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Abstract To solve variational indefinite problems, one uses classically the
Banach–Nečas–Babuška theory. Here, we study an alternate theory to solve
those problems: T-coercivity. Moreover, we prove that one can use this theory
to solve the approximate problems, which provides an alternative to the cel-
ebrated Fortin lemma. We apply this theory to solve the indefinite problem
div σ∇u = f set in H1

0 , with σ exhibiting a sign change.

Keywords T-coercivity · metamaterial · negative material · transmission
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1 Introduction

In recent years, some studies have been devoted to the indefinite transmission
problem: find u ∈ H1

0 (Ω) such that div σ∇u = f , with a coefficient σ that
exhibits a sign change at the crossing of an interface that divides the (bounded)
domain Ω. Such is the case of a structure made of a classical dielectrics and
of a (negative) metamaterial [21,11,17,13]. This problem is indefinite in the
sense that the corresponding sesquilinear form, namely

a : (v, w) 7→
∫
Ω

σ∇v · ∇w

has no fixed sign. One can find v1, respectively v2, such that a(v1, v1) > 0 and
a(v2, v2) < 0. Obviously, it is not coercive so that one can not use the Lax-
Milgram theorem to prove that this problem is well-posed. A possible choice
is to use the Banach–Nečas–Babuška theory, which relies on the inf-sup condi-
tion. Here, we propose instead an alternative choice, the so-called T-coercivity
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theory [3,1] to solve the problem, which relies on the use of explicit inf-sup
operators. Interestingly, it can also be used to prove the convergence of finite
element discretizations [3,20].

In this paper, we first reformulate the standard well-posedness theory within
the T-coercivity framework. Then, we explain how can one use this approach
to solve the approximate problems and to prove the convergence of the ap-
proximate solutions to the exact solution. Next, we apply these results to the
indefinite transmission problem set in H1

0 (Ω) with a piecewise constant coef-
ficient σ. For the exact problem, we investigate some reference configurations
to explain the results we have obtained in terms of the applicability of the
method: its well-posedness (possibly in the Fredholm sense) depends critically
on the value of the ratio between the positive values and the negative values
of σ. We also introduce different approaches to solve numerically the problem
using the finite element method. They rely either on the use of special meshes,
or on the introduction of some dissipation, which amounts to adding some
well-chosen imaginary number to σ. We finally devote our attention to the
range of applicability of those discrete approaches, thus complementing the
results of [3,20]. In the process, we provide error estimates, which we observe
numerically on some examples.

2 General framework

Below, we recall some very standard tools of functional analysis dealing with
the well-posedness of an abstract Problem (usually written as a variational
formulation), which we reformulate using the theory of T-coercivity [3]. Then,
we derive results on a class of indefinite problems by studying their well-
posedness via T-coercivity (cf. §3.2).

2.1 Starting point

Let V and W be two Hilbert spaces with inner product (·, ·)V and (·, ·)W .
We denote ‖ · ‖V and ‖ · ‖W the associated norms and by L(V,W ) the vector
space of continuous (linear) operators from V to W . Let us introduce a(·, ·)
a continuous sesquilinear form over V ×W and f ∈ W ′. Here, W ′ refers to
the topological dual space of W . The duality pairing is denoted 〈·, ·〉 and the
norm is defined by

‖f‖W ′ := sup
w∈W\{0}

|〈f, w〉|
‖w‖W

.

We consider the variational problem{
Find u ∈ V such that
∀w ∈W, a(u,w) = 〈f, w〉. (1)

First, let us recall a classical definition below.
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Definition 1 (Hadamard) Problem (1) is well-posed if, and only if, for all f ,
it has one and only one solution u, with continuous dependence:

∃C > 0, ∀f ∈W ′, ‖u‖V ≤ C‖f‖W ′ .

We define the operator A ∈ L(V,W ′) (the set of bounded operators from V to
W ′) such that 〈Au,w〉 = a(u,w) for all w ∈ W . It is possible to reformulate
Problem (1) as follows {

Find u ∈ V such that
Au = f in W ′. (2)

Problem (1) is well-posed if, and only if A is an isomorphism from V to W ′.

2.2 Well-posedness of the problem: the T-coercivity as a reformulation of the
Banach–Nečas–Babuška theorem

To address the solution of Problem (1), one can assume a stability condition,
also called an inf-sup condition.

Definition 2 Let a(·, ·) be a continuous sesquilinear form over V × W . It
verifies a stability condition if

∃α′ > 0, ∀v ∈ V, sup
w∈W\{0}

|a(v, w)|
‖w‖W

≥ α′‖v‖V . (3)

Let us now introduce an a priori intermediate condition (cf. [3]).

Definition 3 Let a(·, ·) be a continuous sesquilinear form over V ×W . It is
T-coercive if

∃T ∈ L(V,W ), bijective, ∃α > 0, ∀v ∈ V, |a(v, Tv)| ≥ α‖v‖2
V . (4)

One checks easily that the operator T realizes the inf-sup condition: in (3), for
any v in V \ {0}, take w = Tv 6= 0.

Theorem 1 (Well-posedness) Let a(·, ·) be a continuous and sesquilinear
form. Then the four assertions below are equivalent:
(i) the Problem (1) is well-posed ;
(ii) the form a satisfies a stability condition and R(A) = W ′;
(iii) the form a satisfies a stability condition and the only element w ∈W

which satisfies a(v, w) = 0 for all v ∈ V is w = 0;
(iv) the form a is T-coercive.
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Proof The equivalence between the first three assertions is very standard (see
theorem 2.6 in [12] and the references therein).

(iv) =⇒ (i): let T be an isomorphism of L(V,W ) such that (v, v′) 7→
a(v, Tv′) is coercive on V × V . Since this form is also sesquilinear and con-
tinuous, according to the Lax-Milgram theorem, there exists one, and only
one u ∈ V such that for all v′ ∈ V , a(u, Tv′) = 〈f, Tv′〉. Furthermore, since T is
bijective, one remarks that, for all w ∈W , there holds a(u,w) = 〈f, w〉, which
yields well-posedness of (1).

(i) =⇒ (iv): consider IW ′→W ∈ L(W ′,W ) the Riesz bijection, defined by
(IW ′→Ww

′, w)W = 〈w′, w〉, ∀(w,w′) ∈W ×W ′. Due to (i), T := IW ′→W ◦A is
a bijective mapping of L(V,W ): T−1 ∈ L(W,V ) and so ‖v‖V ≤ |||T−1||| ‖Tv‖W ,
∀v ∈ V . We remark that the form a is T-coercive. Indeed, given v ∈ V , we
have a(v, Tv) = 〈Av, Tv〉 = (IW ′→W ◦Av, Tv)W = ‖Tv‖2

W ≥ ‖v‖2
V /|||T−1|||2. �

Remark 1 Assume that W = V , then coerciveness of a sesquilinear form im-
plies a stability condition on the same form. Moreover, in this case, a sesquilin-
ear form is coercive if, and only if, it is IV -coercive.

Remark 2 Assume that W = V .
If the form a is hermitian, that is if a(v, w) = a(w, v) for all v, w ∈ V , the
stability condition (3) is sufficient to ensure well-posedness.
In the same spirit, for a hermitian form a, Definition 3 can be simplified to:
a(·, ·) is T-coercive if

∃T ∈ L(V ), ∃α > 0, ∀v ∈ V, |a(v, Tv)| ≥ α‖v‖2
V .

In other words, the fact that T be bijective is not required. Indeed, the previous
condition implies that T is injective. Moreover, for all v ∈ V \ {0}, one has

|a(v, Tv)|
‖Tv‖W

≥ α ‖v‖V
‖Tv‖W

‖v‖V ≥
α

|||T|||
‖v‖V .

Hence condition (3) holds.

To summarize, in the caseW = V , the Lax-Milgram theorem gives a sufficient
condition to ensure well-posedness of Problem (1), whereas theorem 1 provides
a necessary and sufficient condition to ensure well-posedness of Problem (1),
which writes:

– either the form a is stable and R(A) = V ′ ,
– or the form a is T-coercive.

2.3 Approximation of the solution to Problem (1)

Let us turn our attention to the approximation of the solution to Problem (1),
which we assume to be well-posed. According to theorem 1, there exists an



T-coercivity and continuous Galerkin methods 5

operator T ∈ L(V,W ) such that the form a is T-coercive. To approximate this
Problem, we let (Vh)h and (Wh)h be two infinite sequences of finite dimensional
vector spaces. The parameter h takes strictly positive values, and it is destined
to go to 0: if n(h) denotes the dimension of Vh, then one has limh→0 n(h) =
+∞, so that Vh can “approximate” V . This also holds for the sequence of
spaces (Wh)h. When, for all h, Vh ⊂ V and Wh ⊂ W , the approximation is a
conforming approximation. In the sequel, we will always make this assumption.
For an example of non-conforming approximation, see [7].

2.3.1 Natural discretization

The natural discretization of problem (1) writes{
Find uh ∈ Vh such that
∀wh ∈Wh, ah(uh, wh) = 〈fh, wh〉,

(5)

with discrete forms ah and fh (possibly) different respectively from a and f .
In operator form, it writes{

Find uh ∈ Vh such that
Ahuh = fh in (Wh)′, (6)

with Ah ∈ L(Vh, (Wh)′) defined by 〈Ahvh, wh〉 = ah(vh, wh) for all (vh, wh) ∈
Vh ×Wh.
Below, we address the well-posedness of the approximate Problems (5) and we
propose error estimates. To be able to solve (5) with uniqueness, a necessary
condition is dimVh = dimWh: we make this assumption from now on.

Definition 4 The family of sesquilinear forms (ah)h is said to be uniformly
Vh ×Wh-stable if

∃α† > 0, ∀h > 0, ∀vh ∈ Vh, sup
wh∈Wh\{0}

|ah(vh, wh)|
‖wh‖W

≥ α†‖vh‖V . (7)

As for the continuous problem, we give an a priori intermediate condition to
(7).

Definition 5 The family of sesquilinear forms (ah)h is said to be uniformly
Th-coercive if

∃α?, β? > 0, ∀h > 0, ∃Th ∈ L(Vh,Wh), ∀vh ∈ Vh,
|ah(vh, Thvh)| ≥ α?‖vh‖2

V and |||Th||| ≤ β?.
(8)

Next, introduce, for any h > 0 and any vh ∈ Vh,

Consf,h = sup
wh∈Wh\{0}

|〈f − fh, wh〉|
‖wh‖V

, (9)

Consa,h(vh) = sup
wh∈Wh\{0}

|(a− ah)(vh, wh)|
‖wh‖V

. (10)
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These are consistency terms, in the sense that they express the discrepan-
cies between the exact forms (a and f) and approximate forms (resp. ah and
fh). One can obtain an error estimate including these consistency terms. In
Vh ×Wh, one can apply theorem 1 to prove that Problem (5) is well-posed.
When ah = a for all h > 0, classically, one uses the Fortin lemma (see [5,12])
to prove that the family (ah)h is uniformly Vh×Wh-stable and to derive error
estimates. With our notations, this lemma states: a is uniformly Vh×Wh-stable
if, and only if, there is β′ > 0 such that, for all v ∈ V , there is Πh(v) ∈ Vh
such that

∀wh ∈Wh, a(Πh(v), wh) = a(v, wh) and ‖Πh(v)‖V ≤ β′‖v‖V .

Below, we propose an alternate approach to prove that the family (ah)h is
uniformly Vh ×Wh-stable, based once more on T-coercivity theory.

Theorem 2 (Well-posedness of the discrete problems) Assume that
dimVh = dimWh, and that the sesquilinear forms (ah)h are uniformly bounded.
Then the three assertions below are equivalent:
(i) the Problem (5) is well-posed and (A−1

h )h is uniformly bounded ;
(ii) the family (ah)h is uniformly Vh ×Wh-stable ;
(iii) the family (ah)h is uniformly Th-coercive.

Moreover, if these conditions are satisfied, the error ‖u− uh‖V is bounded by

‖u− uh‖V ≤ C inf
vh∈Vh

(‖u− vh‖V + Consf,h + Consa,h(vh)) , (11)

with C := max
(

1
α†
, |||a|||α†

+ 1
)
> 0 independent of h.

Proof (i) =⇒ (iii): Define Th := IW ′
h
→Wh

◦Ah, where IW ′
h
→Wh

is the Riesz bi-
jection. One has |||Th||| ≤ |||Ah|||: as the forms (ah)h are uniformly bounded,
so are the operators (Th)h. Due to (i), Th is a bijective mapping and moreover
T−1
h = A−1

h ◦ IWh→W ′
h
is such that |||T−1

h ||| ≤ maxh |||A−1
h ||| =: C1 <∞. Given

vh ∈ Vh, we find ah(vh, Thvh) = ‖Thvh‖2
W ≥ ‖vh‖2

V /C
2
1 . Hence (ah)h is uni-

formly Th-coercive.

(iii) =⇒ (ii): for vh ∈ Vh, one has

sup
wh∈Wh\{0}

|ah(vh, wh)|
‖wh‖W

≥ |ah(vh, Thvh)|
‖Thvh‖W

≥ α? ‖vh‖
2
V

‖Thvh‖W
≥ α?

β?
‖vh‖V .

Thus, (ah)h is uniformly Vh ×Wh-stable.

(ii) =⇒ (i): According to theorem 1, if the family (ah)h is uniformly Vh ×
Wh-stable, Problem (5) is well-posed. Moreover, A−1

h is uniformly bounded.
Indeed, ‖A−1

h f‖ ≤ ‖f‖/α†.
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Now, let us focus on the error estimation. By assumption, (7) holds for
some α† > 0. Given any vh ∈ Vh, there exists wh ∈Wh such that

α†‖uh − vh‖V ‖wh‖V ≤ |ah(uh − vh, wh)|, and one can check that
ah(uh − vh, wh) = 〈fh − f, wh〉+ a(u− vh, wh) + (a− ah)(vh, wh).

It follows that

‖uh − vh‖V ≤
1
α†

(Consf,h + |||a||| ‖u− vh‖V + Consa,h(vh)),

which leads to (11), since ‖u− uh‖V ≤ ‖u− vh‖V + ‖uh − vh‖V .

Corollary 1 Assume there exists an isomorphism T ∈ L(V,W ) such that
(v, v′) 7→ a(v, Tv′) is coercive on V × V . Assume also that TVh ⊂ Wh for all
h and limh→0 |||ah − a||| = 0. Then, the family (ah)h is uniformly Th-coercive
for h sufficiently small so estimate (11) holds true.

Proof Indeed one has, with Th = T|Vh
,

|ah(vh, Thvh)| = |a(vh, Tvh)− (ah − a)(vh, Tvh)|
≥ (α− |||ah − a||| |||T |||)‖vh‖2

V .

One takes h0 small enough so that |||ah − a||| |||T ||| < α for all h ∈ (0;h0].

Remark 3 When one is using T-coercivity to solve discrete problems, the as-
sumption TVh ⊂Wh for all h can be relaxed. See §4.3 below, or [8].

2.3.2 Discretization of the coercive form

We remark that the form ã : (v, v′) 7→ a(v, Tv′) is sesquilinear, continuous
and coercive over V × V . Therefore, provided that the operator T is explicitly
known1, instead of solving Problem (1) directly, one can solve the equivalent
Problem {

Find u ∈ V such that
∀v ∈ V, ã(u, v) = 〈f̃ , v〉 , (12)

where f̃ ∈ V ′ is defined by v 7→ 〈f, Tv〉. Indeed, given a subspace Vh of V , one
solves the approximate Problem{

Find uh ∈ Vh such that
∀vh ∈ Vh, ãh(uh, vh) = 〈f̃h, vh〉.

(13)

Above, the forms are respectively defined by

∀vh, wh ∈ Vh, ãh(vh, wh) = ah(vh, Twh), 〈f̃h, wh〉 = 〈fh, Twh〉.

1 By "T is explicitly known", it is understood that the action of T over elements vh ∈ Vh
can be computed easily.
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Then, one can use Céa’s lemma (if ah = a|Vh×(TVh), fh = f|(TVh))) or more
generally the first Strang’s lemma to obtain error estimates, which write

‖u− uh‖V ≤ C inf
vh∈Vh

{
‖u− vh‖V + Consf̃ ,h + Consã,h(vh)

}
. (14)

Above, C > 0 is independent of h and the data f . The consistency terms are
respectively defined, for any h and any vh ∈ Vh, by

Consf̃ ,h = sup
wh∈Vh\{0}

|〈f̃ − f̃h, wh〉V |
‖wh‖V

, Consã,h(vh) = sup
wh∈Vh\{0}

|(ã− ãh)(vh, wh)|
‖wh‖V

.

Remark 4 In this simple case, note that one automatically approximates Prob-
lem (1) in Vh × (TVh).

2.3.3 Comparison between the two methods of approximation

From a practical point of view, there is a fundamental difference between what
we call the “natural discretization” and the discretization of the coercive form.
Indeed, for the natural discretization, the isomorphism T is just a theoretical
tool and its action is not implemented. In the contrary, the discretization of
the coercive form requires the discretization of T. The advantage of this latter
approach is that the convergence of the method is easily proved.

3 Application to divσ∇·: study of the continuous problem

3.1 Notations

For the ease of exposition, Ω will be a bounded domain of R2 with Ω = Ω1∪Ω2,
where Ω1 and Ω2 are two domains such that Ω1∩Ω2 = ∅. For extensions to 3D
polyhedral domains, see [1]. We suppose that the boundaries ∂Ω, ∂Ω1 and ∂Ω2
are (connected) polygons. The interface separating the two domains is called
Σ := Ω1 ∩ Ω2. Last the boundaries ∂Ωk, k = 1, 2 are split as ∂Ωk = Γk ∪Σ,
with Γk := ∂Ω ∩ ∂Ωk.
In short, if O is an open subset of R2, we denote (·, ·)O the scalar products
of L2(O) and (L2(O))2, and ‖ · ‖O the associated norms. Let us define our
background by making the following assumptions:{

V = W := H1
0 (Ω) with norm ‖v‖V := ‖∇v‖Ω and V ′ = H−1(Ω),

k = 1, 2, Vk := {v|Ωk
| v ∈ H1

0 (Ω)} with semi-norm ‖v‖Vk
:= ‖∇v‖Ωk

;∀v, w ∈ H
1
0 (Ω), a(v, w) := (σ∇v,∇w)Ω ,

σ1 := σ|Ω1 is a constant such that σ1 > 0,
σ2 := σ|Ω2 is a constant such that σ2 < 0.

The problem we address is{
Find u ∈ H1

0 (Ω) s.t.
∀w ∈ H1

0 (Ω), (σ∇u,∇w)Ω = 〈f, w〉 ⇔
{
Find u ∈ H1

0 (Ω) s.t.
−div σ∇u = f in H−1(Ω) .

(15)
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Remark 5 Classically, Problem (15) is well-posed if σ2/σ1 belongs to C \ R−.
Definition 6 The ratio κσ := σ2/σ1 is called the contrast.
Under the above assumptions, given any v ∈ H1

0 (Ω), we can use the notations
vk = v|Ωk

, k = 1, 2, without confusion.
The geometry of the interface, and more precisely, the value of the angles of
the corners, plays a major role in the nature of Problem (15). Below, we precise
this geometry focusing on the corners and endpoints:
• The set of interior vertices (if it is not empty) of the interface Σ is denoted
Sint := {xi, 1 ≤ i ≤ Nint}. And, for 1 ≤ i ≤ Nint, the subsets Ω1 and Ω2
coincide with open cones in a neighbourhood Vi of xi, locally in Ω:

Ω1 ∩ Vi = K1(xi) ∩ Vi and Ω2 ∩ Vi = K2(xi) ∩ Vi,
where K1(xi) and K2(xi) are open cones, centered at xi. (16)

• There are either 0 or 2 endpoints, called exterior vertices: Sext := Σ ∩
∂Ω = {xi, Nint + 1 ≤ i ≤ Nint + Next}, with Next ∈ {0, 2}. And, for
Nint + 1 ≤ i ≤ Nint + Next, the subsets Ω1 and Ω2 coincide with open
cones in a neighbourhood Vi of xi, locally in Ω: i.e., (16) holds.

For each index i, we define the apertures αik ∈ (0; 2π) of the cones Kk(xi),
k = 1, 2. We introduce γi := αi1 + αi2 and αi := min(αi1, αi2). Evidently, one
has γi = 2π for interior vertices, and γi < 2π for boundary vertices. On the
other hand, at an interior vertex xi, Σ has a corner, so 0 < αi < π.
We let S1

ext := {xi ∈ Sext |αi1 ≤ αi2} and S2
ext := {xi ∈ Sext |αi2 < αi1}. The

1

Ω1 Ω2

Σ

x2

x1

x3

α2
1 α2

2

α1
2α1

1

α3
1 α3

2

Fig. 1 A sample geometry: Sint = {x1}, S1
ext = ∅, S2

ext = {x2,x3}.

cardinality of Sint ∪ Sext is denoted by N . Finally, we define

Iαi := γi − αi

αi
for 1 ≤ i ≤ N.

Remark 6 Given any interior vertex, there holds Iαi > 1. The same is true
for any boundary vertex of S2

ext. On the other hand, for a boundary vertex of
S1
ext, one has only Iαi ≥ 1 (it can happen that Iαi = 1).
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3.2 Study of the continuous problem

We follow [1] in this subsection. We recall the definition below [18].
Definition 7 An operator A ∈ L(V,W ) is Fredholm when dim (ker(A)) <∞
and dim (W/R(A)) <∞. When the operator A is Fredholm, its index is equal
to dim (ker(A))− dim (W/R(A)).
First, we state a result whose proof relies on localized T-coercivity. Define

R̂Σ := max
(

max
xi∈Sint∪S1

ext

Iαi , 1
)
, ŘΣ := max

(
max

xi∈Sint∪S2
ext

Iαi , 1
)
.

There holds the
Theorem 3 (constant coefficients) Assume that the contrast satisfies
κσ ∈ (−∞, 0) \

[
−R̂Σ ;−1/ŘΣ

]
. Then, the operator A : u 7→ −div(σ∇u), from

V = H1
0 (Ω) to V ′ = H−1(Ω), is Fredholm of index 0.

Remark 7 In particular, under the assumption of theorem 3, the Problem
(15) is well-posed if and only if A is injective. In this case, A is an iso-
morphism from H1

0 (Ω) to H−1(Ω). Still under the assumption of theorem
3, when A is not injective, ker(A) is of finite dimension so one can write
ker(A) = span(ϕ1, . . . , ϕp), for some finite p ≥ 1. Then Problem (15) has a
solution (unique up to a linear combination of the ϕ1, . . . , ϕp) if, and only if,
the source term satisfies the compatibility conditions 〈f, ϕk〉 = 0 for k = 1 . . . p
(see theorem 2.27 in [18]).

Remark 8 Let us underline that, if the assumption of theorem 3 is not met,
there are situations for which (15) is ill-posed in the sense that A is no longer
Fredholm (see [4,22,1,2] for more details). Actually, A is never Fredholm if
κσ ∈

(
−R̂Σ ;−1/ŘΣ

)
.

Now, we prove a result, with a stronger assumption on κσ, to assert that A is
an isomorphism from H1

0 (Ω) to H−1(Ω) (that is to assert that A is Fredholm
of index 0 and injective).
To obtain some practical results, consider an operator R1 ∈ R1, where R1 is
defined by

R1 := {R1 ∈ L(V1, V2) |R1v1|Σ = v1|Σ , ∀v1 ∈ V1}.

Here, the notation ·|Σ refers to the trace operator on Σ. With this operator
R1, define T acting on elements of V as below. For all v ∈ V , let

Tv :=
{
v1 in Ω1
−v2 + 2R1v1 in Ω2

. (17)

Since R1 fulfills the required matching condition on the interface, we check
that Tv ∈ V , and T ∈ L(V ). Furthermore, one finds that T ◦ T = IV . Indeed,

(T ◦ T)v =
{

(Tv)1 = v1 in Ω1
−(Tv)2 + 2R1(Tv)1 = −(−v2 + 2R1v1) + 2R1v1 = v2 in Ω2

.
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It follows that T is a bijection. Let us now perform a study of the T-coercivity
of a(·, ·), namely whether the conditions in Definition 3 can be met. Let v ∈ V ,
and η > 0:

|a(v, Tv)|
= |(σ1∇v1,∇v1)Ω1 + (|σ2|∇v2,∇v2)Ω2 − 2(|σ2|∇v2,∇(R1v1))Ω2 |
≥ σ1‖v1‖2

V1
+ |σ2|‖v2‖2

V2
− 2|(|σ2|∇v2,∇(R1v1))Ω2 |

≥ σ1‖v1‖2
V1

+ |σ2|‖v2‖2
V2
− η|σ2|‖v2‖2

V2
− η−1|σ2|‖R1v1‖2

V2
≥ (σ1 − η−1|σ2| |||R1|||2)‖v1‖2

V1
+ |σ2|(1− η)‖v2‖2

V2
≥ min

(
(σ1 − η−1|σ2| |||R1|||2), |σ2|(1− η)

)
‖v‖2

V .

(18)

Above, we used Young’s inequality or, more precisely, its generalization to
a positive hermitian form to bound −2|a2(v2, R1v1)| from below. Suppose
σ1/|σ2| > |||R1|||2. Taking η such that |σ2| |||R1|||2/σ1 < η < 1, we de-
rive T-coercivity for the form. This condition might be optimized minimizing
the norm of R1 ∈ R1. More precisely, one derives T-coercivity as soon as
σ1/|σ2| >

(
infR1∈R1 |||R1|||2

)
.

It is also possible to choose an operator R2 ∈ R2, , where R2 is now defined
by

R2 := {R2 ∈ L(V2, V1) |R2v2|Σ = v2|Σ , ∀v2 ∈ V2},

and then to define T as below: for all v ∈ V , let

Tv :=
{
v1 − 2R2v2 in Ω1
−v2 in Ω2

. (19)

In this case, we derive T-coercivity as soon as |σ2|/σ1 >
(
infR2∈R2 |||R2|||2

)
.

Let us summarize these results with the

Theorem 4 Assume that the contrast κσ ∈ (−∞, 0) satisfies κσ < −
(
infR2∈R2 |||R2|||2

)
or κσ > −1/

(
infR1∈R1 |||R1|||2

)
. Then, the operator A : u 7→ −div(σ∇u) is

an isomorphism from V = H1
0 (Ω) to V ′ = H−1(Ω).

3.3 Examples

� Example of the cavity. We illustrate below, in a practical case, the
difference between the results provided by theorems 3 and 4.
Let us consider the cavity (see figure 2) defined by Ω := {(x, y) ∈ (−a; b) ×
(0; 1)}, Ω1 := (−a; 0) × (0; 1) and Ω2 := (0; b) × (0; 1) with a > 0 and b > 0.
The interface Σ is then equal to the segment {0} × [0; 1]. Without loss of
generality, we suppose a ≥ b. One handles the case a < b exchanging the roles
of Ω1 and Ω2.

• According to theorem 3 (here Sint = S2
ext = ∅), the operator A is Fredholm

of index 0 as soon as κσ = σ2/σ1 6= −1.



12 Lucas Chesnel, Patrick Ciarlet Jr.

• When κσ = −1, the operator A is no longer Fredholm (see [1]). In par-
ticular, if a = b, the authors prove in [1] that dim (ker(A)) = ∞. Now,
suppose that a 6= b. Let us prove that A is injective. Consider u an element
of ker(A). Define e := u1− u2 ◦ s on (−b, 0)× (0, 1) with s(x, y) = (−x, y).
This element e satisfies the following equations:

∆e = 0 in (−b, 0)× (0, 1); e = 0 on Σ and ∂xe = 0 on Σ.

Remark that one has σ1∂xu1 = σ2∂xu2 on Σ so we can claim ∂xe = 0 on Σ
only because κσ = −1. The unique continuation principle ((see lemma
4.15 in [19] and the references therein)) implies e = 0 in (−b, 0) × (0, 1).
Since u2 = 0 on {b} × (0; 1), one finds u1 = 0 on {−b} × (0; 1). Define
Ω̃ := (−a;−b)× (0; 1). One notices that ∆u1 = 0 in Ω̃ and u1 = 0 on ∂Ω̃.
Consequently, u1 = 0 on Ω̃. According to the unique continuation principle,
it yields u = 0 in Ω. Thus, when κσ = −1 and when a 6= b, A is injective.
Since A is not Fredholm, it follows that dim (H−1(Ω)/R(A)) =∞.

• Let us study now in which cases A is an isomorphism. For that, introduce
the operators

R1 : V1 → V2
v1 7→ R1v1 with (R1v1)(x, y) = v1(−a x/b, y) ; (20)

R2 : V2 → V1

v2 7→ R2v2 with (R2v2)(x, y) =
{
v2(−x, y) if − b ≤ x
0 else

; (21)

T1v =
{
v1 in Ω1
−v2 + 2R1v1 in Ω2

; T2v =
{
v1 − 2R2v2 in Ω1
−v2 in Ω2

. (22)

One has R1 ∈ R1, R2 ∈ R2, |||R1|||2 = a/b and |||R2|||2 = 1. Consequently,
according to theorem 4, A is an isomorphism from H1

0 (Ω) to H−1(Ω) as
soon as κσ /∈ [−1;−b/a].
• For this particular geometry, one can study more precisely the question of
the injectivity of A when κσ ∈ (−1;−b/a] (a 6= b). Let u be an element of
H1

0 (Ω) such that Au = 0. The couple (u1, u2) satisfies the equations

∆u1 = 0 in Ω1;
∆u2 = 0 in Ω2;

u1 − u2 = 0 on Σ;
σ1∂xu1 − σ2∂xu2 = 0 on Σ.

Decomposing u1 and u2 in Fourier series (the family {y 7→ sin(nπy)}∞n=1 is
a basis of L2((0; 1))), one obtains

u1(x, y) =
∑∞
n=1 u

n
1 sinh(nπ(x+ a)) sin(nπy)

and u2(x, y) =
∑∞
n=1 u

n
2 sinh(nπ(x− b)) sin(nπy),

where un1 and un2 are constants. Besides, the transmission conditions imply,

∀n ∈ N∗, un1 sinh(nπa) = −un2 sinh(nπb)
un1σ1 cosh(nπa) = un2σ2 cosh(nπb). (23)



T-coercivity and continuous Galerkin methods 13

For each n ∈ N∗, there exists a non trivial solution to the system (23) (in
(un1 , un2 )) if and only if

σ2 sinh(nπa) cosh(nπb) + σ1 sinh(nπb) cosh(nπa) = 0

⇔ −
tanh(nπb)
tanh(nπa) = κσ.

Consequently, A is an isomorphism from H1
0 (Ω) to H−1(Ω) if and only if

κσ /∈ {− tanh(nπb)/ tanh(nπa), n ∈ N∗} ∪ {−1}.

Remark 9 The map g : z 7→ −
tanh(zπb)
tanh(zπa) is continuous, strictly decreasing

on R+ and g(1) = − tanh(πb)/ tanh(πa) < −b/a whereas limz→+∞ g(z) =
−1.

� Example of the interior corner. Let us consider now the geometry
of figure 3. More precisely, define Ω := (−1; 1) × (−1; 1), Ω2 := (0; 1)2 and
Ω1 := Ω \Ω2. According to theorem 3, the operator A is Fredholm of index 0
as soon as κσ = σ2/σ1 /∈ [−3;−1/3]. As in [20], introduce the operators

R1 : V1 → V2
v1 7→ R1v1 with (R1v1)(x, y) = v1(−x, y) + v1(x,−y)− v1(−x,−y) ;

(24)
R2 : V2 → V1

v2 7→ R2v2 with (R2v2)(x, y) =


v2(−x, y) on (−1; 0)× (0; 1)
v2(x,−y) on (0; 1)× (−1; 0)
v2(−x,−y) on (−1; 0)2

;

(25)

T1v =
{
v1 in Ω1
−v2 + 2R1v1 in Ω2

; T2v =
{
v1 − 2R2v2 in Ω1
−v2 in Ω2

. (26)

One has R1 ∈ R1, R2 ∈ R2, |||R1|||2 = 3 and |||R2|||2 = 3. Consequently,
according to theorem 4, A is actually an isomorphism from H1

0 (Ω) to H−1(Ω)
as soon as κσ = σ2/σ1 /∈ [−3;−1/3]. This matches the results obtained in [10,
4,22].

3.4 Regularity of the solution

Up to the end of this document, we suppose that Problem (15) is well-posed
and we consider the case of an L2 source term. So, we focus on the problem{

Find u ∈ H1
0 (Ω) such that

∀w ∈ H1
0 (Ω), a(u,w) = (f, w)Ω .

(27)

Let us start by recalling some results on the regularity of the solution u ∈
H1

0 (Ω) to problem (27). Classically (see chapter 2, volume 1 of [16], theorem
2.1.3 of [14] and, for the study around exterior corners, theorem 2.1.4 of [14]),
the following interior regularity result holds.
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Proposition 1 Let O be an open subset of Ω such that O does not intersect
the interface Σ. Then the solution u to problem (27) belongs to H1+s(O), with
estimate

‖u‖H1+s(O) ≤ C ‖f‖Ω ,

where the constant C is independent of f , and s ∈ (0; 1] only depends on the
aperture of the corners located on the boundary2.

Around the interface, the operator v 7→ div σ∇v is no longer elliptic and
the regularity results are less classical. However, usual techniques based on
Fourier and Mellin transforms still apply (see [10,4,22,6]). In particular, in
the neighbourhood of the smooth part of the interface, one can prove that u
is locally H2 on each side of Σ (see also [9] for methods based on integral
representation). More precisely, one has the

Proposition 2 Assume that κσ = σ2/σ1 6= −1 and consider an open subset
O of Ω such that O ⊂ Ω and O does not meet any of the corners of Σ. Then
the solution u to problem (27) is such that uk ∈ H2(O ∩ Ωk), k = 1, 2, with
the estimate

‖u1‖H2(O∩Ω1) + ‖u2‖H2(O∩Ω2) ≤ C ‖f‖Ω .

In the neighbourhood of the corners of Σ, the regularity of u depends both
on the geometry and on the value of the contrast. To sum up, there exists
s ∈ (0; 1] such that uk ∈ H1+s(O ∩Ωk), k = 1, 2, with the estimate

‖u1‖H1+s(O∩Ω1) + ‖u2‖H1+s(O∩Ω2) ≤ C ‖f‖Ω .

It is important to note that s can be arbitrary small, depending on the contrast
and on the geometry of the interface.

4 Application to divσ∇·: approximation of the solution with
hypothesis on the mesh

Below, we present a simple approximation of Problem (15), based on P1 La-
grange Finite Elements, and we derive error estimates. It is understood that
one could use mesh refinement and/or higher order Finite Elements to improve
the error estimates.

4.1 Approximability

Let us consider (Th)h a regular family of meshes of Ω, made of triangles.
Moreover, for all partitions of Ω and for all triangles τ , one has either τ ⊂ Ω1
or τ ⊂ Ω2.
Define the family of finite element spaces

Vh :=
{
v ∈ H1

0 (Ω) | v|τ ∈ P1(τ), ∀τ ∈ Th
}
,

2 If Ω is convex or if O does not meet any of the corners of ∂Ω, one can take s = 1.
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where P1(τ) is the space of polynomials of degree at most 1 on the triangle τ .
Let us consider the family of problems (indexed by h){

Find uh ∈ Vh such that
∀wh ∈ Vh, a(uh, wh) = (f, wh)Ω .

(28)

Definition 8 The sequence (Vh)h fulfills the basic approximability property if

∀v ∈ H1
0 (Ω), lim

h→0

(
inf

vh∈Vh

‖v − vh‖H1
0 (Ω)

)
= 0.

Definition 9 Given T ∈ L(H1
0 (Ω)), the meshes (Th)h are T-conform if TVh ⊂

Vh for all h.

4.2 Numerical approximation: T-conform mesh

We would like to apply corollary 1 to derive error estimates. To that aim, we
need T-coercivity with an isomorphism T such that TVh ⊂ Vh for all h.

� Example of the cavity. We consider here the geometry of figure 2:
Ω := {(x, y) ∈ (−2; 1)× (0; 1)}, Ω1 := (−2; 0)× (0; 1) and Ω2 := (0; 1)× (0; 1),
where the meshes are symmetric with respect to Σ := {0} × [0; 1]. Suppose
first κσ < −1. The operator T2 defined in (22) is such that T2Vh ⊂ Vh. Con-
sequently, according to corollary 1, Problem (28) is well-posed for each h > 0.
Moreover, one has the error estimate

‖u− uh‖H1
0 (Ω) ≤ Ch‖f‖Ω ,

because, in this situation, u is of H2 regularity on both sides of the interface.
The same result can be obtained when −1/2 < κσ < 0 using the obvious ad
hoc mesh, using this time T1.
However, we are not able to conclude when κσ ∈ (−1;−1/2]\{− tanh(nπ)/ tanh(2nπ), n ∈
N∗} because we do not have at our disposal an explicit operator T such that a
is T-coercive.
� Example of the interior corner. Here again, Ω := (−1; 1) × (−1; 1),
Ω2 := (0; 1)2 and Ω1 := Ω \Ω2. Working with the mesh of figure 3, one proves
that Problem (28) is well-posed for each h > 0 as soon as κσ = σ2/σ1 /∈
[−3;−1/3]. Moreover, one has the error estimate

‖u− uh‖H1
0 (Ω) ≤ Chs‖f‖Ω , (29)

with 0 < s ≤ 1 which only depends on the contrast (because the angle of the
corner has been fixed).
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Fig. 2 “Symmetric” mesh for the cavity.
Fig. 3 “Symmetric” mesh for the corner.

4.3 Numerical approximation: locally T-conform mesh

In the preceding paragraph, we have been working with operators T of the
form

T1v =
{
v1 in Ω1
−v2 + 2R1v1 in Ω2

; T2v =
{
v1 − 2R2v2 in Ω1
−v2 in Ω2

;

with R1 ∈ R1, R2 ∈ R2. In this section, we will further impose the con-
dition that operators R1, R2 are bounded in L2 norm (as it is the case for
the geometric transfer operators we introduced previously). The question we
would like to consider here is: what happens when corollary 1 does not apply,
i.e. when T1Vh 6⊂ Vh or T2Vh 6⊂ Vh? It turns out that one can still obtain
convergence when the mesh is locally Tk-conform, k = 1 or 2. Let us clar-
ify this notion. Introduce Ih the classical interpolation operator such that
Ih(v) =

∑m(h)
i=1 v(ai)ϕi for all v ∈ C 0(Ω). Here, (ai)i=1..m(h) are the nodes (in-

cluding the nodes of the mesh located on the boundary) and ϕi, i = 1..m(h),
are the so-called “hat” functions which satisfy ϕi(aj) = δij . Define

Tloc1h v :=
{
v1 in Ω1
−v2 + 2Ih(χ)R1v1 in Ω2

; Tloc2h v :=
{
v1 − 2Ih(χ)R2v2 in Ω1
−v2 in Ω2

,

where χ ∈ C∞(Ω, [0; 1]) is a cut-off function such that χ = 1 in a neighbour-
hood of Σ (that is there exists an open subset V of R2 such that Σ ⊂ V and
χ = 1 on V).

Definition 10 For k = 1, 2, we will say that the meshes are locally Tk-conform
if Tlockh Vh ⊂ Vh for all h smaller than a given h0 > 0.

Proposition 3 Assume that the form a is Tk-coercive, that the meshes are
locally Tk-conform and that the basic approximability property holds. Then,
for h small enough, there exists one and only one solution uh to the problem
(28) with the estimate

‖u− uh‖H1
0 (Ω) ≤ C inf

vh∈Vh

‖u− vh‖H1
0 (Ω), (30)

where C > 0 is a constant which does not depend on h and f .
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Proof Suppose that a is T1-coercive and that the mesh is locally T1-conform.
Let us prove that the family (ah)h defined by ah(vh, wh) = a(vh, wh) for all
vh, wh ∈ Vh is uniformly Vh × Vh-stable, for h small enough.
To that aim, we will first prove the estimate, for h small enough,

|a(uh, Tloc1h uh)| ≥ C1‖uh‖2
H1

0 (Ω) − C2‖uh‖H1
0 (Ω)‖uh‖Ω , ∀uh ∈ Vh, (31)

where C1 > 0 and C2 > 0 are two constants independent of h. Define the
intermediate operator of L(V )

Tloc1 v :=
{
v1 in Ω1
−v2 + 2χR1v1 in Ω2

.

For v ∈ H1
0 (Ω), one has

a(v, Tloc1 v)
= (|σ|∇v,∇v)Ω − 2(|σ2|∇v2,∇(χR1v1))Ω2

= (|σ|∇v,∇v)Ω − 2(|σ2|χ∇v2,∇(R1v1))Ω2 − 2(|σ2|∇v2, (R1v1)∇χ)Ω2 .
(32)

Since 0 ≤ χ ≤ 1 and since a is T1-coercive, using (18), one finds there exists
C3 > 0 such that

(|σ|∇v,∇v)Ω − 2(|σ2|χ∇v2,∇(R1v1))Ω2 ≥ C3‖v‖2
H1

0 (Ω). (33)

One the other hand, since R1 is bounded for the L2 norm, one obtains

2(|σ2|∇v2, (R1v1)∇χ)Ω2 ≤ C4‖v‖H1
0 (Ω)‖v‖Ω . (34)

Plugging (33) and (34) into (32), one finds

a(v, Tloc1 v) ≥ C3‖v‖2
H1

0 (Ω) − C4‖v‖H1
0 (Ω)‖v‖Ω .

Then, observe that, for vh ∈ Vh, there holds

|a(vh, Tloc1 vh)− a(vh, Tloc1h vh)| ≤ C5‖χ− Ih(χ)‖W 1,∞(Ω)‖vh‖2
H1

0 (Ω)
≤ C6h|χ|W 2,∞(Ω)‖vh‖2

H1
0 (Ω),

according to corollary 1.109 of [12]. Thus,

|a(vh, Tloc1h vh)| ≥ (C3 − C6|χ|W 2,∞(Ω)h)‖vh‖2
H1

0 (Ω) − C4‖vh‖H1
0 (Ω)‖vh‖Ω ,

and (31) holds for h small enough.
Now, by contradiction, suppose that the family (ah)h is not uniformly Vh×Vh-
stable: there exists a sequence of subspaces (Vh)h together with a sequence of
elements (vh)h, with vh ∈ Vh, such that

‖vh‖H1
0 (Ω) = 1 and sup

wh∈Vh\{0}

|a(vh, wh)|
‖wh‖H1

0 (Ω)
< µh, with lim

h→0
µh = 0. (35)

Since (vh)h is bounded in H1
0 (Ω) and since the injection of H1

0 (Ω) in L2(Ω) is
compact, there exists v in H1

0 (Ω) such that (vh)h converges strongly in L2(Ω)
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and weakly in H1(Ω) to v. Classically, thanks to the the basic approximability
property, one finds that v satisfies the homogeneous problem which implies
that v = 0. Using (31) and the uniform continuity of the family (Tloc1h )h, one
deduces that, for h small enough, there holds

C1 − C2‖vh‖Ω ≤ C7µh,

where C1, C2 and C7 are three strictly positive constants independent of h. As
limh→0 ‖vh‖Ω = limh→0 µh = 0, this leads to a contradiction. Thus, the family
(ah)h is uniformly Vh × Vh-stable for h small enough and theorem 2 ensures
that the problems (28) are well-posed with the estimate (30). One proceeds
exactly in the same way working with T2 when a is T2-coercive and the mesh
is locally T2-conform.

Remark 10 It suffices to have limh→0
(
|χ|W 2,∞(Ω)h

)
= 0 in the proof of propo-

sition 3. Consequently, we can allow the function χ to change with h. Thus,
one can weaken the condition of T-conformity for the mesh: we just need the
mesh to be T-conform in a neighbourhood of the interface whose area goes to
zero like ht for some t ∈ (0, 1/2).

Fig. 4 Locally symmetric mesh for the cav-
ity.

Fig. 5 Locally symmetric mesh for the
corner–bis.

� Example of the cavity with a locally symmetric mesh (figure 4).
Consider a family of meshes, as described on figure 4, which are symmetric with
respect to Σ, in the region (−0.25; 0.25) × (0; 1). Here again, Ω := {(x, y) ∈
(−2; 1) × (0; 1)}, Ω1 := (−2; 0) × (0; 1) and Ω2 := (0; 1) × (0; 1). According
to proposition 3, Problem (28) is well-posed for h small enough as soon as
κσ /∈ [−1;−1/2]. Moreover, in this case, one has the error estimate

‖u− uh‖H1
0 (Ω) ≤ Ch‖f‖Ω .

� Example of the corner–bis (figure 5). Let us consider now the geom-
etry of figure 5. More precisely, define Ω := (−2; 1)×(−1; 1), Ω2 := (0; 1)2 and
Ω1 := Ω \Ω2. According to theorem 3, the operator A is Fredholm of index 0
as soon as κσ = σ2/σ1 /∈ [−3;−1/3].
Extending the operator R2 defined in (25) by 0 on (−2;−1) × (−1; 1), one
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finds that A is an isomorphism from H1
0 (Ω) to H−1(Ω) as soon as κσ < −3,

so that Problem (28) is well-posed for h small enough.
Now, suppose −1/3 < κσ < 0 and that A is injective. Introduce χ0 ∈
C∞(R, [0; 1]) a cut-off function such that χ0(x) = 1 for x ≥ −1/2 and
χ0(x) = 0 for x ≤ −1. Define χ : (x, y) 7→ χ0(x). According to proposi-
tion 3, Problem (28) is well-posed for h small enough.
Moreover, in these two cases (κσ < −3 and −1/3 < κσ < 0, A injective), error
estimate (29) is valid.

5 Application to divσ∇·: approximation of the solution without
hypothesis on the mesh

5.1 Numerical approximation: general mesh

In the present subsection, we would like to consider the case of a general mesh
which is neither T-conform nor locally T-conform. In this situation, corollary
1 and proposition 3 fail to justify the well-posedness of the discrete problems.
The question to be addressed is how to build a family (Th)h of discrete opera-
tors such that the form a is uniformly Th-coercive, at least for h small enough.
Some methods have already been proposed in [3] and [20]. The first one relies
on a lifting of the trace on the interface. The second one is based on taking
Rh = ΠSZh R where ΠSZh is the Scott-Zhang interpolation operator [23]. More
precisely, the authors apply the Scott-Zhang interpolation operator respec-
tively to (R1uh)|Ω2 and (R2uh)|Ω1 . Since this operator preserves the boundary
conditions, it follows that ΠSZh (R1uh)|Ω2 = uh and ΠSZh (R2uh)|Ω1 = uh on
the interface Σ. The main limitation of theses two approaches is that their
range of applicability is not clear a priori: in a general situation, for a given
value of the contrast and a general mesh, we can not ensure that the discrete
problem (28) is well-posed, even for h small enough. Let us explain briefly
where the difficulty arises. For that, we propose below an alternate approach
to [3,20]. Define

V1h :=
{
vh|Ω1 | vh ∈ Vh

}
; V2h :=

{
vh|Ω2 | vh ∈ Vh

}
;

V 0
1h := H1

0 (Ω1) ∩ V1h; V 0
2h := H1

0 (Ω2) ∩ V2h.

For all v1h ∈ V1h, let R1hv1h be defined as the unique solution to problem{
Find R1hv1h ∈ V2h such that R1hv1h = v1h on Σ and
∀wh ∈ V 0

2h, (σ∇(R1hv1h),∇wh)Ω2 = (σ∇(R1v1h),∇wh)Ω2 .
(36)

For all h > 0, one has |||R1h||| ≤ C where C is a constant independent of
h. On the other hand, there is no guarantee that infR1 h

|||R1h||| is equal to
infR1 |||R1|||. So, in the spirit of theorem 4, well-posedness of the discrete
problems (28) is guaranteed, however under a more restrictive condition on
the contrast than κσ > −1/ infR1 |||R1|||.



20 Lucas Chesnel, Patrick Ciarlet Jr.

Remark 11 Let v1h ∈ V1h. By construction (cf. (36)), one has R1hv1h −
R1v1h ∈ H1

0 (Ω2). So, if in additionR1v1h belongs to V2h, one obtainsR1hv1h =
R1v1h. For this property to hold for all v1h ∈ V1h, it is sufficient that the mesh
be T -conform. According to theorem 4, to recover the same applicability as
the continuous Problem (15), one needs that this property be fulfilled for R1
with minimal norm.

5.2 Numerical approximation: using dissipation

Given γ > 0, let σγ := (1 + ı sign(σ)γ)σ, and define the approximate problem{
Find uγ ∈ H1

0 (Ω) such that
∀v ∈ H1

0 (Ω), (σγ∇uγ ,∇v)Ω = (f, v). (37)

First, one can check easily that

∀v ∈ H1
0 (Ω), |(σγ∇v,∇v)Ω | ≥ min(σ1, |σ2|)γ‖v‖2

H1
0 (Ω). (38)

In other words, this approximate problem is always well-posed for γ > 0. Be-
low, we let γ go to 0.
We define the operatorAγ ∈ L(H1

0 (Ω), H−1(Ω)) such that 〈Aγuγ , v〉 = aγ(uγ , v)
for all v ∈ H1

0 (Ω). One has

Au = Aγuγ ⇔ A(u− uγ) = (Aγ −A)uγ ⇔ u− uγ = A−1(Aγ −A)uγ .

For the last equation, we used the fact that the Problem (15) is well-posed.
Noticing that |((σ − σγ)∇u,∇v)Ω | ≤ max(σ1, |σ2|)γ‖u‖H1

0 (Ω)‖v‖H1
0 (Ω) for all

u, v ∈ H1
0 (Ω), it yields |||Aγ − A||| ≤ max(σ1, |σ2|)γ. Consequently, ‖u −

uγ‖H1
0 (Ω) ≤ C1γ‖uγ‖H1

0 (Ω) with C1 = |||A−1|||max(σ1, |σ2|). Ones deduces
(1−C1γ)‖uγ‖H1

0 (Ω) ≤ ‖u‖H1
0 (Ω) which proves that (uγ)γ is bounded. Moreover,

there holds the estimate

‖u− uγ‖H1
0 (Ω) ≤ C2γ‖u‖H1

0 (Ω) ≤ C3γ‖f‖Ω .

Next, one builds a finite dimensional approximation of Problem (37), which
writes {

Find uγh ∈ Vh such that
∀vh ∈ Vh, (σγ∇uγh,∇vh)Ω = (f, vh). (39)

According to (38), Problem (39) is always well-posed: discussions on applicabil-
ity are superfluous, i.e. the applicability of the approximation with dissipation
is the same as for the continuous Problem (15)! Using Céa’s lemma, we find

‖uγ − uγh‖H1
0 (Ω) ≤

C4

γ
inf

vh∈Vh

‖uγ − vh‖H1
0 (Ω),

where C4 is independent of γ and h. Applying the triangular inequality leads
to

‖u−uγh‖H1
0 (Ω) ≤ ‖u−uγ‖H1

0 (Ω)+‖uγ−u
γ
h‖H1

0 (Ω) ≤ C3γ‖f‖Ω+C4

γ
inf

vh∈Vh

‖uγ−vh‖H1
0 (Ω).
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To conclude, one has to estimate infvh∈Vh
‖uγ − vh‖H1

0 (Ω). Let us assume that
a uniform approximability property like |uγ |Hs(Ω1) + |uγ |Hs(Ω2) ≤ C5‖f‖Ω
holds for some s > 0 and γ small enough (elements of proof are given in the
annex). Then, one has

inf
vh∈Vh

‖uγ − vh‖H1
0 (Ω) ≤ C6h

s‖f‖Ω .

Finally, one can optimize the error estimate by choosing γ =
√
C4C6/C3 h

s/2,
leading to

‖u− uγh‖H1
0 (Ω) ≤ 2

√
C3C4C6 h

s/2‖f‖Ω .

This estimate holds as soon as Problem (15) is well-posed and 1 > C1γ. As
γ ∼ hs/2, the latter holds for h “small” enough.

Remark 12 In the above analysis, we assumed that 1 > C1γ, where C1 =
|||A−1|||max(σ1, |σ2|). It can happen that the norm |||A−1||| is very “large”,
so it is important in practice to choose the parameter γ like γ = C8 h

s/2 with
C8 “small”. In this case, one has 1/|||A−1||| > C8 max(σ1, |σ2|)hs/2 even for
coarse meshes, with an error in O(hs/2‖f‖Ω).

� Example of the cavity with a general mesh. In this example, we
do not assume that the mesh of the cavity Ω := {(x, y) ∈ (−2; 1) × (0; 1)} is
locally symmetric. Recall that Ω1 := (−2; 0)× (0; 1) and Ω2 := (0; 1)× (0; 1).
Suppose that κσ ∈ (−1;−1/2] \ {− tanh(nπ)/ tanh(2nπ), n ∈ N∗}. We know
that in such a case, A is an isomorphism from H1

0 (Ω) to H−1(Ω).
Then, according to proposition 4 (see §A), the only solution uγ to problem (37)
satisfies |uγ |H2(Ω1) + |uγ |H2(Ω2) ≤ C‖f‖Ω , for γ small enough. Consequently,
for a family of general meshes of Ω, we can approximate the unique solution
u to problem (27) by the sequence (uγh)h. Moreover, there holds the error
estimate

‖u− uγh‖H1
0 (Ω) ≤ C

√
h‖f‖Ω ,

for h small enough if we take γ ∼
√
h.

6 Numerical experiments: influence of the mesh for the cavity
example

Let us consider the symmetric cavity defined byΩ := {(x, y) ∈ (−1; 1)×(0; 1)},
Ω1 := (−1; 0)× (0; 1) and Ω2 := (0; 1)× (0; 1). See figure 6 for different kinds
of meshes.
Consider u ∈ H1

0 (Ω) defined by

u(x, y) := ((x+ 1)2 − (σ1 + σ2)−1(2σ1 + σ2)(x+ 1)) sin(πy) on Ω1;
(σ1 + σ2)−1σ1(x− 1) sin(πy) on Ω2;

and f := −div σ∇u ∈ L2(Ω). We set σ1 to 1. According to the results of §3.3,
the problem (27) is well-posed as soon as κσ 6= −1⇔ σ1 + σ2 6= 0. Moreover,
according to the results of §4.2 and §4.3, we know that discrete problems (28)
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Fig. 6 Meshes for the cavity: Non symmetric mesh (top left) - Symmetric mesh (top right)
- Locally symmetric mesh (center).

are well-posed (at least for h small enough), for the symmetric mesh and for
the locally symmetric mesh. However, up to now, we have not been able to
prove that (28) was well-posed, even for h small enough, for the non sym-
metric mesh. On the other hand, using dissipation, one recovers automatically
well-posed discrete problems, such as (39). According to remark 12, we choose
a small dissipation coefficient.

We show on figures 7 and 8 numerical results for a value of the constrast
κσ = σ2/σ1 = −1.001, with a meshsize h ∈ (10−0.8; 10−2.2). The relative
errors, plotted respectively in H1 semi norm and L2 norm, are reported in
log–log scale, with a the order of convergence. We obtain that all approaches:

– natural discretization with symmetric meshes;
– natural discretization with locally symmetric meshes;
– natural discretization with non symmetric meshes;
– discretization with dissipation with non symmetric meshes;

converge to the exact solution, even though the chosen constrast is very close
to the critical value −1. The lowest convergence order is observed for the dis-
cretization with dissipation, as expected. Furthermore, it behaves like O(

√
h)

as predicted by the theory. On the other hand, the natural discretizations with
either symmetric meshes or locally symmetric meshes converge with the ex-
pected rates, namely O(h) in H1 semi norm and O(h2) in L2 norm, where the
latter estimate is a consequence of the Aubin-Nitsche lemma (cf. [12]) applied
to our problem.

To improve the convergence order of the discretization with dissipation, one
can increase the discretization order (for instance, P2 or P3 Finite Elements),
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Symmetric mesh − a =−1.0016
Locally symmetric mesh − a =−1.0651
Non symmetric mesh

Non symmetric mesh with dissipation γ = 10−3 h1/2 − a =−0.48463

Fig. 7 Errors (H1 semi norm) for different meshes of the cavity.
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Non symmetric mesh with dissipation γ = 10−3 h1/2 − a =−0.47998

Fig. 8 Errors (L2 norm) for different meshes of the cavity.
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using an appropriately tuned dissipation coefficient. Denoting by m ∈ {1, 2, 3}
the order of the finite element, one chooses γm ∼ hm/2 to recover a convergence
rate in O(hm/2) (here the solution is piecewise smooth). The results are shown
in figure 9: again, the method behaves as expected.
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P1 − Dissipation γ = 10−3 h1/2 − a =−0.48463

P2 − Dissipation γ = 10−3 h1/2 − a =−0.47531

P3 − Dissipation γ = 10−3 h1/2 − a =−0.47531

P2 − Dissipation γ = 10−3 h − a =−0.99933

P3 − Dissipation γ = 10−3 h3/2 − a =−1.5

Fig. 9 Comparison of errors (H1 semi norm) for different finite elements and dissipations.

A Annex

In this section, we consider the geometry of figure 2 for which Ω := {(x, y) ∈ (−2; 1)×(0; 1)},
Ω1 := (−2; 0)× (0; 1) and Ω2 := (0; 1)× (0; 1) and we suppose that

κσ ∈ (−1;−1/2] \ {− tanh(nπ)/ tanh(2nπ), n ∈ N∗}.

We let u denote the unique solution to Problem (27).

Remark 13 The results of the Annex hold if κσ /∈ {− tanh(nπ)/ tanh(2nπ), n ∈ N∗}∪{−1}.

One has the

Proposition 4 For γ > 0, let uγ be the unique solution of problem (37).
Then, there holds

|uγ |H2(Ω1) + |uγ |H2(Ω2) ≤ C‖f‖Ω ,

for γ small enough, with C > 0 independent of γ.
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Proof Using a partition of unity, it is sufficient to prove this result locally.
Introduce ζ1, ζ2 ∈ C∞(R2, [0; 1]) two cut-off functions independent of y such that:

ζ1(x, y) = 1 for x ≤ −0.5 and ζ1(x, y) = 0 for x ≥ −0.25;
ζ2(x, y) = 0 for x ≤ −0.75 and ζ2(x, y) = 1 for x ≥ −0.5.

� Approximation away from the interface:

Lemma 1 There exists a constant C > 0, independent of γ and f , such that |ζ1(u −
uγ)|H2(Ω) ≤ Cγ‖f‖Ω for γ small enough.

Proof Define O := (−2;−0.25)× (0; 1). Since σ is constant in O, simple computations yield
to

−∆(ζ1(u− uγ)) = g,

with g = ζ1(f/σ−f/σγ)−2∇ζ1 ·∇(u−uγ)−∆ζ1(u−uγ) ∈ L2(O). Now, ‖g‖O ≤ Cγ‖f‖Ω
and we know that the Laplacian with homogeneous Dirichlet boundary condition is an
isomorphism from H2(O) ∩H1

0 (O) to L2(O), so one can write

|ζ1(u− uγ)|H2(Ω) = |ζ1(u− uγ)|H2(O) ≤ C‖g‖O ≤ Cγ‖f‖Ω .

�

� Approximation near the interface:

Lemma 2 There exists a constant C > 0, independent of γ and f , such that |ζ2(u −
uγ)|H2(Ω1) + |ζ2(u− uγ)|H2(Ω2) ≤ Cγ‖f‖Ω for γ small enough.

Proof Introduce the infinite strips I := I × R, Ij := Ij × R, j = 1, 2, with I := (−1; 1),
I1 := (−1; 0) and I2 := (0; 1). By odd reflection, on Õ := (−1; 1) × (−1; 2), define the
functions ũ and ũγ such that,

ũ(x, y) :=

{
− u(x, 2− y) for 1 ≤ y ≤ 2
u(x, y) for 0 ≤ y ≤ 1

− u(x,−y) for −1 ≤ y ≤ 0
,

ũγ(x, y) :=

{
− uγ(x, 2− y) for 1 ≤ y ≤ 2
uγ(x, y) for 0 ≤ y ≤ 1

− uγ(x,−y) for −1 ≤ y ≤ 0
,

for all x ∈ (−1; 1). Define also, again for x ∈ (−1; 1),

f̃(x, y) :=

{
−f(x, 2− y) for 1 ≤ y ≤ 2
f(x, y) for 0 ≤ y ≤ 1
−f(x,−y) for −1 ≤ y ≤ 0

.

Introduce χ ∈ C∞(R2, [0; 1]) a cut-off function independent of x such that:

χ(x, y) = 1 for 0 ≤ y ≤ 1 and χ(x, y) = 0 for y ≤ −0.5 and y ≥ 1.5.

Now, we localize the study of regularity with the help of χ. In the sequel, we make no
distinction between elements of H1

0 (Õ) or L2(Õ) and their extension by 0 to I. Consider

p := σ (ũ∆(χζ2) + 2∇ũ · ∇(χζ2))+f̃χζ2 and pγ := σγ (ũγ∆(χζ2) + 2∇ũγ · ∇(χζ2))+f̃χζ2 .

These two elements belong to L2(I) and have compact support. According to their definition,
v := χζ2ũ and vγ := χζ2ũγ satisfy respectively the transmission problem in the infinite strip
I

(Pstrip)

σj∆vj = pj in Ij , j = 1, 2
vj = 0 on ∂Ij ∩ ∂I, j = 1, 2
v1 − v2 = 0 on ∂I1 ∩ ∂I2
σ1∂xv1 − σ2∂xv2 = 0 on ∂I1 ∩ ∂I2,
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(Pγstrip)

σγj∆v
γ
j = pγj in Ij , j = 1, 2

vγj = 0 on ∂Ij ∩ ∂I, j = 1, 2
vγ1 − v

γ
2 = 0 on ∂I1 ∩ ∂I2

σγ1 ∂xv
γ
1 − σ

γ
2 ∂xv

γ
2 = 0 on ∂I1 ∩ ∂I2.

Applying the Fourier transform with respect to y to the equations of (Pstrip) and (Pγstrip)

for λ ∈ Ri, one finds that x 7→ v̂(x, λ) :=
∫ +∞
−∞ e−λyv(x, y) dy and x 7→ v̂γ(x, λ) :=∫ +∞

−∞ e−λyvγ(x, y) dy are respectively governed by

(P̂strip)

σj
(
∂2
x + λ2

)
v̂j(x, λ) = p̂j(x, λ) in Ij , j = 1, 2

v̂1(−1, λ) = v̂2(1, λ) = 0
v̂1(0, λ) = v̂2(0, λ)
σ1∂xv̂1(0, λ) = σ2∂xv̂2(0, λ),

(P̂strip)

σγj

(
∂2
x + λ2

)
v̂γj (x, λ) = p̂γj (x, λ) in Ij , j = 1, 2

v̂γ1 (−1, λ) = v̂γ2 (1, λ) = 0
v̂γ1 (0, λ) = v̂γ2 (0, λ)
σγ1 ∂xv̂

γ
1 (0, λ) = σγ2 ∂xv̂

γ
2 (0, λ).

Lemma 3 There exists a constant C independent of λ ∈ Ri and γ such that∑2
j=1 |v̂j − v̂

γ
j |H2(Ij ) + |λ|2 ‖v̂j − v̂γj ‖L2(I) ≤ Cγ‖p̂‖L2(I),

for γ small enough.

Proof Denote respectively (·, ·), (·, ·)1, (·, ·)2 the scalar products of L2(I), L2(I1) and L2(I2).
Define τ := iλ ∈ R. Introduce the sesquilinear forms defined by, for ϕ,ψ ∈ H1

0 (I),

d(ϕ,ψ) :=
∑2

j=1

(
σj(ϕ′j , ψ

′
j)j + τ2σj(ϕj , ψj)j

)
;

dγ(ϕ,ψ) :=
∑2

j=1

(
σγj (ϕ′j , ψ

′
j)j + τ2σγj (ϕj , ψj)j

)
.

Let us first study the form d. Since d is not coercive onH1
0 (I)×H1

0 (I), we use the T-coercivity
method in 1D. Introduce the operator R1D

1 such that (R1D
1 ϕ1)(x) = ϕ1(−x) (|||R1D

1 ||| = 1)
and the isomorphism (T1D

1 ◦ T1D
1 = I) of H1

0 (I) defined by

T1D
1 ϕ :=

{
ϕ1 on I1
−ϕ2 + 2R1D

1 ϕ1 on I2
.

For all ϕ ∈ H1
0 (I), one can write, using Young’s inequality, for all η > 0,

|σ−1
1 d(ϕ, T1D

1 ϕ)| = |(ϕ′1, ϕ′1)1 + τ2(ϕ1, ϕ1)1 + |σ2/σ1|((ϕ′2, ϕ′2)2 + τ2(ϕ2, ϕ2)2)
+2(σ2/σ1)((ϕ′2, (R1D

1 ϕ1)′)2 + τ2(ϕ2, (R1D
1 ϕ1))2)|

≥ (1− η−1|σ2/σ1|)((ϕ′1, ϕ′1)1 + τ2(ϕ1, ϕ1)1)
+|σ2/σ1|(1− η)((ϕ′2, ϕ′2)2 + τ2(ϕ2, ϕ2)2).

Thus, as |σ2/σ1| = |κσ | < 1, taking η such that |σ2/σ1| < η < 1, one infers the existence of
a constant C independent of τ such that

|d(ϕ, T1D
1 ϕ)| ≥ C((ϕ′, ϕ′) + τ2(ϕ,ϕ)), ∀ϕ ∈ H1

0 (I). (40)

One deduces

C((v̂′ − v̂γ ′, v̂′ − v̂γ ′) + τ2(v̂ − v̂γ , v̂ − v̂γ))
≤ |d(v̂ − v̂γ , T1D

1 (v̂ − v̂γ))|
= |d(v̂, T1D

1 (v̂ − v̂γ))− d(v̂γ , T1D
1 (v̂ − v̂γ))|

= |d(v̂, T1D
1 (v̂ − v̂γ))− dγ(v̂γ , T1D

1 (v̂ − v̂γ)) + (dγ − d)(v̂γ , T1D
1 (v̂ − v̂γ))|

≤ |(p̂− p̂γ , T1D
1 (v̂ − v̂γ))|+ |(dγ − d)(v̂γ , T1D

1 (v̂ − v̂γ))|.
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Since, ‖p̂− p̂γ‖L2(I) ≤ Cγ‖p̂‖L2(I), one finds that the sequence (‖v̂γ‖H1(I))γ is bounded,
and then that

|v̂ − v̂γ |H1(I) + |λ|2 ‖v̂ − v̂γ‖L2(I) ≤ Cγ‖p̂‖L2(I), (41)

for γ small enough. Noticing that σj(λ2v̂+ (v̂)′′) = p̂j and σγj (λ2v̂γ + (v̂γ)′′) = p̂γj , j = 1, 2,
lemma 3 is proved. �

With the help of the Parseval identity (see the lemma 5.2.4 of [15]), one finds |v−vγ |H2(I1)+
|v − vγ |H2(I2) ≤ Cγ‖p‖I . Since v = ζ2u and vγ = ζ2uγ for (x, y) ∈ (−1; 1) × (0; 1), one
obtains the result of lemma 2 noticing that ‖p‖I ≤ C‖f‖Ω . �

� Conclusion of the proof of proposition 4: According to lemmas 1 and 2, one has

|u− uγ |H2(Ω1) + |u− uγ |H2(Ω2)
≤ |ζ1(u− uγ)|H2(Ω) + |ζ2(u− uγ)|H2(Ω1) + |ζ2(u− uγ)|H2(Ω2) ≤ Cγ‖f‖Ω .

Consequently, using proposition 2 yields

|uγ |H2(Ω1) + |uγ |H2(Ω2) ≤ Cγ‖f‖Ω + |u|H2(Ω1) + |u|H2(Ω2)
≤ C‖f‖Ω .

This concludes the proof. �
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