅ for all t > 0. This proves that

d(q,Ψ[t,∞[(x)) < ε and since ε is arbitrary q ∈ Ψ[t,∞[(x).

Remark 4.9. For a general differential inclusion with an upper semi-continuous bounded
right hand side with compact convex values, the omega limit set of a point is not (in
general) strongly positively invariant, see e.g. [4].

Proposition 4.10. The set Γ enjoys the following properties

(i) Γ =
⋂

x∈M ωΨ(x),

(ii) Γ = ωΨ(p) for all p ∈ Γ,

(iii) Γ is compact, connected, strongly positively invariant and invariant under Ψ.

(iv) Either Γ has empty interior or its interior is dense in Γ.

Proof. (i) : Let x ∈ M and y ∈ Ψt(x). Then γ+(y) ⊂ Ψ[t,∞](x). Hence Γ ⊂ Ψ[t,∞[(x)
for all x. This proves that Γ ⊂ ⋂

x∈M ωΨ(x). Conversely let p ∈ ⋂

x∈M ωΨ(x). Then,
for all t > 0 and x ∈ M , p ∈ Ψ[t,∞[(x) ⊂ γ+(x) where the latter inclusion follows from
Lemma 3.4. This proves the converse inclusion.

(ii) : By Lemma 3.4, ωΨ(p) ⊂ Γ. The converse inequality follows from (i).
(iii) : This follows from (ii) and Lemma 4.8.
(iv) : Suppose int(Γ) 6= ∅. Then there exists an open set U ⊂ Γ and

⋃

t,i Φi
t
(U) is an

open subset of Γ dense in Γ.

An equilibrium p for the flow Φ1 is called an attracting equilibrium if there exists a
neighborhood U of p such that

lim
t→∞

‖Φ1
t (x) − p‖ = 0

uniformly in x ∈ U . In this case, the basin of attraction of p is the open set

B(p) =

{

x ∈ R
m : lim

t→∞
‖Φ1

t (x) − p‖ = 0

}

.

Proposition 4.11. Suppose the flow Φ1 has an attracting equilibrium p with basin of
attraction B(p); and that for all x ∈ M \B(p), γ+(x) ∩B(p) 6= ∅. Then

(i) Γ = γ+(p),

(ii) If furthermore Γ ⊂ B(p). Then Γ is contractile. In particular, it is simply connected.

Proof. The proof of (i) is left to the reader. To prove (ii), let h : [0, 1] × Γ → Γ be defined
by

h(t, x) =

{

Φ1(− log(1 − t), x) if t < 1,

p if t = 1.

It is easily seen that h is continuous. Hence the result.
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4.3 The two-dimensional case

We assume here that M is a subset of R2 and that one of the vector fields, say F 1, has a
globally attracting equilibrium p. Hence, by Proposition 4.11, Γ 6= ∅.

Proposition 4.12. Assume that the eigenvalues of DF 1(p) are non real with negative real
parts and that F 2(p) 6= 0. Then p lies in the interior of Γ.

Proof. The following drawing shows that this is the case: from the equilibrium p, one can
follow the flow of F 2 and reach x, then follow the spiral, and swith back to F 2 to reach
any point in the shaded region.

p x

Proposition 4.13. If the PDMP is driven by only two planar contractant real analytic
vector fields without common trajectories, then the boundary of Γ is a finite union of pieces
of trajectories.

Proof. Let V = F 0 and W = F 1 denote the two vector fields.
First let us remark that in this analytic case the trajectories are real analytic curves.

So is the curve defined by det(V,W ) = 0. In particular all these curves locally intersect
one each other finitely many times.

Let x be a point belonging to the boundary ∂Γ of Γ. Suppose first that x does not
belong to det(V,W ) = 0. Then the boundary of Γ in the neighbourhood of x has one of
the three following forms.

V

W

x V

W

x V

W

x

To get this we just have to remark that at x the vector fields of our PDMP cannot point
to the exterior of Γ and that it must be possible to reach x from the interior of Γ...

In particular for every ε > 0 the set ∂Γ ∩ | det(V,W )| > ε is composed by a finite
number of pieces of trajectories of both vector fields.

Let us now consider the case of a point x belonging to det(V,W ) = 0 but at which the
two vector fields are transverse to the curve det(V,W ) = 0. By conjugation it is possible
to suppose that V is an horizontal vector field. At such a point the different possibilities
are the following. We distinguish two cases : at x, V and W are colinear, they may have
the same sense or opposite sense.

12



det(V, W ) = 0

V

W

det(V, W ) = 0

V

W

det(V, W ) = 0

V

W

det(V, W ) = 0

VW

det(V, W ) = 0

VW

In these cases also the boundary of Γ is simple. In the analytic case the preceding
descriptions are valid at points x where V and W do not vanish.

Then we just have to say what happens if x is a stationary point for one of the two
flows (since there are no common trajectories, a point cannot be stationary for both flows).
For example let us suppose that V (x) = 0. Remark that the derivative of V at x does
not have non real eigenvalues (because a stationary point with non real eigenvalues is in
the interior of Γ). We can assume that at x, W is an horizontal flow. Take a little circle
C around x and a point y in C ∩ ∂Γ. Suppose that V is not horizontal at y. Now take z
another point. If z belongs to Γ the V -trajectory starting at z stays in Γ. But if z is in
Γ and sufficiently near x, the only way to reach z by one of the two flows is to follow a
V -trajectory (otherwise x would not be on the boundary ∂Γ). It means that if z is not on
the V -trajectory of y then z is not on the boundary ∂Γ.

x

z
y

This implies that the V trajectory of y is a part of ∂Γ. As a conclusion in a neighbourhood
of x the boundary ∂Γ is either a piece of a W -trajectory, the union of a piece of a W -
trajectory and a piece of a V -trajectory, or the union of two pieces of V -trajectories.
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5 Invariant Probabilities

Let M(M × E) (respectively M+(M × E) and P(M × E)) denote the set of signed
(respectively positive, and probability) measures on M × E. For µ ∈ M(M × E) and
f ∈ L1(µ) we write µf for

∫

fdµ. Recall that we let C0 denote C0(M × E). Given a
bounded operator K : C0 7→ C0 and µ ∈ M(M × E) we let µK ∈ M(M × E) denote the
measure defined by duality :

∀g ∈ C0, (µK)g = µ(Kg).

The mappings µ 7→ µPt, µP̃ preserve the set M+(M × E) and P(M × E).
For µ ∈ M(M × E) we let µi denote the marginal measure on M given by µi(A) =

µ(A× {i}).
Recall that a probability measure µ is called invariant for (Pt) provided

∀t > 0, µPt = µ.

It is called invariant for P̃ if µP̃ = µ.
We let Pinv denote the set of invariant probabilities for (Pt) and P̃inv the set of invariant

probabilities for P̃ .
For n ∈ N and t > 0 we let Π̃n and Πt the (random) occupation measures defined by

Π̃n =
1

n

n
∑

k=1

δZ̃k
and Πt =

1

t

∫ t

0
δZt .

By standard results for Feller chains on a compact space (see e.g. [12]), one has

Proposition 5.1. The set P̃inv is nonempty, compact (for the weak-⋆ topology) and con-
vex. Furthermore, with probability one every limit point of (Πn) lies in P̃inv.

Proposition 5.2. The mapping µ 7→ µK̃ maps P̃inv homeomorphically onto Pinv and
extremal points of P̃inv (i.e. ergodic probabilities for P̃ ) onto extremal points of Pinv
(ergodic probabilities for P ).

The inverse homeomorphism is the map µ 7→ µQ restricted to Pinv.

Proof. For all f ∈ C1, integrating by part
∫∞

0
dKtf
dt e−λtdt and using the identities dKtf

dt =
AKtf = KtAf leads to

K̃(λI −A)f = λf = (λI −A)K̃f (15)

Let µ ∈ P(M × E). Then, using (15) and the form of L gives

µK̃Lf = µK̃(A− λI)f + λµK̃Qf = λ(−µf + µP̃f). (16)

µL(K̃f) = µ(A− λI)K̃f + λµQK̃f = λ(−µf + µQK̃f). (17)

If µ ∈ P̃inv, (16) implies (µK̃)Lf = 0 for all f ∈ C1 and since C1 is dense in C0 this proves
that µK̃ ∈ P̃inv. Similarly, if µ ∈ Pinv, (17) implies µ = µQK̃. Hence (µQ) = (µQ)K̃Q =
(µQ)P̃ proving that µQ ∈ P̃inv. Furthermore the identity µ = µQK̃ for all µ ∈ Pinv shows
that the maps µ 7→ µK̃ and µ 7→ µQ are inverse homeomorphisms.

Lemma 5.3. Let µ ∈ P̃inv. Then µ and µK̃ have the same support.
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Proof. Let (x, i) ∈ supp(µ) and let U be a neighborhood of x. Then for t0 > 0 small
enough and 0 6 t 6 t0 Φi

−t(U) is also neighborhood of x. Thus

(µK̃)i(U) =

∫

λe−λtµi(Φ
i
−t(U))dt > λ

∫ t0

0
e−λtµi(Φ

i
−t(U))dt > 0.

This proves that supp(µ) ⊂ supp(µK̃). Conversely, let ν = µK̃ (x, i) ∈ supp(ν) and let U
be a neighborhood of x. Then

µi(U) = (νQ)i(U) =
∑

j

∫

U
Qji(x)νj(dx) >

∫

U
Qii(x)νi(dx) > 0.

As a consequence, supp(µ) ⊃ supp(µK̃).

The following lemma is useful to compare empirical measures of Z̃ and Z.

Lemma 5.4. Let f : M × E 7→ R be a bounded measurable function. Then

lim
t→∞

Πtf − Π̃NtK̃f = 0 and lim
n→∞

ΠTnf − Π̃nK̃f = 0

with probability one.

Proof. Write

Πtf =
Nt

t

(

1

Nt

Nt−1
∑

i=0

∫ Ti+1

Ti

f(Zs)ds+ rt

)

where ‖rt‖ 6 ‖f‖UNt+1

Nt
.

Since limt→∞
Nt

t = 1 almost surely and P(Un/n > ε) = e−λnε, rt
a.s.−−−→
t→∞

0, so

Πtf − 1

Nt

Nt−1
∑

i=0

∫ Ti+1

Ti

f(Zs)ds
a.s.−−−→
t→∞

0.

Now, note that
∫ Ti+1

Ti

f(Zs)ds =

∫ Ui+1

0
f(φỸ

i

s (X̃i), Ỹi)ds.

Therefore

Mn =
n−1
∑

i=0

(

∫ Ti+1

Ti

f(Zs)ds− K̃f(X̃i, Ỹi))

is a martingale with increments bounded in L2: E(Mn+1 − Mn)2 6 2‖f‖2/λ2. Therefore,
by the strong law of large numbers for Martingales,

lim
n→∞

Mn

n
= 0.

Corollary 5.5. The set Pinv is nonempty compact (for the weak-⋆ topology) and convex.
Furthermore, with probability one, every limit point of Πt lies in Pinv.

Proof. This follows from Proposition 5.2 and Lemma 5.4.

The chain Z̃ (respectively (Z)) is called stable if it has a unique invariant probability.

Proposition 5.6. The chain (Zt) is stable if and only if (Z̃) is stable.

Proof. This follows from Proposition 5.2.
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5.1 Support of invariant probabilities

Given µ ∈ P(M ×E) we let supp(µ) denote its support. The following proposition relates
Γ to supp(µ) when µ is invariant for Z̃ or Z. We state and prove the result for Z̃ and rely
on Lemma 5.3 for Z.

Proposition 5.7. (i) If Γ 6= ∅ then Γ × E ⊂ supp(µ) for all µ ∈ P̃inv (respectively
Pinv) and there exists µ ∈ P̃inv (resp. Pinv) such that supp(µ) = Γ × E.

(ii) If Γ has nonempty interior, then Γ × E = supp(µ) for all µ ∈ P̃inv (resp. P̃inv).

(iii) Suppose (Z̃)) (resp. Z) is stable with invariant probability π. Then supp(π) = Γ×E.

Proof. (i) follows from Lemma 4.2. Also, since Γ is strongly positively invariant, there
are invariant measures supported by Γ × E. (ii) follows from (i) and Corollary 4.4.
To prove (iii), let (p, i) ∈ supp(π). Let U, V be open neighborhoods of p with U ⊂ V
compact. Let 0 6 f 6 1 be a continuous function which is 1 on U and 0 outside V and
let f̃(x, j) = f(x)δj,i. Suppose Z0 = (x, j). Then with probability one

lim inf
n→∞

1

n
♯
{

1 6 k 6 n : Z̃k ∈ V × {i}
}

> lim
n→∞

1

n

n
∑

k=1

f(Z̃k) =

∫

fπ

>π(U × {i}) > 0.

Hence (Z̃n) visits infinitely often U × {i}. In particular, p ∈ γ+(x). This proves that
supp(π) ⊂ Γ × E. The converse statement follows from (i).

Remark 5.8. The example given in Section 9 shows that the inclusion Γ × E ⊂ supp(µ)
may be strict when Γ has empty interior. On the other hand, the condition that Γ has
non empty interior is not sufficient to ensure uniqueness of the invariant probability since
there exist smooth minimal flows that are not uniquely ergodic. An example of such a
flow can be constructed on a 3-manifold by taking the suspension of an analytic minimal
non uniquely ergodic diffeomorphism of the torus constructed by Furstenberg in [14] (see
also [19]). As shown in [2] (see also Section 6) a sufficient condition to ensure uniqueness
of the invariant probability is that the vector fields verify a Hörmander bracket property
at some point in Γ.

5.2 Law of pure types

Assume that M is an embedded submanifold of Rm possibly with boundary. We let λM
denote the normalized Riemannian measure on M and λM×E = λM ⊗ 1

|E|

∑

i∈E δi.

Proposition 5.9. Let µ ∈ P̃inv (respectively Pinv) and let µ = µac + µs be the Lebesgue
decomposition of µ with µac the absolutely continuous (with respect to λM×E) measure
and µs the singular (with respect to λM×E) measure. Then both µac and µs are in P̃inv
(respectively Pinv. In particular, if µ is ergodic, then µ is either absolutely continuous or
singular.

Proof. The key point is that K̃ and Q, hence P̃ = K̃Q, map absolutely continuous mea-
sures into absolutely continuous measures. For µ ∈ P̃inv the result now follows from the
following simple Lemma 5.10 applied to P̃ .
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Lemma 5.10. Let (Ω,A, λ) be a measure space with λ a probability. Let M (respectively
M+,P,Mac) denote the set of signed (positive, probability, absolutely continuous) mea-
sures on Ω. Let K : M 7→ M, µ 7→ µK be a linear map that maps each of the preceding sets
into itself. Then if µ ∈ P is a fixed point for K with Lebesgue decomposition µ = µac +µs
both µac and µs are fixed point for K.

Proof. Write µK = µacK + µsK = µacK + νac + νs with µsK = νac + νs the Lebesgue
decomposition of µsK. Then, by uniqueness of the decomposition, µac = µacK + νac.
Thus, µac > µacK. Now either µac = 0 and there is nothing to prove or, we can normalize
by µac(Ω) and we get that µac = µacK.

6 Regularity of the law of the process

For simplicity we shall assume here that M is an m−dimensional submanifold of R
m

(typically a closed ball). However the results here carry out to the more general situation
where M is any embedded submanifold of Rm.

6.1 The results

Let us fix some additional notation. If u is a time, F a vector field, Φ the flow of F , and
G another vector field, we can pull back G by Φu by defining:

(Φ⋆
uG)x = (D(Φu))x)−1 ·GΦu(x).

Similarly we define the push-forward: (Φu,⋆G)x = (D(Φu))Φ−u(x) · GΦ−u(x). If F is the
vector field F i, we write Φi,⋆

u and Φi
u,⋆ the pull-back and push-forward.

Recall that, if i is a sequence of indices i = (i1, . . . iK) and u is a sequence of times
u = (u1, . . . uK), Φi

u
: M → M is the composite map defined by (13). We introduce a bit

of additional notation.

• If i and j are two sequences of indices, we write i · j the concatenation of i and j (and
use the same notation for the u).

• For any sequence i, we let ik be the first k elements of i, and define uk in the same
way.

We can push vector fields forward and pull them back by the composite flows Φi
u: we

denote by Φi
u,⋆ and Φi,⋆

u these operations.
The first results are “global” condition for regularity. Similar results may be found

in the proofs of [2]; we state them here separately, with an additional uniformity on the
starting point.

Theorem 6.1 (Regularity at jump times — global form). Let x0 be a point in M , K
be an integer, u = (u1, . . . uK) be a sequence of times, and i = (i1, . . . iK) a sequence of
indices. Suppose that i,u is adapted to x0 in the sense of Definition 4.5. For k = 1, . . . K,
let xk = Φik

uk
(x0) be the successive points in the trajectory that follows the flow of F il for

a time ul.
Consider the family of tangent vectors at x0 obtained by collecting tangent vectors at

each jump, and pulling them all back to x0 along the flows:

{F i1(x0), (Φi1,⋆
u1
F i2)(x0), . . . (Φ

iK−1,⋆
uK−1 F

iK )(x0)}. (18)
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F1
F2

F3

Φ2,⋆
u2
F3

Φ1,⋆
u1

Φ2,⋆
u2
F3

Φ1,⋆
u1
F2

x2

x0

x1

The trajectory begins by following
F 1. At the first jump, it starts fol-
lowing F 2; we pull this tangent vec-
tor back to x0. The next tangent
vector F 3 (at x2) has to be pulled
back by the two flows. If the three
tangent vectors we obtain at x0 span
Tx0M , the law of XT3 , the process at
its third jump, is partly regular.

Figure 1: The global condition

If this collection spans the entire tangent plane Tx0M , then the law of the process at its
K-th jump is partly regular. More precisely, there exist U0 a neighborhood of x0, V0 a
neighborhood of xK , and a constant c > 0 such that:

∀x ∈ U0, Px,i1[XTK
∈ ·] > cλRm(· ∩ V0). (19)

The condition on the starting index i1 may be relaxed: there exist U ′
0 and V ′

0, a integer K ′

and a constant c′ such that:

∀x ∈ U ′
0,∀i, Px,i

[

XTK′
∈ ·
]

> cλRm(· ∩ V0). (20)

Theorem 6.2 (Regularity at fixed time — global form). Let (xk), u, i be as above.
Consider the following family:

{F i1(x0) − (ΦiK ,⋆
uK

F iK+1)(x0),

(Φi1,⋆
u1
F i2)(x0) − (ΦiK ,⋆

uK
F iK+1)(x0),

...

(Φ
iK−1,⋆
uK−1 F

iK )(x0) − (ΦiK ,⋆
uK

F iK+1)(x0)}.

(21)

It this family spans Tx0M , then for any t0 > u1 + · · · + uK , there exist two constants c
and ǫ, and two non-empty open sets U0 and V0 such that:

∀x ∈ U0,∀i,∀t ∈ [t0, t0 + ǫ], Px,i[Xt ∈ ·] > cλRm(· ∩ V0). (22)

Remark 6.3. Since the derivative (DΦiK ,uK
)x0 is an isomorphism from Tx0M to TxK

M ,
we can write down this condition at TxK

M by pushing all tangent vectors forward to the
end of the trajectory rather than pulling them back to the starting point.

Remark 6.4. The condition for regularity at the K-th jump involves K vectors. Therefore,
we need at least d jumps to get regularity in dimension d.

This condition for having a regular part is necessary and sufficient (if it does not hold
for any n, u, i then the process is not regular). Unfortunately, it is not very easy to check,
since one needs to “solve” the flows. However, it translates to a very nice local condition.
To write down this condition, we need a bit of additional notation. Let F0 the collection
of vector fields (F i : i ∈ E). Let Fk = Fk−1 ∪ {[F i, V ], V ∈ Fk−1}, and Fk(x) the vector
space (included in TxM) spanned by {V (x), V ∈ Fk}.

Similarly, starting from G0 = {F i − F j , i 6= j}, we define Gk by taking Lie brackets
with the F i, and Gk(x) the corresponding subspace of TxM .
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Definition 6.5. We say that the weak bracket condition is satisfied at x if there exists
k such that Fk(x) = TxM . If for some k, Gk(x) = TxM , we say that the strong bracket
condition holds.

Since Gk(x) is a subspace of Fk(x), the strong condition implies the weak one. The
converse is false, a counter-example is given below in Section 8.1.

These two conditions are called A (for the stronger) and B (for the weaker) in [2]. The
following result is a version of Theorem 2 from [2], with an additional uniformity with
respect to the initial point and the time t.

Theorem 6.6 (Regularity — local form, bracket condition). If the weak bracket condition
holds at x0, then the process is partly regular at jump times: there exist an integer K ′, a
constant c > 0 and non-empty open sets U0, V0 such that (20) holds.

If the strong bracket condition holds, the process is partly regular: there is a t0, two
constants c > 0 and ǫ > 0, and two non-empty open sets U0, V0 such that (22) holds.

6.2 Three useful lemmas

The first result is a “uniform” local inversion lemma, for functions of t that depend on a
parameter x.

Remark 6.7. Even if x lives in some R
k, we do not write it in boldface, for the sake of

coherence with the rest of the paper.

Lemma 6.8. Let m,n, k be integers, with m 6 n. Let f be a C1 map from R
n×R

k to R
n,

f : (t, x) 7→ f(t, x) = fx(t).

For any fixed x, fx maps R
n to itself; we denote its derivative at t by (Dfx)t. Suppose

that, for some points x0 and t0, (Dfx0)t0 is invertible. Then we can find a neighborhood
J ⊂ R

k of x0, an open set I ⊂ R
n and, for all x ∈ J , an open set Wx ⊂ R

n, such that:

f̃x :

{

Wx → I,

t 7→ fx(t)

is a diffeomorphism. Moreover, for any m 6 n, and any neighborhood W of t0, we can
choose I, J and the Wx so that:

i) I is a cartesian product I1 × I2 where I1 ⊂ R
m, I2 ⊂ R

n−m ;

ii) ∀x ∈ J, Wx ⊂ W .

Proof. We “complete” the map f by defining:

H :

{

R
n × R

k → R
n × R

k

(t, x) 7→ (fx(t), x).

H is C1, and its derivative can be written in block form:

DH(t,x) =

(

(Dfx)t ⋆
0 Ik

)

.

Since (Dfx0)t0 is invertible, (DH)t0,x0 is invertible. We apply the local inversion theorem
to H: there exist open sets U0, V0 such that H maps U0 to V0 diffeomorphically. In order to
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satisfy the properties i) and ii), we restrict H two times. First we define U1 = U0∩(W×R
k),

and V1 = H(U1). Since V1 is open it contains a product set V = I1 × I2 × J , and we let
U = H−1(V). For any (y, x) ∈ I × J , define gx(y) the first component of H−1(y, x):
composing by H, we see that fx(gx(y)) = y.

Now, define Wx = {t ∈ R
n; (t, x) ∈ U}. Wx is open, and included in W . Since fx

maps Wx to I, gx is its inverse and both are continuous, so f̃x is a diffeomorphism.

Lemma 6.9. Let T be a continuous random variable in R
n, with density fT . Let m 6 n,

and let φ be a C1 map from R
n × R

m to R
m:

φ : (t, x) 7→ φx(t).

Suppose that, for some x0, t0, (Dφx0)t0 : Rn → R
m has full rank m. Suppose additionally

that fT is bounded below by c > 0 on a neighborhood of t0.
Then there exist a constant c′ > 0, a neighborhood J of x0 and a neighborhood I1 of

φx0(t0) such that:
∀x ∈ J, P [φ(T, x) ∈ ·] > c′λRm(· ∩ I1). (23)

In other words, φ(T, x) has an absolutely continuous part w.r.t. the Lebesgue measure.

Proof. We know that (Dφx0)t0 has rank m. Without loss of generality, we suppose that
the first m columns are independent. In other words, writing t = (u,v) ∈ R

m × R
n−m,

we suppose that the derivative of ψx,v : u 7→ φx0(u,v) is invertible in u0 for v = v0.
Once more, we “complete” φ and define:

fx :

{

R
m × R

n−m → R
m × R

n−m

(u,v) 7→ (φx(u,v),v).

By Lemma 6.8, we can find I1 ⊂ R
m, I2 ⊂ R

n−m, J ⊂ R
m and (Wx)x∈J ⊂ R

n such that
fx maps diffeomorphically Wx to I1 × I2. Call f̃x this diffeomorphism. By property ii)
of the lemma, we can ensure that Wx is included in a given neighborhood of t0. Since

Dfx =

(

Dψx,v ⋆
0 I

)

, we can choose this neighborhood so that:

∀x ∈ J,∀t ∈ Wx, fT (t)|det((Dfx)t)|−1
> c′′ > 0. (24)

for some strictly positive constant c′′.
Write the random variable T as a couple (U, V ), and let A be a Borel set included

in I1.

P [φ(T, x) ∈ A] > P [φ(T, x) ∈ A,V ∈ I2]

= P [fx(U, V ) ∈ A× I2]

> P

[

(U, V ) ∈ f̃x
−1

(A× I2)
]

=

∫

f̃−1
x (A×I2)

fT (u,v)dudv

=

∫

f̃−1
x (A×I2)

fT (u,v)
∣

∣

∣det((Df̃x)u,v)
∣

∣

∣

−1
·
∣

∣

∣det((Df̃x))u,v

∣

∣

∣dudv.
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Since f̃−1
x (A × I2) ⊂ Wx, we may use the bound (24). Then we can change variables by

defining (s,v) = f̃x(u,v). We obtain:

P [φ(T, x) ∈ A] > c′′
∫

f̃−1
x (A×I2)

∣

∣

∣det((Df̃x))u,v

∣

∣

∣dudv

= c′′
∫

A×I2

dsdv

> c′′λRm(A)λRn−m(I2).

Therefore (23) holds with c = c′′λRn−m(I2).

Finally we need the following result.

Lemma 6.10. Let U be a non-empty open set. There exist 0 < ǫ1 < ǫ2, k ∈ N and an
open set U ′ ⊂ U such that:

∀x ∈ U ′,∀i, j, Px,i[∀t ∈ [ǫ1, ǫ2],Xt ∈ U, Yt = j] > c,

∀x ∈ U ′,∀i, j Px,i[XTk
∈ U, YTk

= j] > c.

Proof. The vector fields F i are continuous and the space is compact, so the speed of the
process is bounded: given the open set U , we can find U ′ ⊂ U and ǫ2 such that, starting
from U ′, the process cannot exit U before time ǫ2. Let ǫ1 = ǫ2/2: there is a positive
probability that between t = 0 and t = ǫ1, the index jumps exactly one time, from i to j,
and does not jump again before time t = ǫ2. The second result is similar; if all jump rates
are bounded below, we can even choose k = 1.

6.3 Proofs for the global criteria

Since the flows are, by essence, deterministic, the randomness can only come from one
source: the jump times. The proofs of (19) and (22) are very similar. We prove the
former in a simple case, to illustrate the ideas, and only give a detailed proof of the latter.

Let us begin by the regularity of the law after the second jump, when the dimension
is d = 2, and there are only two flows governed by F 1 and F 2. Let the process start from
x0 along F 1, and let XT2 be its position at the moment of its second jump.

Let E1, E2 be independent exponential random variables. Using the flows, we can
write:

XT2 = Φ2(E2,Φ
1(E1, x0)) = φ(E1, E2),

where φ is defined by:
φ : R2 → M,

(u1, u2) 7→ Φ
(1,2)
(u1,u2)(x0).

The derivative of φ is given by:

∂φ

∂u1
= Dφ · ∂1 = (DΦ2(u2, ·))x1 · F 1(x1) = (Φ2

u2,⋆F
1)x2,

∂φ

∂u2
= Dφ · ∂2 = F 2(x2).

This family of two vectors in Tx2M has the same rank as its image by (DΦ
(1,2)
(u1,u2))

−1:

(Φ1,⋆
u1
F 1,Φ

(1,2),⋆
(u1,u2)F

2)x = (F 1,Φ1,⋆
u1
F 2)x.
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The hypothesis precisely states that this family spans Tx0M , so φ has full rank at (u1, u2)).
The product law E(1) ⊗ E(1) has a continuous density, which is strictly positive near
(u1, u2), so Lemma 6.9 applies and (19) holds, with U0 and V0 given by J and I1 of Lemma
6.9. The more general (20) follows by an application of the second item in Lemma 6.10.

Let us now turn to the proof of (22), i.e. the regularity of the law at a fixed time
under the global hypothesis. The idea is very similar. To avoid additional complications
we suppose that the jump rates λ(i, j, x) are strictly positive, so that all sequences are
adapted. Let i = (i1, . . . iK), u = (u1, . . . uK) be sequences of indices and times, and
suppose t0 satisfies t0 >

∑

l ul. Let ĩ = i · (iK+1), ũ = u · (t0 −∑uk). The final position of

the process is given by Xt0 = Φĩ

ũ
(x0). Fixing ĩ, this position can be seen as ψ(u), where

the function ψ (which depends on ĩ and t0) maps R
K to M . Once more, we differentiate

with respect to uk. Since uk appears twice in ũ, we get:

∂ψ

∂uk
(u) = (Dψ) · ∂

∂uk
= −F iK+1(ψ(u)) +

(

Φ
ik+1,...iK+1

uk+1,...uK ,t0−
∑

uj ,⋆
F ik

)

(ψ(u)),

which is a tangent vector at ψ(u). Mapping it back to Tx0M , together with the vectors
obtained for the other choices of k, we obtain the family of vectors described in the
hypothesis. Therefore ψ has full rank as soon as the vectors defined in (21) span Tx0M .

Define two events

A = “the process makes k jumps before time t”

B = “the first k jumps are real and the indices followed are given by i”.

and let F be the sigma field generated by the waiting times Ek. The construction of the
process via independent exponential random variables (Section 2) shows that:

P [B|F ] =
∏

l

λ
(

il−1, il,Φ
il

(E1,...El)
(x0)

)

λ
> c.

Therefore

P [Xt ∈ ·] > P [A ∩B ∩ (Xt ∈ ·)]
= P [A ∩B ∩ (ψ(E1, . . . Ek) ∈ ·)]
= E

[

P [B|F ]1A1ψ(E1,...Ek)∈·

]

> cP [A ∩ ψ(E1, . . . Ek) ∈ ·]
> ce−λt0P [ψ(E1, . . . Ek) ∈ ·] ,

since A ⊃ {Ek+1 > t0}. Thanks to Lemma 6.9, this implies (22), but only with i = i1 and
ǫ = 0.

To prove the general form of (22) with the additional freedom in the choice of i and t,
we need to restrict the starting point. By Lemma 6.10, we can find a neighborhood U ′

0 of
x0, and three constants 0 < ǫ1 < ǫ2 and c > 0 such that:

∀x ∈ U ′
0, Px,i[∀t ∈ [ǫ1, ǫ2],Xt ∈ U0, It = i1] > c.

Let t′0 = t0 − ǫ1 and ǫ = ǫ2 − ǫ1, so that [t′0, t
′
0 + ǫ] = [t0 + ǫ1, t0 + ǫ2]. Then, for any x ∈ U ′

0,
and any t ∈ [t′0, t

′
0 + ǫ],

Px,i[Xt ∈ ·] > Ex,i

[

1Xt−t0∈U0,It−t0=i1PXt−t0 ,It−t0
[Xt0 ∈ ·]

]

> c′λRm(· ∩ V0).

This concludes the proof of Theorem 6.2.
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6.4 Proof of the local criteria

Suppose that the weak bracket condition is satisfied at some point x. Then, by Theorem 5
of [2], the global condition (18) holds for some integer K. Similarly, under the strong
bracket condition, Theorem 4 of [2] shows that (21) holds. This concludes the proof of
Theorem 6.6.

7 Ergodicity

7.1 The embedded chain

Theorem 7.1. Suppose there exists p ∈ Γ at which the weak bracket condition holds. Then
the chain Z̃ admits a unique invariant probability π̃, absolutely continuous with respect to
λ and

‖P(Z̃n ∈ .) − π̃‖ 6 Cρn

for some constants C, 0 6 ρ < 1 where ‖ · ‖ stands for the total variation norm.

Proof. By Theorem 6.6, (20) holds for some K ′. It is easy to see that, up to a restriction
of U ′

0 and a change of c, (20) also holds for K ′′ = K ′ + 1. By Proposition 4.2, the
chain comes back to U ′

0. Therefore, by usual regeneration/coupling arguments for Harris
chains, detailed e.g. in [18], Sections III.8-10, π̃ is unique; the fact that (20) holds for
K ′′ guarantees that the embedded renewal process defined by the times of return to U ′

0 is
aperiodic. Once more by usual arguments, two copies of Z̃ may be coupled in a time T
that has geometric tails; this implies the exponential convergence (see e.g. [18], Section
I.3 for details).

To see that π̃ << λ observe that by Proposition 4.2 and Theorem 6.6 π̃ > δcψ, where
ψ, the Lebesgue measure on V0 ×E, is absolutely continuous with respect to λ. Therefore
π̃ac (the absolutely continuous part of π̃ with respect to λ) is non zero and the result
follows from Proposition 5.10.

Corollary 7.2. Under the assumptions of Theorem 7.1, with probability one

lim
n→∞

Π̃n = π̃

and
lim
t→∞

Πt = π̃K̃.

Proof. Follows from Theorem 7.1 and Propositions 5.2, 5.1 and 5.5.

7.2 The continuous time process

Lemma 7.3. If the strong bracket condition holds at x0 ∈ Γ, then for any neighborhood
U of x0, there exist t0, t1, two non-empty open sets U0 ⊂ U and V1, and three constants
α0, α1 and ǫ such that:

∀x ∈ U0,∀t ∈ [t0, t0 + ǫ],∀i Px,i[Xt ∈ · ∩ V1] > α0λ(· ∩ V1), (25)

∀y ∈ V1,∀i, Py,i[Xt1 ∈ U0] > α1. (26)

Proof. The regularity result of Theorem 6.6 gives us U0, V0, t0 and ǫ such that:

∀x ∈ U0,∀t ∈ [t0, t0 + ǫ],∀i, Px,i[Xt ∈ ·] > cλ(· ∩ V0). (27)
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At this stage we can replace U0 by U0 ∩ U to ensure U0 ⊂ U . By Lemma 4.3 we cover M
by a finite number of open sets O1, . . . Ok, such that, for some (u1, . . . uk),

∀y ∈ Ok,∀i, Py,i[Xuk
∈ U0] > α2. (28)

One of those open sets (say Ol) has a non-empty intersection with V0: call V1 this in-
tersection. Since V1 ⊂ V0, (27) implies (25). Since V1 ⊂ Ol, (28) implies (26), with
t1 = ul.

Lemma 7.4. If the strong bracket condition holds at x0 ∈ Γ, then for any neighborhood
U of x0, there exists a t and an α > 0 such that for all x and i,

Px,i[Xt ∈ U ] > α. (29)

Proof. We reuse Lemma 4.3 to define open sets O1, . . . Ok, such that, for some (u1, . . . uk),
Equation (28) holds. Now we apply Lemma 7.3 to find t0, t1 such that (25) and (26) hold.

Suppose without loss of generality that min(ui) = u1 6 uk = max(ui). Let sk = t0+t1.
For any n, define t = uk + nsk. For j < k, define sj by:

sj =
t− uj
n

= sk
t− uj
t− uk

.

We have the following bounds:

sk 6 sj 6
t− u1

t− uk
sk.

Choose n large enough to ensure that t−u1
t−uk

6 (1 + ǫ/sk). Then each sj is is the interval
[t0 + t1, t0 + ǫ+ t1]. Therefore we have found t, n and (sj) such that:

∀j, sj ∈ [t0 + t1, t0 + ǫ+ t1],

∀j, t = uj + nsj.

For x ∈ Oj , we have:

Px,i[Xt ∈ U0] = Px,i

[

Xuj
∈ U0,Xuj+sj

∈ U0, . . . ,Xt ∈ U0

]

> Ex,i

[

n
∏

l=1

1Xuj+lsj
∈U0

]

= Ex,i

[

n−1
∏

l=1

1Xuj+lsj
∈U0 · PXuj+(n−1)sj

,Iuj+(n−1)sj

[

Xsj
∈ U0

]

]

by the Markov property. Now, for any x ∈ U0 and any i,

Px,i

[

Xsj
∈ U0

]

> Px,i

[

Xsj−t1 ∈ V1,Xsj
∈ U0

]

> Ex,i

[

1Xsj −t1∈V1PXsj −t1 ,Isj−t1
[Xt1 ∈ U0]

]

> α1Px,i

[

Xsj−t1 ∈ V1

]

by (26)

> α0α1λ(V1) by (25),

since sj − t1 ∈ [t0, t0 + ǫ]. Therefore

Px,i[Xt ∈ U0] > α0α1λ(V1)Ex,i

[

∏

l

1Xuj+lsj
∈U0

]

.
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By induction and thanks to (28), we get:

Px,i[Xt ∈ U ] > α2(α0α1λ(V1))n.

Therefore (29) holds with α = α2(α0α1λ(V1))n.

Theorem 7.5. Supose that there is a point x ∈ Γ at which the strong bracket condition
is satisfied. Let π̃ be the unique invariant probability of Z̃ and let π = πK̃. Then

∃α > 0, C > 0, ‖P(Zt ∈ ·) − π‖ 6 C exp(−αt). (30)

Remark 7.6. Theorem 1 of [2] states that, if the weak bracket condition is satisfied at
x ∈ Γ, and if (Zt) has an invariant measure, then it is unique and absolutely continuous
with respect to the Lebesgue measure on M×E. Under the strong bracket assumption, we
have shown that the distribution of Zt itself converges, and not only its empirical measure.

Proof of Theorem 7.5. Lemma 7.4 shows that two processes starting from anywhere can
be coupled in some time t with positive probability. This implies (30) by the usual coupling
argument.

8 Elementary examples

We give here a few examples of systems given by (2).

8.1 On the torus

Consider the system defined on the torus Tn = R
n/Zn by the constant vector fields F i = ei,

where (e1, . . . en) is the standard basis on R
n. Then, as argued in [2], the weak bracket

condition holds everywhere, and the strong condition does not hold. Therefore the chain
Z̃ is ergodic and converges exponentially fast, the empirical means of Z̃n and Zt converge,
but the law of Zt is singular with respect to the invariant measure.

8.2 Two planar linear flows

Let A be a 2 × 2 real matrix whose eigenvalues η1, η2 have negative real parts. Set
E = {0, 1} and consider the process defined on R

2 × E by

F 0(x) = Ax and F 1(x) = A(x− a)

for some a ∈ R
2. The associated flows are Φ0

t (x) = etAx and Φ1
t (x) = etA(x− a) + a.

First note that, by using the Jordan decomposition of A, it is possible to find a scalar
product 〈· 〉 on R

2 (depending on A) and some number 0 < α 6 min(−Re(η1),−Re(η2))
such that 〈Ax, x〉 6 −α〈x, x〉. Therefore

〈A(x− a), x〉 6 −α〈x, x〉 − 〈Aa, x〉 6 ‖x‖(−α‖x‖ + ‖Aa‖).

This shows that, for R > ‖Aa‖/α, the ball M = {x ∈ R
2, ‖x‖ 6 R} is positively invariant

by Φ0 and Φ1. Moreover every solution to the differential inclusion induced by {F 0, F 1}
eventually enters M. In particular M × E is an absorbing set for the process (Zt).

Another remark that will prove useful in our analysis is that

det(F 0(x), F 1(x)) = det(A) det(a, x),

so that
det(F 0(x), F 1(x)) > 0 (resp. = 0) ⇔ det(a, x) > 0 (resp. = 0). (31)
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Case 1: a is an eigenvector

If a is an eigenvector of A the line Ra is invariant by both flows, so that

Γ = γ+(0) = [0, a]

and there is one unique invariant probability π (whose support has to be Γ by Propo-
sition 5.7.) Indeed, it is easily seen that Γ is an attractor for the set-valued dynamics
induced by F 0 and F 1. Therefore the support of every invariant measure equals Γ. If we
consider the process restricted to Γ, it becomes one-dimensional and the strong bracket
condition holds, proving uniqueness.

Remark 8.1. If X(0) 6∈ Ra, X will never reach Γ. As a consequence, the law of Xt and π
are singular. In particular, their total variation distance is constant, equal to 1. Note also
that the strong bracket condition being satisfied everywhere except on Ra, the law of Xt

at finite times has a regular part.

Remark 8.2. Consider the following example: A = −Id, a = (1, 0) and Ra is identified to
R. If the jump rates are constant and equal to λ, it is easy to check (see [17, 22]) that the
invariant measure µ on [0, 1] × {0, 1} is given by:

µ =
1

2
(µ0 × δ0 + µ1 × δ1) ,

where µ0 and µ1 are Beta laws on [0, 1],

µ0(dx) = Cλx
λ−1(1 − x)λ,

µ1(dx) = Cλx
λ(1 − x)λ−1.

In particular, this example shows that the density of the invariant measure (with
respect to the Lebesgue measure) may be unbounded: when the jump rate λ is smaller
than 1, the densities blow up at 0 and 1.

Case 2: Eigenvalues are reals and a is not an eigenvector

Suppose η1, η2 < 0 and that a is not an eigenvector.
Let γ0 = {Φ0

t (a), t > 0}, γ1 = {Φ1
t (0), t > 0}. Note that γ1 and γ0 are image of each

other by the transformation T (x) = a− x. The curve γ0 (respectively γ1) crosses the line
Ra only at point a (respectively 0). For, otherwise, the trajectory t 7→ Φ0

t (a) would have
to cross the line Ker(A−λ1I) which is invariant. This makes the curve γ = γ0∪γ1 a simple
closed curve in R

2 crossing Ra at 0 and a. By Jordan curve Theorem, R2 \ γ = B ∪ U
where B is a bounded component and U an unbounded one. We claim that

Γ = B.

To prove this claim, observe that thanks to (31), F 0 and F 1 both point inward B at every
point of γ. This makes B positively invariant by Φ0 and Φ1. Thus Γ ⊂ B. Conversely,
γ ⊂ Γ (because 0 and a are accessibles from everywhere). If x ∈ B there exists s > 0
such that Φ0

−s(x) ∈ γ (because limt→−∞ Φ0
t (a) = −∞) and necessarily Φ0

−s(x) ∈ γ1. This
proves that x ∈ γ+(0). Finally note that the strong bracket condition is verified in Γ \Ra
proving uniqueness and absolute continuity of the invariant probability.
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Figure 2: Double rotation.

Case 3: Eigenvalues are complex conjugates

Suppose now that the eigenvalues have a nonzero imaginary part. By Jordan decomposi-
tion, it is easily seen that trajectories of Φi converge in spiralling, so that the mappings
τ i(x) = inf{t > 0 : Φi

t(x) ∈ Ra} and hi(x) = Φi
τ i(x) are well defined and continuous.

Let H : Ra 7→ Ra be the map h0 ◦ h1 restricted to Ra. Since two different trajecto-
ries of the same flow have empty intersection, the sequence xn = Hn(0) is decreasing
(for the ordering on Ra inherited from R.) Being bounded (recall that M is compact
and positively invariant), it converges to x∗ ∈ Ra such that x∗ = H(x∗). Let now
γ0 = {Φ1

t (x
∗), 0 6 t 6 τ1(x∗)}, γ1 = {Φ0

t (h
1(x∗)), 0 6 t 6 τ0(h1(x∗))} and γ = γ0 ∪ γ1.

Reasoning as previously shows that Γ is the bounded component of R2 \ γ and that there
is a unique invariant and absolutely continuous invariant probability.

We illustrate this situation in Figure 2, with

A =

(

−1 −1
1 −1

)

and a =

(

1
0

)

.

Remark 8.3. Note that if the jump rates are small, the situation is similar to the one
described in Remark 8.2, the process spends most of its time near the attractive points,
and the density is unbounded at these points. Since they are in the interior of Γ, the
density is not even continuous in the interior of Γ.

9 Knowing the flows is not enough

In this section we study in detail a PDMP on R
2, where the strong bracket condition

holds everywhere except on Γ, and where there may be one or more invariant measures,
depending on the dynamics of the discrete part of the process.

This model has been suggested by O. Radulescu. The continuous part of the process
takes its values on R

2 whereas its discrete part belongs to {0, 1}. For sake of simplicity
we will denote (in a different way than in the beginning of the paper) by (Xt, Yt) ∈ R

2
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the continuous component. The discrete component (It)t>0 is a continuous time Markov
chain on E = {0, 1} with jump rates (λi)i∈E . Let α > 0. The two vector fields F 0 and F 1

are given by

F 0(x, y) =

(

−x+ α
−y + α

)

and F 1(x, y) =







−x+
α

1 + y2

−y +
α

1 + x2







with (x, y) ∈ R
2. Notice that the quarter plane (0,+∞)2 is invariant under the action

of the vector fields F 0 and F 1. If the support of the initial law of (X,Y ) is included in
the quarter plane (which is assumed from now on), then it is still the case for the law of
(Xt, Yt) at any time.

9.1 General properties of the two vector fields

Obviously, the vector fields F 0 has a unique stable point (α,α), whereas F 1 may admits
one or three critical points, according to the value of α.

Lemma 9.1. Let us define

a =
α+

√

|α2 − 4|
2

and b =

(
√

4/27 + α2 + α

2

)1/3

−
(
√

4/27 + α2 − α

2

)1/3

.

Notice that b is positive and is the unique real solution of b3 + b = α. Then

• if α 6 2, then F 1 admits a unique critical point (b, b) and it is stable,

• if α > 2, then F 1 admits three critical points: (b, b) is unstable whereas (a, a−1) and
(a−1, a) are stable.

Proof. If (x, y) is a critical point of F 1 then (x, y) is solution of

{

x(1 + y2) = α

y(1 + x2) = α.

As a consequence, x is solution of

0 = x5 − αx4 + 2x3 − 2αx2 + (1 + α2)x− α = (x2 − αx+ 1)(x3 + x− α).

The equation x3 + x− α admits a unique real solution b. It belongs to (0, α). Obviously,
if α 6 2, (b, b) is the unique critical point of F 1 whereas, if α > 2 and a and a−1 are the
roots of x2 − αx + 1 = 0, then F 1 admits the three critical points: (b, b), (a, a−1) and
(a−1, a). Let us have a look to the stability of (b, b). The Jacobian matrix of F 1 at (x, y)
is given by

Jac(F 1)(x, y) =









−1 − 2αy

(1 + y2)2

− 2αx

(1 + x2)2
−1









.

Since 1 + b2 = α/b one gets that

Jac(F 1)(b, b) =







−1 −2 +
2b

α

−2 +
2b

α
−1
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and its eigenvalues are given by

η1 = −3 +
2b

α
= −1 − 2

α− b

α
and η2 = 1 − 2b

α
=
b3 − b

α

and are respectively associated to the eigenvectors (1, 1) and (1,−1). Since b < α, η1 is
smaller than −1. Moreover, η2 has the same sign than b− 1 i.e. the same sign than α− 2.
As a conclusion, (b, b) is stable (resp. unstable) if α < 2 (resp. α > 2).

Assume now that α > 2. Then

Jac(F 1)(a, a−1) =







−1 −2a

α

− 2

αa
−1







and its two eigenvalues −1 ± 2α−1 are negative. The critical points (a, a−1) and (a−1, a)
are stable.

In the sequel, we assume that α > 2. The sets

D = {(x, x) : x > 0},
L = {(x, y) : x > 0 and 0 < y < x},
U = {(x, y) : y > 0 and 0 < x < y}

are invariant under the action of the flows F 0 and F 1. Moreover, the set D (and in
particular the unique stable point (α,α) of F 0) is included in the stable manifold of the
unstable equilibrium (b, b) of F 1.

What happens if (X,Y ) starts at a point (x, y) ∈ L? The answer may depend on the
parameters λ0, λ1, α.

9.2 Transience

Lemma 9.2. Assume that (X0, Y0) ∈ L. Then, for any t > 0,

0 6 Xt − Yt 6 (X0 − Y0) exp

(

−
∫ t

0
α(Is) ds

)

,

with α(0) = 1 and α(1) = 1 − cα < 0 with c = (3/8)
√

3.

Proof. If It = 0 then
d

dt
(Xt − Yt) = −(Xt − Yt).

On the other hand, if It = 1 then

d

dt
(Xt − Yt) = −(Xt − Yt) + α

X2
t − Y 2

t

(1 +X2
t )(1 + Y 2

t )

= −(1 − αh(Xt, Yt))(Xt − Yt)

where the function h is defined on [0,∞)2 by

h(x, y) =
x+ y

(1 + x2)(1 + y2)
.
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Figure 3: Trajectory of (X,Y ) (red line) in the plane with λ0 = 1, λ1 = 0.6 and α = 5.

The unique critical point of h on [0,∞)2 is (1/
√

3, 1/
√

3) and h reaches its maximum at
this point:

c := sup
x,y>0

h(x, y) =
3
√

3

8
.

As a consequence, for any t > 0,

d

dt
(Xt − Yt) 6 −α(It)(Xt − Yt) where

{

α(0) = 1,

α(1) = 1 − cα.

Integrating this relation concludes the proof.

Corollary 9.3. Assume that (X0, Y0) ∈ L. If λ1 > λ0(cα − 1) then (Xt, Yt) converges
exponentially fast to D almost surely. More precisely,

lim sup
t→∞

1

t
log (Xt − Yt) 6 −λ1 − (cα− 1)λ0

λ0 + λ1
< 0 a.s. (32)

In particular, the process (X,Y, I) admits a unique invariant measure µ which support is
the set

S = {(x, x) : x ∈ [b, α]}.

Proof. The ergodic theorem for the Markov process (It)t>0 ensures that

1

t

∫ t

0
α(Is) ds

a.s.−−−→
t→∞

∫

α(i)dν(i)

where the invariant measure ν of the process (It)t>0 is the Bernoulli measure with param-
eter λ0/(λ0 + λ1). The upper bound (32) is a straightforward consequence of Lemma 9.2.
This ensures that the sets L and U are transient. At last, it is quite obvious that the set
of recurrent points in D is exactly S.

One can also get an estimate for the pth moment of Xt − Yt.

30



0 2 4 6 8 10 12 14 16 18

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Figure 4: Trajectories of X (blue line) and Y (red line) with λ0 = 1, λ1 = 0.6 and α = 5.

Corollary 9.4. Assume that (X0, Y0) ∈ L. Let p > 0 such that

λ1 > (λ0 + p)(cα− 1). (33)

Then there exists two positive constants cp, µp such that

E(|Xt − Yt|p) 6 cpE(|X0 − Y0|p)e−µpt.

Proof. Once again, Lemma 9.2 ensures that

0 6 E(|Xt − Yt|p) 6 E(|X0 − Y0|p)E
[

exp

(

−
∫ t

0
pα(Is) ds

)]

.

According to [3, Prop. 4.1], there exists cp > 1 such that, for any t > 0,

1

cp
e−µpt 6 E

[

exp

(

−
∫ t

0
pα(Is) ds

)]

6 cpe
−µpt

where µp = − max {Re η : η ∈ Spec(Mp)} and

Mp =

(

−λ0 − p λ0

λ1 −λ1 + p(cα − 1)

)

.

The real parts of the eigenvalues of Mp are negative if and only if their sum S is negative
and their product P is positive with

−S = λ0 + λ1 + p(2 − cα),

P = p(λ1 − (cα − 1)(λ0 + p)).

The sum S is always negative and the positivity of P is given by (33).
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9.3 Recurrence

In this section, we aim to show that (X,Y, I) may admit several invariant measures if the
jump rate λ0 is large enough. Let us define

Ut =
Xt + Yt

2
and Vt =

Xt − Yt
2

.

Of course (U, V, I) is still a PDMP. If

d

dt

(

Xt

Yt

)

= F 1(Xt, Yt) then
d

dt

(

Ut
Vt

)

= G1(Ut, Vt),

with

G1(u, v) =
1

2

(

1 1
1 −1

)

F 1(u+ v, u− v) =













−u+
α(1 + u2 + v2)

(1 + (u+ v)2)(1 + (u− v)2)

−v +
2αuv

(1 + (u+ v)2)(1 + (u− v)2)













.

Corollary 9.3 ensures that, if λ1/λ0 is large enough, then Vt goes to 0 exponentially fast.
Let us show that this is no longer true if λ1/λ0 is small enough. Let ε > 0. Assume

that, with positive probability, Vt ∈ (0, ε) for any t > 0. Then, for any time t > 0,
(Ut, Vt) ∈ [b, α] × [0, ε]. Indeed, one can show that the set Xt + Yt > 2b for any t > 0 as
soon as it is true at the initial time.

Lemma 9.5. Assume that (u, v) ∈ [b, α] × [0, ε]. Then there exists uc ∈ (b, α) and
K, δ, γ, γ̃ > 0 (that do not depend on ε) such that bε = b+Kε2 and

G1
1(u, v) 6 H1

1 (u, v) with H1
1 (u, v) = −δ(u− bε).

and
G1

2(u, v) > H1
2 (u, v) with H1

2 (u, v) =
(

(γ + γ̃)1{u6uc} − γ̃
)

v.

Proof. Notice firstly that
∣

∣

∣(1 + (u+ v)2)(1 + (u− v)2) − (1 + u2)2
∣

∣

∣ 6 Kε2. (34)

Thus, using that u3 + u− α = (u− b)(u2 + bu+ α/b) we get that

G1
1(u, v) 6 −u+

α

1 + u2
+Kε2

6 −(u− b)
u2 + bu+ α/b

1 + u2
+Kε2

6 −(u− b)
2b2 + α/b

1 + α2
+Kε2.

We get the desired upper bound for G1
1 with

δ =
2b2 + α/b

1 + α2
and bε = b+ (K/δ)ε2.

Similarly, Equation (34) ensures that

G1
2(u, v) > vk(u) with k(u) =

2αu

(1 + u2)2
− 1 −Kε2.
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Obviously, if ε is small enough, k(b) > 0, k(α) < 0 and k is decreasing. Thus, if ũ is the
unique zero of k on (b, α), then one can choose

uc =
ũ+ b

2
, γ = k(uc) and γ̃ = k(α).

To get a simpler bound in the sequel we can even set γ̃ = k(α) ∨ 1.

Finally, define H0
1 (u, v) = G0

1(u, v) = −(u − α) and H0
2 (u, v) = G0

2(u, v) = −v and
introduce the PDMP (Ũ , Ṽ , Ĩ) where Ĩ = I is the switching process of (U, V, I) and (Ũ , Ṽ )
is driven by H0 and H1 instead of G0 and G1. From Lemma 9.5, we get that

Ut 6 Ũt and Ṽt 6 Vt (t > 0)

assuming that (Ũ0, Ṽ0, Ĩ0) = (U0, V0, I0). The last step is to study briefly the process
(Ũ , Ṽ , Ĩ). Let us firstly notice that if λ1/λ0 is small enough, then (Is, Ũs) spends an
arbitrary large amount of time near (1, bε) (and bε can be assumed smaller than uc if ε is
small enough). Thus

1

t
log

Ṽt

Ṽ0
>

1

t

∫ t

0
((γ + γ̃)1{Is=1,Ũs<uc} − γ̃) ds

since γ̃ > 1. The right hand side converges almost surely to a positive limit as soon as
λ1/λ0 is small enough. This implies that V cannot be bounded by ε forever.

Corollary 9.6. If λ1/λ0 is small enough, the process (X,Y, I) admits three ergodic mea-
sures.
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