
HAL Id: hal-00688780
https://hal.science/hal-00688780

Submitted on 18 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Uniform convergence to equilibrium for granular media
François Bolley, Ivan Gentil, Arnaud Guillin

To cite this version:
François Bolley, Ivan Gentil, Arnaud Guillin. Uniform convergence to equilibrium for granular media.
Archive for Rational Mechanics and Analysis, 2013, 208 (2), pp.429-445. �hal-00688780�

https://hal.science/hal-00688780
https://hal.archives-ouvertes.fr


Uniform convergence to equilibrium for granular media

François Bolley∗, Ivan Gentil† and Arnaud Guillin‡

April 18, 2012

Abstract

We study the long time asymptotics of a nonlinear, nonlocal equation used in the modelling
of granular media. We prove a uniform exponential convergence to equilibrium for degenerately
convex and non convex interaction or confinement potentials, improving in particular results by
J. A. Carrillo, R. J. McCann and C. Villani. The method is based on studying the dissipation
of the Wasserstein distance between a solution and the steady state.
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Introduction

We consider the problem of convergence to equilibrium for the nonlinear equation

∂tµt = ∆µt +∇ · (µt(∇V +∇W ∗ µt)) t > 0, x ∈ R
n. (1)

This equation preserves mass and positivity and we shall be concerned with solutions which
are probability measures on R

n at all times. It is used in the modelling of space-homogeneous
granular media (see [3]), where it governs the evolution of the velocity distribution µt(x) of a
particle under the effects of diffusion, a possible exterior potential V and a mean field interaction
through the potential W ; we shall keep the variable x instead of v (for the velocities) for
notational convenience.

Steady states may exist as a result of a balance between these three effects, and we are
concerned with deriving rates of convergence of solutions towards them. Following [3], this issue
has raised much attention in the last years and has been tackled by a particle approximation
and logarithmic Sobolev inequalities in [15], by an entropy dissipation method in [7, 12] and by
contraction properties in Wasserstein distance in [8, 11, 5] (see also [9, 6] for related works in
dimension one). The entropy method is based on studying the time derivatives of a Lyapunov
function F of the equation (called entropy or energy), on the interpretation due to F. Otto of (1)
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as a gradient flow of F (see [8, 1]) and on the notion of convexity for F due to R. J. McCann
(see [16]).

When V and W are uniformly convex, solutions converge exponentially fast to equilibrium,
but the case of interest of [3] is V = 0 and W (x) = |x|3, whose convexity degenerates at 0. For
this case, only a polynomial rate, or exponential but depending on the initial data, was obtained
in [7, 8, 11]. In the present paper we prove a uniform exponential convergence in Wasserstein
distance of all solutions to the steady state. The method, introduced in the linear case in [4], is
based on comparing the Wasserstein distance with its dissipation along the evolution.

In Section 1 we derive the dissipation of the Wasserstein distance between solutions and easily
deduce the classical contraction results. Section 2 is devoted to cases when the convergence is
driven by the interaction potential W , with or without exterior potential V : in particular we
prove the first result of uniform exponential convergence to equilibrium for degenerately convex
interaction potentials and no exterior potential. In Section 3 we give conditions to get an
exponential convergence to equilibrium with both potentials being non convex.

1 Dissipation of the Wasserstein distance

Let P2(R
n) be the set of Borel probability measures on Rn with

∫

Rn |x|2 dµ < ∞. The Wasser-
stein distance between two measures µ and ν in P2(R

n) is defined as

W2(µ, ν) = inf
π

(

∫∫

R2n

|x− y|2 dπ(x, y)
)1/2

where π runs over the set of joint Borel probability measures on R
2n with marginals µ and ν.

It defines a distance on P2(R
n) which metrizes the narrow convergence, up to a condition on

moments. In the present work, convergence estimates will be given in terms of this distance,
but interpolation estimates can turn such weak convergence estimates into strong convergence
estimates. By the Brenier Theorem, if µ is absolutely continuous with respect to the Lebesgue
measure, then there exists a convex function ϕ such that ∇ϕ#µ = ν, that is,

∫

Rn g dν =
∫

Rn g(∇ϕ) dµ for every bounded function g; moreover

W 2
2 (µ, ν) =

∫

Rn

|∇ϕ(x)− x|2 dµ(x)

and ∇ϕ∗#ν = µ for the Legendre transform ϕ∗ of ϕ if also ν is absolutely continuous with
respect to the Lebesgue measure. We refer to [10, 1, 19] for instance for these notions.

We shall assume that V and W are C2 potentials on R
n, respectively α and β-convex with

α, β ∈ R, in the sense that ∇2V (x) > α and ∇2W (x) > β for all x ∈ R
n, as quadratic forms

on R
n. Moreover we assume that the interaction potential W is even and that both V and W

satisfy the doubling condition

V (x+ y) ≤ C(1 + V (x) + V (y)) (2)

for all x, y ∈ R
n, and analogously for W .

We shall consider solutions which are gradient flows in the space P2(R
n) of the free energy

F (µ) =

∫

Rn

µ log µdx+

∫

Rn

V dµ +
1

2

∫∫

R2n

W (x− y) dµ(x) dµ(y), (3)
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as developed as follows in [1]: Let µ0 be an initial datum in P2(R
n). Then, by [13, Ths. 4.20

and 4.21] or [1, Th. 11.2.8], there exists a unique curve µ = (µt)t ∈ C([0,+∞[, P2(R
n)), locally

Lipschitz on ]0,+∞[, satisfying the evolution variational inequality

1

2

d

dt
W 2

2 (µt, σ) ≤ F (σ)− F (µt)−
α+min{β, 0}

2
W 2

2 (µt, σ)

for almost every t > 0 and all probability measure σ in the domain of F . For all t > 0 the
solution µt has a density with respect to the Lebesgue measure. Moreover the curve µ satisfies
the continuity equation

∂tµt +∇ · (µt vt) = 0, t > 0, x ∈ R
n

in the sense of distributions, where the velocity field vt satisfies

−µtvt = ∇µt + µt∇V + µt (∇W ∗ µt).

In other words µ is a solution to (1), and the curve µ = (µt)t will be called the solution with initial
datum µ0 ∈ P2(R

n). Finally t 7→
∫

|vt|2 dµt ∈ L∞
loc([0,+∞[) so the curve µ : ]0,+∞[→ P2(R

n)
is absolutely continuous (see [1, Th. 8.3.1]); moreover, if ν is another such solution with initial
datum ν0 and associated velocity field wt, then by [19, Th. 23.9] or [1, Th. 8.4.7]

1

2

d

dt
W 2

2 (µt, νt) = −
∫

Rn

(∇ϕt(x)− x) · vt(x) dµt(x)−
∫

Rn

(∇ϕ∗
t (x)− x) · wt(x) dνt(x)

for almost every t > 0; here ϕt is a convex function on R
n such that ∇ϕt#µt = νt and

∇ϕ∗
t#νt = µt. Then one can perform a “weak” integration by parts as in [14, Th. 1.5] or [8,

Lem. 13] to bound from above the right-hand side by

−
∫

Rn

(

∆ϕt(x) + ∆ϕ∗
t (∇ϕt(x))− 2n+ (A(∇ϕt(x), νt)−A(x, µt)) · (∇ϕt(x)− x)

)

dµt(x).

Here ∆ϕ is the trace of the Hessian of a convex map ϕ on R
n in the Alexandrov a.e. sense and

A(x, µt) = ∇V (x) +∇W ∗ µt(x). Moreover, since ∇W is odd, the term involving W is
∫

Rn

(∇W ∗ νt(∇ϕt(x))−∇W ∗ µt(x)) · (∇ϕt(x)− x) dµt(x)

=

∫∫

R2n

(∇W (∇ϕt(x)−∇ϕt(y))−∇W (x− y)) · (∇ϕt(x)− x) dµt(x)dµt(y)

=
1

2

∫∫

R2n

(∇W (∇ϕt(x)−∇ϕt(y))−∇W (x− y)) · (∇ϕt(x)−∇ϕt(y)− (x− y)) dµt(x)dµt(y).

We summarize as follows:

Proposition 1.1 ([1]) If (µt)t and (νt)t are two solutions to (1), then for a.e. t > 0,

1

2

d

dt
W 2

2 (µt, νt) ≤ −JV,W (νt|µt)

where, for ν = ∇ϕ#µ (and ∆ϕ the trace of the Hessian of ϕ in the Alexandrov sense),

JV,W (ν|µ)=
∫

Rn

(

∆ϕ(x) + ∆ϕ∗(∇ϕ(x)) − 2n+ (∇V (∇ϕ(x)) −∇V (x)) · (∇ϕ(x)− x)
)

dµ(x)

+
1

2

∫∫

R2n

(∇W (∇ϕ(x)−∇ϕ(y))−∇W (x− y)) · (∇ϕ(x)−∇ϕ(y)− (x− y))dµ(x)dµ(y). (4)
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For t > 0 we can expect the solutions to have smooth densities, and to have equality in
Proposition 1.1, but we shall be content with the inequality (see [6]).

Considering the dissipation of the distance between two solutions provides simple alternative
proofs of contraction properties in Wasserstein distance derived in [8, 11]. For that purpose we
first notice that given µ and ν absolutely continuous with respect to the Lebesgue measure,
and ∇ϕ#µ = ν, then ∆ϕ + ∆ϕ∗(∇ϕ) − 2n > 0 µ a.e. (see for example [14, Th. 1.5] and [4,
Lem. 2.5]). This inequality says that the diffusion part of the equation always contracts two
solutions, as it is classical for the pure heat equation. Then:

• Suppose that V and W are respectively α and β-convex with α ∈ R and β ≤ 0. Then the
term involving V in (4) is bounded from below by αW 2

2 (µ, ν) and the term involvingW by

β

2

∫∫

∣

∣∇ϕ(x)−∇ϕ(y)− (x− y)
∣

∣

2
dµ(x)dµ(y) = βW 2

2 (µ, ν)−β
∣

∣

∣

∫

(∇ϕ−x) dµ
∣

∣

∣

2
> βW 2

2 (µ, ν)

since β ≤ 0. Hence, for two solutions (µt)t and (νt)t of (1) and almost all t > 0

1

2

d

dt
W 2

2 (µt, νt) ≤ −(α+ β)W 2
2 (µt, νt).

Then by the Gronwall lemma we recover the contraction property of [8, Th. 5]:

W2(µt, νt) ≤ e−(α+β)tW2(µ0, ν0), t > 0. (5)

• Suppose that W is convex and that there exist p,C > 0 such that for all ε > 0

(∇V (y)−∇V (x)) · (y − x) ≥ C εp(|y − x|2 − ε2), x, y ∈ R
n. (6)

Then, by the same argument,

1

2

d

dt
W 2

2 (µt, νt) ≤ −C
2
εp(2W 2

2 (µt, νt)− ε2).

We optimize in ε and integrate to recover the polynomial contraction of [8, Th. 6]

W2(µt, νt) ≤
(

W−p
2 (µ0, ν0) + ct

)−1/p
, t > 0. (7)

• Suppose that V and W are respectively α and β-convex with α ∈ R and β > 0. Then,
again by the same argument, the contraction result (5) holds for any two solutions with
same center of mass, that is, such that in R

n
∫

Rn xdµt =
∫

Rn xdνt for all t > 0. This was
also proved in [8, Th. 5].

• Suppose that V is convex and that (6) holds for W instead of V . If moreover the center of
mass of each solution is conserved, that is, if

∫

Rn xdµt =
∫

Rn xdµ0 for all t > 0 (this is the
case for instance if V = 0) then the polynomial contraction (7) holds for any two solutions
with same (initial) center of mass, recovering [8, Th. 6] and [11, Th. 4.1].

In the first case with α + β > 0 the bound (5) ensures the existence of a unique stationary
solution to (1) in P2(R

n), and the exponential convergence of all solutions to it. In the third
case with α+ β > 0, and if moreover the center of mass is preserved by the evolution, then for
any m ∈ R

n this ensures the existence of a unique stationary solution to (1) in P2(R
n) with

center of mass m, and the exponential convergence to it of all solutions with (initial) center of
mass m.

The following two sections are devoted to the obtention of explicit exponential rates of
convergence of solutions to (1) in non uniformly convex or even non convex cases, having in
mind the degenerately convex potentials of [3] and the double well potentials of [18].
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2 Influence of the interaction potential

In this section we study the case when W brings the convergence.

2.1 No exterior potential

We first assume that V = 0. Then the evolution preserves the center of mass, and a solution
µt should converge to a stationary solution µ∞ only if the initial datum µ0 and µ∞ have same
center of mass, since

∫

Rn

x dµ∞(x)−
∫

Rn

x dµ0(x) =

∫

Rn

x dµ∞(x)−
∫

Rn

x dµt(x)

should converge to 0: for instance it is bounded by W2(µt, µ∞). We could also assume that
V 6= 0, but that the center of mass is fixed by the evolution, which is all we use. But to simplify
the statements we assume V = 0.

When W is degenerately convex, with a pointwise degeneracy, for instance W (x) = |x|2+ε
with ε > 0, then the contraction property holds only with polynomial decay rate, see the last
example in Section 1. Then in [7] the authors proved an exponential convergence to equilibrium,
but not with a uniform decay rate, but rather depending on the free energy F of the initial
datum. In this section we prove a uniform exponential convergence for such potentials.

Theorem 2.1 Let V = 0 and W a C2 convex map on R
n for which there exist R and K > 0

such that
∇2W (x) > K if |x| > R.

Then for all m ∈ R
n there exists a unique stationary solution µm∞ ∈ P2(R

n) to (1) with center
of mass m; moreover there exists a positive constant C such that all solutions (µt)t to (1), for
an initial datum with center of mass m, converge to µm∞ according to

W2(µt, µ
m
∞) ≤ e−CtW2(µ0, µ

m
∞), t > 0.

Proof

⊳ The existence of a stationary solution µ0∞ ∈ P2(R
n) with center of mass 0 and a positive

density satisfying µ0∞(x) = Z−1e−W∗µ0
∞
(x) is given by Proposition A.1, proof of i., with any

b < K/2; here Z is the normalizing constant. Then µm∞ = µ0∞(· −m) is a stationary solution
with center of mass m. Now Proposition 2.2 and Remark 2.3, ii. below ensure the convergence
estimate to µm∞ since µm∞ = e−U/Z with U =W ∗µm∞ convex and bounded from below. Unique-
ness follows. ⊲

Proposition 2.2 Let W be a C2 convex map on R
n for which there exist R and K > 0 such

that
∇2W (x) > K if |x| > R.

Let µ ∈ P2(R
n) have a continuous density e−U for which there exists M such that

sup
|x−y|≤2R

sup
z∈[x,y]

{U(z) − U(x)− U(y)} ≤M. (8)

Then there exists an explicit positive constant C, depending only on K,R and M , such that

CW 2
2 (ν, µ) ≤ J0,W (ν|µ)

for all measures ν with same center of mass as µ.
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Remark 2.3 Hypothesis (8) on U holds on any of the following two instances:

i. U is C1 and U(x)− 2R sup
|x−y|≤R

|∇U(y)| > −M for all x ∈ R
n

ii. U is C2, ∇2U(x) > α(x) with α(x) ≤ 0 and U(x) + 2R2 inf
|x−y|≤R

α(y) > −M for all x; for

example, U is C2 and bounded from below and ∇2U(x) > α for all x and a constant α.

For ii. for instance, assume that the sup of U on [x, y] is achieved at z = tx+ (1− t)y with
t ∈]0, 1[. Then ∇U(z) · (y − x) = 0, so that

U(x)−U(z) =

∫ 1

0
(1− s)∇2U(z+ s(x− z))(x− z) · (x− z) ds > inf

|Y−x+y

2
|≤R

α(Y )
(1− t)2

2
|x− y|2

and similarly

U(y)− U
(x+ y

2

)

> U(y)− U(z) > inf
|Y−x+y

2
|≤R

α(Y )
t2

2
|x− y|2.

Hence, for |x− y| ≤ 2R,

U(z)− U(x)− U(y) ≤ −U
(x+ y

2

)

− 2R2 inf
|Y−x+y

2
|≤R

α(Y ) ≤M.

Proof of Proposition 2.2

⊳ Let ϕ be a strictly convex function on R
n (with ν = ∇ϕ#µ) such that

∫

Rn ∇ϕdµ =
∫

Rn x dµ.
First observe that

∫∫

R2n

|∇ϕ(x)−∇ϕ(y)− (x− y)|2 dµ(x) dµ(y) = 2

∫

Rn

|∇ϕ(x)− x|2 dµ(x)

since, by assumption on ϕ, the difference is

2
∣

∣

∣

∫

Rn

(∇ϕ(x)− x) dµ(x)
∣

∣

∣

2
= 0.

Then, by [4, Lem. 5.1],

(∇W (x)−∇W (y)) · (x− y) >
K

3
|x− y|2 (9)

if |x| > 2R or |y| > 2R. In view of this result we let

X = {(x, y) ∈ R
2n; |x− y| ≤ 2R, |∇ϕ(x) −∇ϕ(y)| ≤ 2R}.

1. First of all, by convexity of W and (9),

∫

R2n

(∇W (∇ϕ(x)−∇ϕ(y))−∇W (x− y)) · (∇ϕ(x)−∇ϕ(y)− (x− y)) dµ(x)dµ(y)

>

∫

R2n\X
(∇W (∇ϕ(x)−∇ϕ(y))−∇W (x− y)) · (∇ϕ(x) −∇ϕ(y)− (x− y)) dµ(x)dµ(y)

>
K

3

∫

R2n\X
|∇ϕ(x)−∇ϕ(y)− (x− y)|2 dµ(x)dµ(y).
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2. Then for all x and y, written as y = x+ r θ with r > 0 and θ ∈ S
n−1,

∇ϕ(y)−∇ϕ(x)− (y − x) =

∫ 1

0
[∇2ϕ(x+ r t θ)− I] r θ dt.

We let H = ∇2ϕ(x+ r t θ) and write H − I = [H1/2 −H−1/2]H1/2, so that

|[H − I]θ| ≤ ‖H1/2 −H−1/2‖ |H1/2θ|.

Hence

|∇ϕ(y) −∇ϕ(x)− (y − x)|2 ≤ r

∫ 1

0
‖H1/2 −H−1/2‖2 e−U(x+r t θ)dt

∫ 1

0
|H1/2θ|2eU(x+r t θ) r dt

by the Cauchy-Schwarz inequality. On the one hand, letting D = ∆ϕ+∆ϕ∗(∇ϕ)− 2n,

‖H1/2 −H−1/2‖2 = sup
x

([H − 2I +H−1]x) · x
|x|2 ≤ trace(H − 2I +H−1) = D(x+ r t θ).

On the other hand

∫ 1

0
|H1/2θ|2 r dt =

∫ 1

0
∇2ϕ(x+ r t θ)(rθ) · θ dt = (∇ϕ(y) −∇ϕ(x)) · θ ≤ 2R

if (x, y) ∈ X. Hence

|∇ϕ(y)−∇ϕ(x)− (y − x)|2 ≤ 4R2 sup
z∈[x,y]

eU(z)

∫ 1

0
D(x+ r t θ)e−U(x+r t θ)dt

for all (x, y) ∈ X, so that

∫∫

X
|∇ϕ(y)−∇ϕ(x)− (y − x)|2 dµ(x)dµ(y)

≤ 4R2

∫

Rn

e−U(x) dx

∫

|y−x|≤2R
dy sup

z∈[x,y]
eU(z)e−U(y)

∫ 1

0
D(x+ t(y − x)) e−U(x+t(y−x))dt

≤ 4R2eM
∫

Rn

dx

∫

|y−x|≤2R
dy

∫ 1

0
D(x+ t(y − x)) e−U(x+t(y−x))dt

by (8). Now, for fixed t ∈ [0, 1], the change of variables (x, y) 7→ (v, u) = (x + t(y − x), y − x)
has unit Jacobian, so this is equal to

4R2eM
∫ 1

0
dt

∫

Rn

dv

∫

|u|≤2R
duD(v)e−U(v) = c

∫

Rn

D(v) dµ(v)

for a constant c = c(R,M,n) = 4R2+neMcn where cn is the volume of the unit ball in R
n.

3. Collecting the terms in 1. and 2. concludes the proof with C = 2( 3
K +4cnR

2+neM )−1. ⊲
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2.2 In presence of an exterior potential

We saw in Section 1 how an exterior potential V can induce the convergence of all solutions to
a unique equilibrium, and not only to the unique equilibrium with same center of mass as the
initial datum of the solution to be considered.

If W strictly convex (but at 0), and uniformly at infinity, and if V is strictly convex (but
at 0), then polynomial convergence holds to a unique equilibrium µ∞ (see Section 1 and [7,
Th. 2.3]), and even exponential convergence, but with a rate depending on the free energy F
of the initial datum (see [7, Th. 2.5]). Following Theorem 2.1 (for V = 0), one may wonder
whether this convergence is actually uniform in the initial datum, given by

W2(µt, µ∞) ≤ e−CtW2(µ0, µ∞), t > 0

for all solution (µt)t. But, according to Section 1, this estimate is based on the inequality

CW 2
2 (ν, µ) ≤ JV,W (ν|µ) (10)

for the measure µ = µ∞ and all measures ν; and this inequality does not hold if V is only
assumed to be strictly convex. For instance:

Lemma 2.4 Let µ ∈ P2(R) and V be a C2 map on R, with V ′′ bounded and V ′′ →+∞ 0. Then
there is no constant C > 0 such that (10) hold for all ν.

⊳ We prove that (10) does not hold for the translations ν = ϕ′#µ where ϕ′(x) = x +M
where M → +∞, that is, that there is no C > 0 such that

CM ≤
∫

R

(V ′(x+M)− V ′(x)) dµ(x) (11)

for all M > 0. For that, we let R to be fixed later on, and bound the right-hand side in (11) by

∫

R

|V ′(x)| dµ(x) +
∫ −R

∞
|V ′(x+M)| dµ(x) +

∫ +∞

−R
|V ′(x+M)| dµ(x).

First of all, since |V ′′| ≤ A, then |V ′(x)| ≤ |V ′(0)| + A|x| so the first integral is finite
(uniformly in M), and the second one is bounded by

αM

∫ −R

∞
dµ(x) +

∫ −R

∞
(|V ′(0)|+A|x|) dµ(x).

Now, for fixed ε > 0, we take R such that this is bounded by (M +1)ε for all M . Then we take
M0 such that |V ′′(x)| ≤ ε for x >M0. For all M >M0 +R the third integral is bounded by

∫ +∞

−R

(

|V ′(M0)|+ ε(x+M −M0)
)

dµ(x) ≤ |V ′(M0)|+ ε
(

M +M0 +

∫

R

|x| dµ(x)
)

.

Collecting all terms we conclude that the full right-hand side in (11) is ≤ 4ε for large M . ⊲

Lemma 2.4 only gives an instance of condition on V for (10) not to hold. For example, the
assumption V ′′ bounded can be replaced by the doubling condition (2) for V ′ and

∫

|V ′| dµ < ∞.

Similarly, the assumption V ′′ →+∞ 0 can be replaced by
∫ +∞
0 |V ′′| dµ < ∞: in this case we use

∣

∣

∣

∫ +∞

−R
(V ′(x+M)− V ′(x)) dµ(x)

∣

∣

∣
=

∣

∣

∣

∫ +∞

−R

∫ x+M

x
V ′′(t) dt dµ(x)

∣

∣

∣
≤
∫ +∞

−R

∫

R

|V ′′(t)| dt dµ ≤ C.

8



Hence we can not expect a uniform rate of convergence to equilibrium for degenerately
convex potentials. Our method is however able to recover an exponential convergence with a
rate depending on the initial datum, as in [7, Th. 2.5]:

Theorem 2.5 Assume that V is convex on R
n with ∇2V (x) definite positive on |x| > R and

∫

e−V dx <∞, and that W is convex with ∇2W (x) > K for |x| > R. Then there exists a unique
stationary solution µ∞ ∈ P2(R

n) to (1). Moreover for all M there exists a positive constant C
such that for all solutions (µt)t with

∫

Rn |x|2dµ0(x) ≤M

W2(µt, µ∞) ≤ e−CtW2(µ0, µ∞), t > 0.

⊳ First, Proposition A.1, ii. ensures the existence of a stationary measure µ∞ ∈ P2(R
n)

which has a density satisfying µ∞(x) = Z−1e−V (x)−W∗µ∞(x); here Z is the normalizing constant.
We just mention that the assumptions on V are satisfied by [2, Lem. 2.2] for instance.

Then, by direct estimates on the propagation of the second moment, for all solutions (µt)t
with

∫

Rn |x|2dµ0(x) ≤M there is a constant N , depending only on V,W and M such that

sup
t>0

∫

Rn

|x|2dµt(x) ≤ N.

Moreover, for ν = ∇ϕ#µ∞ with
∫

Rn |x|2dν(x) ≤ N , we first write

∫

Rn

|∇ϕ(x)−x|2 dµ∞=
∣

∣

∣

∫

Rn

(∇ϕ(x)−x) dµ∞

∣

∣

∣

2
+

1

2

∫∫

R2n

|∇ϕ(x)−∇ϕ(y)− (x− y)|2 dµ∞(x)dµ∞(y).

By Proposition 2.6 below, applied with the constant N and the measure µ∞,

∣

∣

∣

∫

Rn

(∇ϕ(x)− x) dµ∞

∣

∣

∣

2
≤ 1

2

∫

Rn

|∇ϕ(x)− x|2 dµ∞(x) + C JV,0(ν|µ∞).

Then, by the proof of Proposition 2.2, there exists C1, depending only on V and W , such that

∫∫

R2n

|∇ϕ(x)−∇ϕ(y)− (x− y)|2 dµ∞(x) dµ∞(y) ≤ C1J0,W (ν|µ∞).

Hence there exists a new positive constant C, depending only on V,W and M , such that

CW 2
2 (µt, µ∞) ≤ JV,W (µt|µ∞)

for all t. This proves the estimate on the convergence to µ∞ again by Proposition 1.1 and the
Gronwall lemma. Uniqueness of the stationary solution in P2(R

n) follows. ⊲

Proposition 2.6 Let V be a C2 convex map on R
n with ∇2V (x) definite positive on |x| > R,

and dµ(x) = e−U(x) dx be a probability measure on R
n with U continuous. Then for all N there

exists a constant C such that for all C2 strictly convex map ϕ on R
n with

∫

Rn|∇ϕ(x)|2 dµ ≤ N

∣

∣

∣

∫

Rn

∇ϕ(x) dµ(x) −
∫

x dµ(x)
∣

∣

∣

2
≤ 1

2

∫

Rn

|∇ϕ(x) − x|2dµ(x) + C JV,0(∇ϕ#µ|µ).

9



⊳ Let S > 3R to be fixed later on. Since V is C2 and ∇2V (x) is definite positive on the
compact set R ≤ |x| ≤ S, there exists K = K(S) > 0 such that ∇2V (x) > K for all R ≤ |x| ≤ S.
Then, following [4, Lem. 5.1],

(∇V (y)−∇V (x)) · (y − x) >
K

3
|x− y|2

if |x| ≤ S, |y| ≤ S and if |x| > 2R or |y| > 2R; indeed one only need to take into account the
values of ∇2V on the ball of radius S.

Then we let ϕ be a given C2 strictly convex map on R
n and let

X1 = {x ∈ R
n, |x| ≤ S, |∇ϕ(x)| ≤ S, |x| > 2R or |ϕ(x)| > 2R}.

1. First of all, by convexity of V , the above remark and the Cauchy-Schwarz inequality,
∫

Rn

(∇V (∇ϕ)−∇V ) · (∇ϕ− x)dµ >

∫

X1

(∇V (∇ϕ)−∇V ) · (∇ϕ− x)dµ

>
K

3

∫

X1

|∇ϕ− x|2dµ >
K

3

∣

∣

∣

∫

X1

(∇ϕ− x)dµ
∣

∣

∣

2
.

2. Then, on R
n \X1, and letting X2 = {x ∈ R

n, |x| ≤ 2R, |∇ϕ(x)| ≤ 2R},
∣

∣

∣

∫

Rn\X1

(∇ϕ−x)dµ
∣

∣

∣

2
≤ 3

(

∫

|x|>S
|∇ϕ−x|dµ

)2
+3

(

∫

|∇ϕ(x)|>S
|∇ϕ−x|dµ

)2
+3

(

∫

X2

|∇ϕ−x|dµ
)2

By the Cauchy-Schwarz and Markov inequalities, the first term is bounded from above by
∫

|x|>S
|∇ϕ− x|2dµ µ[x, |x| > S] ≤

∫

Rn

|∇ϕ− x|2dµ 1

S2

∫

Rn

|x|2dµ(x)

and the second one by
∫

Rn

|∇ϕ− x|2dµ 1

S2

∫

Rn

|∇ϕ(x)|2dµ(x).

Then, following the proof of [4, Prop. 3.5], there exists a constant C, depending on V and
µ only on the ball of radius 3R, such that

∫

X2

|∇ϕ− x|2dµ ≤ C

∫

|x|≤3R

(

∆ϕ+∆ϕ∗(∇ϕ) − 2n+ (∇V (∇ϕ)−∇V ) · (∇ϕ− x)
)

dµ.

This is in turn bounded by the corresponding integral on R
n, which is JV,0(∇ϕ#µ|µ), since

both terms in the integrand are nonnegative.

3. Collecting all terms we obtain

∣

∣

∣

∫

Rn

∇ϕdµ−
∫

Rn

x dµ
∣

∣

∣

2
≤ 6

S2

∫

Rn

|∇ϕ−x|2dµ
[

∫

Rn

|x|2dµ+
∫

Rn

|∇ϕ|2dµ
]

+
( 6

K
+6C

)

JV,0(∇ϕ#µ|µ).

Then we let S = max
{

3R,
√
12
[

∫

|x|2dµ+N
]}

so that

6

S2

[

∫

|x|2dµ+

∫

|∇ϕ|2dµ
]

≤ 1

2

if
∫

|∇ϕ|2dµ ≤ N , concluding the proof with a C depending on V, µ and M through K(S). ⊲
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3 Non convex examples

In this section we deal with potentials V and W for which the convergence rate to equilibrium
is driven by V rather than by W . Our first result is more qualitative rather than quantitative.

Theorem 3.1 Assume that V and W are C2 convex maps and that there exist R ≥ 0 and K > 0
such that for all |x| ≥ R,

∇2V (x) ≥ K.

Then there exists a unique stationary solution µ∞ ∈ P2(R
n) to (1), and a constant C such that

for all solution (µt)t of (1),

W2(µt, µ∞) ≤ e−CtW2(µ0, µ∞), t > 0.

In the first section (second example) we saw that only polynomial decay in contraction is
known in this context, and only when the convexity degenerates at some points, for instance for
V (x) = |x|4.

Proof

⊳ Existence of a stationary solution µ∞ in P2(R
n) which has a positive density satisfying

µ∞ = Z−1e−V−W∗µ∞ is given by Proposition A.1, iii, with any a < K and −a < b < 0. Then,
by [4, Prop. 3.5], there exists C > 0 such that

CW 2
2 (µt, µ∞) ≤ JV,0(µt|µ∞)

for all solution (µt)t. Moreover W is convex, so JV,0 ≤ JV,W . This proves the convergence bound
by Proposition 1.1. Uniqueness of the stationary solution in P2(R

n) follows. ⊲

Remark 3.2 The case of a double well potential for V is considered by J. Tugaut in [17, 18],
where the long time behavior is studied by a compactness argument, hence without rate. Let
us now explain how Theorem 3.1 extends to this case, for instance for V ε(x) = x4 − εx2 and
W (x) = |x|3 in R.

First of all, a stationary solution, solution of µε∞ = e−V
ε−µε

∞
∗W /Zε, exists by Proposi-

tion A.1, iii. Then one can then easily build a cut-off function ψ such that V εψ is C2, convex,
satisfies (V εψ)′′ > K > 0 outside a centered ball, uniformly in ε ∈ [0, 1], and is such that
‖(V ε(1 − ψ))′′‖∞ converges to 0 as ε → 0. Then, by [4, Prop. 3.5], the measure µε∞ satisfies
a WJV εψ,0 inequality with a constant C > 0 uniformly in ε ∈ [0, 1] (here we use that

∫

Wdµε∞
and Zε are bounded uniformly in ε). Now the perturbation proposition [4, Prop. 3.8] ensures
that µε∞ satisfies a WJV ε,0 inequality, for sufficiently small ε, hence a WJV ε,W inequality since
W is convex. Here we say that a measure µ satisfies a WJV,W inequality is the inequality (10)
holds for a positive constant C and all ν.

The smallness condition on ε is necessary since, according to [17, 18], there exist several
stationary solutions for large ε.

The following theorem provides the first examples of exponential convergence to equilibrium
for the granular media equation, with both potentials non convex.
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Theorem 3.3 Assume that

• e−V ∈ P2(R
n) and there exist α ∈ R and C > 0 such that ∇2V ≥ α, and for all ν

W 2
2 (ν, e

−V ) ≤ 1

C
JV,0(ν|e−V ); (12)

• there exist K > 0 and β ≤ 0 such that sup |W | ≤ K and ∇2W ≥ β.

Then there exists a unique stationary solution µ∞ ∈ P2(R
n) to (1). Moreover, for all solution

(µt)t of (1), and with C̃ = (C − α)e−2K + α+ β,

W2(µt, µ∞) ≤ e−C̃tW2(µ0, µ∞), t > 0.

Assumption (12) on the measure e−V has been studied in [4] under the name of WJ(C)
inequality; there practical criteria have been given for the inequality to hold. Observe that we
can always assume that C > α since, if α > 0, then µ satisfies a WJ(α) inequality.

Proof

⊳ Existence of a stationary solution µ∞ in P2(R
n) which has a positive density satisfying

µ∞ = Z−1e−V−W∗µ∞ is given by Proposition A.1, iv; indeed, by [4, Cor. 3.11], assumption (12)
on the measure e−V implies the Talagrand inequality (13) between the Wasserstein distance and
the relative entropy (also called WH or T2, see [19, Chap. 22]), with the same C.

Then we let dµ(x) = e−V (x) dx and use the convexity assumptions on V and W , the bound
on W and the sign conditions on β and C − α to get, for all ν = ∇ϕ#µ∞,

JV,W (ν|µ∞)

≥ e−K

Z

∫

(∆ϕ+∆ϕ∗(∇ϕ)− 2n) dµ +

∫

[(∇V (∇ϕ) −∇V ) · (∇ϕ− x)− α|∇ϕ− x|2] dµ∞

+α

∫

|∇ϕ− x|2dµ∞ +
β

2

∫∫

|∇ϕ(x)−∇ϕ(y)− (x− y)|2 dµ∞(x) dµ∞(y)

≥ e−K

Z

∫

(∆ϕ+∆ϕ∗
t (∇ϕ)− 2n) dµ +

e−K

Z

∫

[(∇V (∇ϕ)−∇V )·(∇ϕ− x)− α|∇ϕ− x|2] dµ

+(α+ β)

∫

|∇ϕ− x|2dµ∞ − β
∣

∣

∣

∫

(∇ϕ− x) dµ∞

∣

∣

∣

2

≥ (C − α)
e−K

Z

∫

|∇ϕ− x|2dµ+ (α+ β)

∫

|∇ϕ− x|2 dµ∞

≥ C̃

∫

|∇ϕ− x|2 dµ∞(x) = C̃W 2
2 (ν, µ∞).

⊲

A Existence of stationary solutions

The existence of a minimizer of F has been proved by R. J. McCann [16] for strictly convex
or radially symmetric convex interaction potentials W (and V = 0). We adapt his classical
compactness-lower semicontinuity argument to our diverse cases:

Proposition A.1 The map F : P2(R
n) → R ∪ {+∞} defined by (3) for absolutely continuous

measures and by +∞ otherwise achieve its minimum in each of the following cases:
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i. V = 0, W is convex and W (x) > b|x|2 − b′ for b, b′ > 0;

ii. V (x) > a|x| − a′ and W (x) > b|x|2 − b′ for a, a′, b, b′ > 0;

iii. V (x) > a|x|2 − a′ and W (x) > b|x|2 − b′ for b′, a, a′ > 0, b > −a;
iv. W is bounded from below and e−V ∈ P2(R

n) satisfies a Talagrand transportation inequality

W 2
2 (ν, e

−V ) ≤ 2

C

(

∫

ν log ν dx+

∫

V dν
)

, ν ∈ P2(R
n). (13)

Then, as in [7], a minimizer µ∞ of F has a positive density on R
n satisfying

log µ∞ + V +W ∗ µ∞ = λ ∈ R.

Proof

⊳ First of all, infP2(Rn) F < +∞ since F (µ) < +∞ for µ the Lebesgue measure on [0, 1]n

for instance. Let then (µp)p ∈ P2(R
n) be a minimizing sequence, and assume for a while that

∫

|x|2dµp is bounded. Then (µp)p is tight, so up to a subsequence admits a limit µ∞ for the
narrow convergence by the Prohorov Theorem. Moreover

∫

|x|2dµ∞ ≤ lim infp
∫

|x|2dµp < +∞
so µ∞ ∈ P2(R

n). Finally µ∞ minimizes F on P2(R
n) by lower semicontinuity.

It remains now to bound
∫

|x|2dµp by F (µp) in each case:

For i., as in [16], let ∇ϕp transport µp onto µp(−.) and let µ̄p =
I+∇ϕp

2 #µp for I the identity
map. Now W is convex, so F is displacement convex, so that F (µ̄p) ≤ (F (µp)+F (µp(−.)))/2 =
F (µp) and (µ̄p) is also a minimizing sequence. Moreover

∫

xdµ̄p = 0 so

∫

|x|2dµ̄p =
1

2

∫∫

|x− y|2dµ̄p(x)dµ̄p(y) ≤
1

2

∫∫

1

b
(W (x− y) + b′)dµ̄p(x)dµ̄p(y) ≤

F (µ̄p)

b
+
b′

2b
·

For ii. we observe that

F (µp) > a

∫

|x| dµp − a′ + b
[

∫

|x|2dµp −
∣

∣

∣

∫

x dµp

∣

∣

∣

2]

− b′

2
> a

∫

|x|dµp − a′ − b′

2
;

hence
∫

|x|dµp is bounded by the second inequality, and then
∫

|x|2dµp by the first one.

For iii. we similarly observe, and by discussing on the sign of b, that

F (µp) > a

∫

|x|2dµp−a′+
1

2

[

∫∫

(b|x−y|2−b′)dµp(x)dµp(y)
]

> (a+min(b, 0))

∫

|x|2dµp−a′−
b′

2
·

For iv. we notice that
∫

|x|2dµp ≤ 2W 2
2 (µp, e

−V ) + 2

∫

|x|2e−V ≤ 4

C

(

∫

µp log µp dx+

∫

V dµp

)

+ 2

∫

|x|2e−V

≤ 4

C

(

F (µp)−
1

2
infW

)

+ 2

∫

|x|2e−V .

⊲
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[13] S. Daneri and G. Savaré. Lecture notes on gradient flows and optimal transport. To appear on
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