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Abstract—This paper revisits earlier work on rate distortion
behavior of sparse sources, namely it highlights the fact that a
graphical sparsity characterization proposed in [1] is a Lorenz

curve, a tool for summarizing income inequality that has been
used by economists for over a century. The Lorenz curve
associated to a memoryless source can be used to obtain upper
bounds on the distortion rate function, thus characterizing source
compressibility. It is shown that an order relation on Lorenz
curves induces an analogous relation on distortion rate upper
bounds. This can be used to characterize the compressibility of
certain parametric families of source distributions, for which an
order on the parameters induces an order on Lorenz curves.

I. INTRODUCTION

Sparse signal representations are at the core of state-of-

the-art lossy source coding and compressed sensing methods.

Sparse vectors, in which most components are zero, can

be compressed and/or sampled more efficiently. While such

strict sparsity is rather straightforward to characterize, several

measures have been proposed for the more general case of

approximate, non-strict sparsity; see the work by Hurley and

Rickard [2], which compares a number of sparsity measures

based on intuitive quantifiable criteria.

In this work, we use the term compressibility to denote

non-strict sparsity, hinting at the ultimate goal, which is the

lossy compression of a signal into a digital representation.

We will take a probabilistic approach, modeling time-discrete

signals as the outputs of memoryless random sources. Thus

rate distortion theory is the appropriate tool to study the limits

on achievable compression performance. The question that this

work addresses is “how does compressibility of a source affect

the minimal rate per sample needed to reconstruct it within a

given distortion” (i.e. a lossy compression problem), and not

“how many samples are needed to guarantee reconstruction”

(which would be a compressed sensing type of question).

Section II introduces Lorenz curves and the associated

Lorenz order as tools to display and compare the compressibil-

ity (sparsity) of sources. Section III recalls two upper bounds

on the distortion rate function and shows that they can actually

be obtained from a parametric curve that is equivalent to a

Lorenz curve. Section IV then uses these findings to show that

the Lorenz order induces an order on distortion rate bounds

and hence allows to define a compressibility hierarchy in

parametric families of source distributions.

II. LORENZ CURVES

In 1905, Max Lorenz proposed a simple graphical tool to

display the inequality in the distribution of wealth among a

finite population [3]; this is now known as the Lorenz curve

and is still popular among economists. For a population of

size n, with wealths x1, x2, . . . , xn arranged from smallest

to largest (denoted by x1:n, x2:n, . . . , xn:n), the Lorenz curve

Lx(u) is obtained by plotting the points

(u, Lx(u)) =

(

k

n
,

∑k
i=1 xi:n

∑n
i=1 xi:n

)

, j = 1, 2, . . . , n,

as well as the point (0, 0), and interpolating in between. Thus

L(u) corresponds to the proportion of total wealth owned by

the u·100% poorest individuals. Clearly, distribution inequality

is larger if the curve is more bent away from the egalitarian

line running from (0, 0) to (1, 1). By definition, the Lorenz

curve allows comparisons among populations of different size.

If two populations x and y have Lorenz curves Lx and Ly

such that Lx(u) ≤ Ly(u),∀u ∈ (0, 1), then x shows at least

as much inequality as y. Many single-parameter measures of

inequality have been proposed based on the Lorenz curve.

Perhaps the most prominent is the Gini coefficient G, which

equals twice the area between L(u) and the egalitarian line.

Thus G = 0 for a population in which everyone has the

same wealth, and G = 1 for a population in which a single

individual owns all wealth.

Coming back to signal representations, we may consider

a vector of sample or coefficient magnitudes and say that it

is sparser (in non-strict sense) if its Lorenz curve is below

that of an alternative representation, since fewer samples will

be needed to achieve the same reconstruction fidelity.1 Hence

the Gini coefficient can be used as a measure of sparsity; in

fact, [2] found that it is one of the few sparsity measures that

satisfies a range of intuitive properties that one should expect

from such measures. However, the focus of this work is not on

single-parameter sparsity measures, but on using the Lorenz

curve as a tool to characterize the compressibility (non-strict

sparsity) over the entire range of source coding rates. This

motivates using the entire curve, rather than a single-parameter

measure like the source entropy, which would yield only high-

rate characterizations.

In the following, we will model the signal representation by

a real-valued memoryless source X with density fX(x) and

distribution function FX(x). We may compute the expected

Lorenz curve for a block X of samples generated by the source

1Here we assume e.g. squared error distortion measure and nonlinear
approximation by the k largest samples (from equal-sized vectors). Increased
sparsity thus corresponds to better energy compaction.



X . By letting the block size grow to infinity, one arrives at the

standard definition of the Lorenz curve of a random variable

X [4, Sec. 17.C]. Let L be the class of distributions of non-

negative random variables with positive finite expectation (we

will slightly abuse notation and use both X ∈ L and FX ∈ L).

The Lorenz curve corresponding to the distribution F in L is

described by the set of points
{(

F (x), F (1)(x)
)}

, x ≥ 0, (1)

where F (1) is the first moment distribution

F (1)(x) =

∫ x

0
z dF (z)

∫ ∞

0
z dF (z)

. (2)

Defining the right continuous inverse distribution function or

quantile function by

F−1(y) = sup{x : F (x) ≤ y}, (3)

one obtains the explicit expression for the Lorenz curve of a

random variable X with distribution F ∈ L,

L(u) =

∫ u

0
F−1(y) dy

∫ 1

0
F−1(y) dy

=

∫ u

0
F−1(y) dy

EX
, 0 ≤ u ≤ 1. (4)

Using definition (4) it is possible to show that L(u) is a

continuous, non-decreasing convex function on [0, 1], which

is differentiable almost everywhere, and with L(0) = 0 and

L(1) = 1. The Lorenz curve is scale-free by definition, i.e.

LaX(u) = LX(u) for a > 0. The parametric representation

(1) is often more convenient if no closed-form expression is

available for the quantile function. Notice that a Lorenz curve

can obviously be defined also for higher order moments in

(2), but for technical reasons that will become clear later, we

prefer to consider distributions of the powers Y = Xr of

the original random variable (allowing e.g. to write Xr ∈ L
without having to explicitly define the class of distributions

with finite r-th moment).

By considering the Lorenz curves associated to random

variables it is possible to define a partial order in the class

L (see e.g. [4, Sec. 17.C]).

Definition 1 (Lorenz order): Let FX , FY ∈ L, with corre-

sponding Lorenz curves LX and LY . Then X is less than

Y in the Lorenz order, denoted X ≤L Y or FX ≤L FY , if

LX(u) ≥ LY (u) for all u ∈ [0, 1].
Thus X ≤L Y means that X is more equally distributed,

or less compressible (sparse) than Y , that is, LX is closer to

the egalitarian line than LY .

III. DISTORTION RATE BOUNDS

This section briefly recalls two upper bounds on the mean-

squared error (MSE) distortion rate function of continuous

random variables, which first appeared in [5] and are discussed

in more detail in [6]. Although from here on we focus on MSE,

all results in this work can be extended to absolute r-th power

distortion measures d(x, x̂) = |x − x̂|r.

The (information) rate distortion function [7]

R(D) = min
f(x̂|x): E d(X,X̂)≤D

I(X; X̂) (5)

is the minimal rate at which a source X can be encoded with

distortion E d(X, X̂) ≤ D. Alternatively, it may be expressed

as a distortion rate function D(R). Two important properties

for MSE distortion, d(x, x̂) = (x − x̂)2, are the Gaussian

upper bound,

D(R) ≤ σ2e−2R, (6)

and the Shannon lower bound (SLB),

R(D) ≥ RSLB(D) = h(X) −
1

2
log(2πeD). (7)

Note that in this work all rates are expressed in nats and all

logarithms are natural, unless otherwise stated.

The following bounds are obtained by classifying the mag-

nitudes of the source samples using a threshold t and applying

the Gaussian upper bound (6) to each of the two classes. They

are upper bounds on the operational rate distortion function of

magnitude classifying quantization (MCQ), which sends the

classification as side information and uses it to switch between

two codebooks. The samples with magnitude above threshold t
are called significant and are characterized by two incomplete

moments, namely the probability

µ(t) =

∫ −t

−∞

f(x) dx +

∫ ∞

t

f(x) dx (8)

and the second moment

A(t) =

∫ −t

−∞

x2f(x) dx +

∫ ∞

t

x2f(x) dx, (9)

where A(0) = σ2 is the source variance (we assume EX = 0
without loss of generality). From these we compute the

conditional second moment of the significant samples,

σ2
1(t) = E[X2| |X| ≥ t] =

A(t)

µ(t)
,

as well as that of the insignificant samples,

σ2
0(t) = E[X2| |X| < t] =

σ2 − A(t)

1 − µ(t)
.

The classification decision is sent as side information to the

decoder, using hb(µ) nats per sample (hb(p) = −p log p −
(1−p) log(1−p) is the binary entropy function). The encoder

can now use two separate Gaussian codebooks, one for the

insignificant samples with rate R0 and one for the significant

samples with rate R1. The average rate per sample becomes

R = hb(µ(t)) + µ(t)R1 + (1 − µ(t))R0. (10)

By standard rate allocation (reverse water-filling) over the two

codebooks we obtain an upper bound.

Theorem 1: (High-Rate Upper Bound) For all

R ≥ Rmin(t) = hb(µ(t)) +
1

2
µ(t) log

σ2
1(t)

σ2
0(t)

, (11)

the MSE distortion rate function of a memoryless source is

upper-bounded by

D(R) ≤ Bhr(t, R) = c(t)σ2e−2R, (12)



where

c(t) = exp
(

2hb(µ(t)) + (1 − µ(t)) log
σ2

0
(t)

σ2 + µ(t) log
σ2

1
(t)

σ2

)

.

(13)

The best asymptotic upper bound is obtained by finding the

t∗ ≥ 0 that minimizes c(t). Since limt→0+ c(t) = 1, the

Gaussian upper bound is always a member of this family.

Exploiting the trivial fact that (12) also upper bounds the

Shannon lower bound, we obtain

Corollary 2: Let µ∗ = µ(t∗) and A∗ = A(t∗) yield the

tightest bound in Theorem 1. Define the pmf’s

µ∗ = [µ∗, 1 − µ∗] , a∗ =
[

A∗

σ2 , 1 − A∗

σ2

]

.

Then the differential entropy h(X) is upper-bounded by

h(X) ≤ 1
2 ln(2πeσ2) + hb(µ

∗) − 1
2D(µ∗‖a∗), (14)

where D(·‖·) is the divergence or Kullback-Leibler distance

between the pmf’s.

A low-rate bound is obtained by upper-bounding only the

significant samples, while the other samples are quantized to

zero, thus yielding a distortion floor.

Theorem 3: (Low-Rate Upper Bound) The MSE distortion

rate function of a memoryless source is upper-bounded by

D(R) ≤ Blr(t, R), for t ≥ 0 and R ≥ 0 (15)

where

Blr(t, R) = A(t) exp
(

−2R−hb(µ(t))
µ(t)

)

+ σ2 − A(t).

For a given threshold t ≥ 0, this bound can be optimized to

yield

D(R∗(t)) ≤ Blr(t, R
∗(t)), (16)

with the locally optimal rate R∗(t) given by

R∗(t) = hb(µ(t)) − 1
2µ(t)

[

2h′
b(µ(t)) + γ(t)

+ W−1

(

−γ(t)e−2h′

b
(µ(t))−γ(t)

) ]

, (17)

where γ is the reciprocal normalized second tail moment

γ(t) = µ(t)
A(t) t

2 = t2

E[X2| |X|≥t] and W−1 is the second real

branch of Lambert’s W function, taking values on (−∞,−1].
(W(x) solves W(x)eW(x) = x.)

Proofs and a discussion of the situation when (17) has

no solution appear in [5] and [6]. Furthermore, a corollary

shows that the low-rate and high-rate bounds coincide in the

minimum of the latter, that is, as expected there is a continuous

transition between the two bounds. A parametric upper bound

for all rates is thus

D(R) ≤ B(R) =











Blr(t, R), t > t∗,

R = R∗(t) < Rmin(t∗)

Bhr(t
∗, R), R ≥ Rmin(t∗),

(18)

where t∗ is found by optimizing the high-rate bound (12).

Results by Sakrison [8] and Gish-Pierce [9] imply that

the operational distortion rate function δ(R) of a magnitude

classifier followed by a Gaussian scalar quantizer (adapted to

the class variance) will be at most a factor of πe/6 (1.53 dB)

above the bound (18). Actually, this gap is even smaller at low

rates, since the distortion D0(0) = σ2
0 is trivially achieved for

the insignificant samples.

The incomplete moments (8) and (9) can be displayed with

a moment profile curve,

{(µ(t), A(t))} , t ≥ 0. (19)

In [5], we pointed out that this curve is a good tool to

characterize source sparsity and showed that it contains all in-

formation needed to compute the bounds (18), since dA
dµ

= t2.

A simple inspection of (1) and (19) reveals that by normal-

izing A(t) with A(0) = σ2, one obtains a reverse Lorenz

curve for the random variable X2, defined as L̄X2(u) =
1 − LX2(1 − u). That is, all properties for Lorenz curves

hold for the normalized moment profile, with the appropriate

direction reversals in the inequalities.

IV. LORENZ ORDER INDUCES A HIERARCHY OF BOUNDS

The above observation immediately leads to the main result

of this work.

Theorem 4: Let X, Y be two continuous random variables

with EX2 = E Y 2 < ∞. If X2 is less than Y 2 in Lorenz

order, then the associated MSE distortion rate bound BX(R)
will lie above BY (R) for all rates, that is, X2 ≤L Y 2 implies

BX(R) ≥ BY (R), R ≥ 0.

By the above remarks on the operational significance of the

bound (18), it follows that X2 ≤L Y 2 implies that when using

a threshold-based MCQ scheme, Y is more compressible than

X . (To show that Y is more compressible with an optimal

scheme would require also ordered lower bounds on D(R).)
Proof: Since the normalized moment profile

{(µ(t), a(t))}t≥0 is actually identical to the reverse Lorenz

curve of X2, defined as L̄X2(u) = 1−LX2(1−u), it follows

from X2 ≤L Y 2 that LX2(u) ≥ LY 2(u) and therefore

aX(µ−1
X (u)) ≤ aY (µ−1

Y (u)), ∀u ∈ [0, 1]. (20)

Here the threshold µ−1(u) is defined via (3) as µ−1(u) =
F−1(1−u). Inequality (20) may be written as aY (µ−1

Y (u)) =
aX(µ−1

X (u))+∆a, with ∆a ≥ 0. Hence to prove the theorem

it is sufficient to show that, for a fixed u = µ(t), the bounds

Blr and Bhr do not increase with ∆a, that is, ∂B
∂a

≤ 0. Fixing

u avoids having to deal with the optimization of the bounds.

For the low-rate bound, we have

Blr

σ2
= a exp

(

−2R−hb(µ)
µ

)

+ 1 − a,

from which

∂

∂a

(

Blr

σ2

)

= exp
(

−2R−hb(µ)
µ

)

− 1,

which is negative for all R > hb(µ), that is the rates for which

the bound actually improves over the trivial bound D(R) ≤ σ2



(otherwise we would choose the Gaussian upper bound and

have BX(R) = BY (R)).
For the high-rate bound, we only need to look at the

divergence term in (14), since it determines (12) through c(t)
(recall that µ(t) is fixed). The derivative of the divergence

needs to be positive for the bound to decrease with ∆a. We

have

∂

∂a
D(µ‖a) =

∂

∂a

(

µ log
µ

a
+ (1 − µ) log

1 − µ

1 − a

)

= −
µ

a
+

1 − µ

1 − a
=

a − µ

a(1 − a)
≥ 0,

where the inequality a−µ ≥ 0 follows from the concavity of

the reverse Lorenz curve.

An interesting application of this result draws on the exis-

tence of parametric families of distributions for which an order

on the parameters induces Lorenz order, see e.g. [4, Sec. 17.D]

and [10]. Through Theorem 4, the order on the parameters

therefore induces an order on the source compressibility in

the operational sense outlined above. This could be used for

example to optimize a transform which outputs coefficients

that can be modeled as coming from a certain family of

distributions (with constant variance).

As an example, we consider a distribution with density of

the form

fα,ξ,θ(x) =
αxαθ−1

B(ξ, θ) [1 + xα]
ξ+θ

, x ≥ 0, α, ξ, θ ≥ 0, (21)

which is known as generalized F distribution, generalized beta

distribution of the second kind or Feller-Pareto distribution

(see [4, Sec. 17.D] or [10]; B(·, ·) is the Beta function). The

appeal of this family of distributions is its ability to model

heavy tails, which are typical for compressible sources such as

e.g. wavelet coefficients (and the fact that incomplete moments

of the distribution can be expressed with hypergeometric func-

tions, thus avoiding the need for explicit numeric integration).

Theorem 5 (Kleiber 1999, [10]): Let X1, X2 be in L,

Xi ∼ fαi,ξi,θi
, i = 1, 2. Then α1 ≤ α2, α1θ1 ≤ α2θ2, and

α1ξ1 ≤ α2ξ2 imply X1 ≥L X2.

At this point, the reason for working with the standard

(first moment) Lorenz curve for Y = X2, instead of the

second moment Lorenz curve for X , becomes apparent: we

will apply Theorem 5 on the distribution of X2 and then map

the resulting parametric order “down” to the corresponding

source distributions (since X1 ≤L X2 does not necessar-

ily imply X2
1 ≤L X2

2 ). In the example at hand, we let

Y ∼ fY = fαY =1,ξY =1.1,θY
, establishing that θY1

≤ θY2

implies Y1 ≥L Y2 (the source becomes less compressible with

increasing θ). The density fY determines only the density of

|X|; a common choice for modeling the source would then be

the symmetric density fX(x) = |x|fY (x2). Here it turns out

to be a generalized F distribution with parameters αX = 2,

ξX = ξY = 1.1 and θX = θY . Figure 1 shows three (one-

sided) densities from this family for different values of θ.

Their reverse Lorenz curves in Figure 2 show the expected

order. Finally, Figure 3 plots the optimized D(R) bounds,
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Fig. 1. Densities fα,ξ,θ(x) of the generalized F distribution (21) with α =
2, ξ = 1.1 and θ = 0.15, 0.25, 0.5. The actual source density is symmetric
with fX(x) = 0.5fα,ξ,θ(|x|). All densities scaled to unit variance.
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Fig. 2. Moment profiles (reverse Lorenz curves L̄X2 ) for the source densities
in Figure 1.

confirming the order implied by Theorem 4. The interest

of this approach based on Lorenz order becomes apparent

when one considers that a visual inspection of Figure 1 might

lead to a correct guess about the order of high-rate D(R)
curves (which is determined by source entropy alone), but that

predicting behavior at low rates seems much harder.

V. CONCLUSION

Lorenz curves and the Lorenz order were shown to be useful

tools to characterize the compressibility and the distortion

rate behavior of parametric families of source densities. An

interesting open problem is the extension to the multivariate

case; there are a number of proposals for multidimensional

Lorenz curves, but their properties do not always match

intuition about measures of distribution inequality (sparsity),

see e.g. [4, Sec. 17.C]. A multivariate extension geared towards
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Fig. 3. Upper bounds on distortion rate for the source densities in Figure 1.

measuring compressibility, with lossy source coding in mind,

would certainly need to have properties that are different from

those of interest to economists.
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