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Introduction

For both particulate and unidirectional composites, the traditional scheme describing one phase as
the matrix and the other as the reinforcement is not completely satisfactory for high reinforcement
content. This article proposes the use of De Larrard and Le Roy's geometric model [1] to better
define the morphological characteristics of a two-phase composite, in conjunction with the self-
consistent method, thanks to the recent development of n+1 layered models. The comparison of
results with experimental data has proved promising.

Analysis

The evaluation of the elastic properties of biphased materials uses homogenization techniques
based on geometrical, physical and mechanical parameters. The prediction of the viscoelastic
behavior of polymer matrix composites is based on these same models via Lee-Mandel's
correspondence principle [2]. Among these approaches, several propose a particular space
distribution of components, for instance the periodical homogenization methods. Self-consistent
approaches are linked with a perfect random order situation [3]. Christensen and Lo [4] solved the
problem of determining the transverse shear modulus for biphased composites; more recently, this
technique was extended to n-phase composites by Hervé and Zaoui [5] for particulate composites,
using a recurrent method. These authors [6], along with Agbossou [7] for the transverse shear
modulus, extended their technique to unidirectional composites, and all used the same recurrent
method. For their part, Pastor and Nguyen Viet proposed a direct semi-analytical solution [8],
leading to three linear systems and a bilinear system. We will apply this technique, quite simple to
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use on any personal computer, to the unidirectional case, using Hervé and Zaoui's method for

particulate composites.

Nevertheless, if these models produce satisfactory results for low reinforcement contents, one
usually notices a considerable discrepancy between theoretical and experimental results for higher
contents. For these contents, De Larrard and Le Roy [1] proposed an inventive geometrical model
with an improved consideration of actual phase configuration, nevertheless followed by
application of an approximate homogenization method. This article presents the elasticity and
viscoelasticity results obtained by coupling n-phase models (Hervé and Zaoui [5], Pastor et al.
[8]), and the geometrical distribution proposed by De Larrard and Le Roy [1]. An initial
application of this work was presented by Saffré [9] for the case of biphased aluminium-tin alloy,
with absolutely non-miscible components, where the retained homogenization model was an
interphase model for particulate composites proposed by Maurer [10].

Geometrical model representation

Let us first consider a composite unit volume (V¢ = 1). The particulate or unidirectional
reinforcement content (Vy) of a composite is always limited by the dry reinforcement maximum
compactness, called optimum compactness content (Vr max). This layout corresponds to the
reinforcement and matrix inversion. For an increase in Vr, the probability is greater and greater
that reinforcements will themselves aggregate, embedding a part of the matrix (Vme) (FIG. 1).
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FIG. 1

Reinforcement aggregates in the matrix
(a) Real composite of volume Vg,
(b) Composite formed by reinforcements and embedded part of matrix of volume V

If V is the volume composed of both the reinforcement volume and the embedded matrix volume,
then it is possible to write (1) :
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v =% (1)

and for the embedded part of the matrix :

Vme=(l"vrmax)v=(1"vrmax) er 2

T max

The rest of the matrix, which has a freer behaviour, has a volume expressed in (3).

Vo= 1-g 2 3

r max

One can then analyse the material as a new composite, whose matrix has the same nature as the
initial one, whose volume is expressed in (3), and whose inclusion, an imaginary material
composed of the embedded matrix in a reinforcement shell, has a volume equal to V/Vr max. This

composite is represented by the new elementary cell in figure 2.

Vmi
Vme

Vr

FIG. 2
Composite elementary cell.

De Larrard and Le Roy used this geometrical motif with Hashin's model {11], step by step, first
solving the problem at the level of the two inner spheres, then adding the outer one.

lication

As we have pointed out in the analysis, recent extensions of the self-consistent scheme to n+1
phase models, make use of the above geometrical motif possible. Of course, these models can be
brought back to four phases for which the representative elementary volume has the same features
as the elementary cell represented in figure 2, which is in turn blurred into the infinite
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homogenized medium. In the case of composites with particulate inclusions, bulk modulus is
expressed in the following way :

B (Bkpy+4hy) (Bky+4 1)
k=km+ (3 kﬁ;*/:l{ﬂ?_l;:‘}ﬂ :lm) + 1:VfTﬂ:aT(p,-;m)-3(3 K +4 1) @
where the m and r indexes respectively correspond to the matrix and the reinforcements.
Shear modulus is expressed as follows:
A(”im)2+2n(%)+c=o (5)

with A, B and C only a function of Vi, Vr max, 1, and u,.

For unidirectional reinforcement composites, the calculations are too complex to be described in
this paper, and it should be referred to Pastor and Nguyen Viet [8] or Hervé and Zaoui [6].

Results and discussion

1 - Particulate composite in viscoelasticity

The material studied is a composite, whose matrix is a polystyrene resin, and whose
reinforcements are glass beads with a diameter varying between 70 and 110 tm, with an unknown
geometrical distribution. This leads us to determine the optimum compactness of beads
experimentally. The optimum reinforcement content obtained in this way is about 64 % in volume.
Complex moduli are calculated here using Lee-Mandel's correspondence principle [2], and the
evaluation technique for the complex Poisson's ratio used by Nguyen Viet [12] on the basis of a
proposal by Theocaris (Cf. [13]). The first evaluation of this ratio, unattainable experimentally,
was proposed by Agbossou et al. [14]. These authors extended Theocaris's idea to complex
moduli using a successive approximation technique. Nguyen Viet et al proved that this technique is
equivalent to the bulk modulus being constant and real, i.e. that the matrix is only viscoelastic in
shearing, as is often affirmed. The technique used here frees us from the latter approximation.

Figure 3 presents for comparison the values calculated with Hervé and Zaoui's technique [5]
applied to the first defined geometrical model (curve @), the values calculated with Christensen and
Lo's three-phase model [4] (curve b), as well as the experimental results (Fig. 3 - curve c), where
Em = 3.1 GPa, vip = 0.33, tan § = 1.24.10-2, E; = 70.0 GPa, v = 0.2.
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FIG. 3

Loss factor versus the volume fraction of beads

The results obtained, with high volume reinforcement contents, remain less than the experimental
results. This is normal, since the calculation result may be considered as the lower boundary for
the exact result, as the model implies that the reinforcements themselves aggregate, forming
compact macro-inclusions, in a perfect random order situation, containing within themselves the
practical minimum embedded matrix volume. Nevertheless, these results are more realistic than
those produced by Christensen and Lo's model, if we consider that the composite loss factor is in
actual fact negligible for bead contents greater than 64 %, a content which we earlier called the
"practical optimum compactness content", where the blended beads limit the embedded matrix
strain. The proposed method therefore takes into account as much as possible, in experimental
fashion, the generally distributed aspect of the glass beads’ granulometry.

2 - Unidirectional composite in elasticity

We also studied the case of a glass-epoxy composite with unidirectional reinforcements in
transverse simple tension, for which experimental results were obtained by Lagache et al. [15].
Glass fibers have the same diameter, and the fibers' theoretical maximum compactness, which
corresponds to a compact hexagonal stack, is equal to 90.7 %. This theoretical limit is never
reached in practice, which is why we apply the user's well-known limit, also confirmed by
Gutowski et al. [16], which is about 76 % in volume. In transverse isotropy, we chose Pastor and
NGuyen's [8] homogenization model to solve our four-phase model. As for the case we studied

first, Figure 4 presents the obtained results (curve a), compared with Christensen and Lo's model
[4] (curve b), as well as with the experimental results (curve c), where Eyy = 2.9 GPa, vy = 0.4,
Er =73.0 GPa, vp = 0.22.
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FIG. 4

Transverse Young modulus
versus the volume fraction of fibers.

Although we note a good match between the theoretical and experimental results for reinforcement
contents of the order of 20 %, there remains a difference for higher reinforcement contents, but
this average difference goes from 25 to 8 % when we use the model presented. The most realistic
explanation for the remaining difference is a modification of the in situ matrix properties. Indeed, a
simple increase in the matrix Young modulus from 2.9 to 3.2 GPa (a perfectly acceptable value for
a strong reticulated epoxy network) brings theoretical values back within the range of the

experimental results.

Conclusion

The main advantages of the model presented are its simplicity and the easy monitoring of the
optimum compactness content. Furthermore, good quality results are obtained without any
additional approximation, especially considering the simplicity of the model. Thus, we can affirm
that the model presented considerably improves the ability to predict the mechanical characteristics
of the biphased materials studied. Nevertheless, the approximation provided by four-phase models
for high fibrous or particulate reinforcement contents still requires improvement.
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