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Abstract

Identifying individual factors affecting life-span has long been of interest for biologists and demographers: how do some
individuals manage to dodge the forces of mortality when the vast majority does not? Answering this question is not
straightforward, partly because of the arduous task of accurately estimating longevity in wild animals, and of the statistical
difficulties in correlating time-varying ecological covariables with a single number (time-to-event). Here we investigated the
relationship between foraging strategy and life-span in an elusive and large marine predator: the Southern Elephant Seal
(Mirounga leonina). Using teeth recovered from dead males on ı̂les Kerguelen, Southern Ocean, we first aged specimens.
Then we used stable isotopic measurements of carbon (d13C) in dentin to study the effect of foraging location on individual
life-span. Using a joint change-point/survival modelling approach which enabled us to describe the ontogenetic trajectory
of foraging, we unveiled how a stable foraging strategy developed early in life positively covaried with longevity in male
Southern Elephant Seals. Coupled with an appropriate statistical analysis, stable isotopes have the potential to tackle
ecological questions of long standing interest but whose answer has been hampered by logistic constraints.
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Introduction

Identifying individual factors affecting life-span has long been of

interest for biologists and demographers [1,2] : how do some

individuals manage to dodge the ‘‘little devils’’ of death [3] longer

than the large majority of their conspecifics? To start answering

this question, several problems need to be overcome; the first being

the accurate estimation of life-span or longevity. In the case of

vertebrates, longevity may be estimated by following individuals

from their birth till their death using mark-recapture methods [4].

However, long-lived organisms (for example, seabirds) present

additional challenges: a wandering albatross (Diomedea exulans) may

live up to 60 years [5], requiring a lot of patience, serendipity, and

skills to secure funds and manpower from demographers. Yet

knowledge of individual longevity may be critical to shed light on

life-history patterns [6–12]. Recent studies have moved away from

population-level (life-tables, for example [13]) to individual-level

inferences (for example, [14]), which is the level where natural

selection occurs. This move is the result of both conceptual and

technical advances, most notably in estimating a notoriously

difficult individual fitness [15,16]. It also results from the

availability of rich datasets collected on wild populations over

several decades. Such data depth allows to study the evolution and

the ecological correlates of life-history traits in the wild.

In the case of mammal species, most studies investigating the

relationship between longevity and fitness have focused on females

[6–8,10–12,17–19] (but see [9]). These studies, which mainly

concerned large terrestrial herbivores, usually found evidence of

long-lived females having a larger fitness than short lived ones (but

see [7]). On the other hand, males are usually not studied as

estimating their fitness is harder and often demands genetic

analysis to reliably infer offspring’s paternity.

The Southern Elephant Seal (Mirounga leonina) is the most

dimorphic and polygyneous mammal among extant species. The

biology of this elusive carnivore, which can spend up more than

80% of its lifetime at sea [20], means that seals are not observable

most of the time. Moreover, when ashore during the breeding

season, males fight to hold harems of numerous females. Most

males never reproduce but a few mates with a large number of

females [21]. Body size is a critical component for holding and

fighting over a harem. Since these seals can grow all their life [22],

breeding for a male depends on surviving long enough to reach an

adequate size to be able to hold a harem. We may therefore expect

a strong relationship between longevity and fitness in males [23].

Assessing longevity in the male Southern Elephant Seal using

mark-recapture methods is extremely demanding: less than 4% of

a cohort may survive up to 9 years-old [24], when they may

become harem-holders [25]. Moreover the question of why theses

males manage to outlive the others is left open since their at-sea

behaviour remains elusive.

One way to overcome this problem is to rely on indirect

methods to infer the at-sea ecology of these animals. In this
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respect, the study of marine mammals has greatly beneficiated

from the use of stable isotopes [26]. Carbon (
13C
12C

) and nitrogen

(
15N
14N

) stable isotope ratio are the most commonly used elements in

isotopic dietary studies. Carbon (nitrogen) stable isotopes can

provide information about the diet’s geographical origin (trophic

position) of a consumer [27]. In the Southern Ocean, the existence

of a latidudinal gradient in carbon stable isotopes across water

masses [28–30] allows researchers to infer where elephants seals

have been foraging prior to hauling out [31]. The temporal

window reflected in stable isotope values depends on the sampled

tissue [32]. Therefore, questions that may be addressed with stable

isotopes are tied to the careful choice of an appropriate tissue.

Stable isotopic measurement of tissues that are metabolically

inert after synthesis, such as teeth or baleen, can yield information

on the ecology of marine mammals over their whole life [33–37].

Incremental tissues of teeth may further allow age estimation [38–

40]. Measuring stable isotopes in teeth may permit to investigate

the ecological correlates of longevity. In the present work, we

studied the influence of foraging strategy, as inferred from carbon

stable isotopes measured in tooth, on the individual lifespan of

male Southern Elephant Seal breeding on ı̂les Kerguelen,

Southern Ocean. Bailleul et al. [31] found that males from ı̂les

Kerguelen were mainly foraging either in Subantarctic waters

(mostly the Kerguelen Plateau) or on the Antarctic Plateau (see

Figure S1). In a previous study [41], we investigated the ontogeny

of foraging behaviour. Here we investigated whether the observed

dual strategy affects the longevity of males Southern Elephant

Seals.

Results

Growth Mixture Modelling
Bailleul et al. [31] investigated the foraging behaviour of

juveniles males using both remote-sensing tags and blood carbon

isotopes. Blood d13C values for young small-sized males had a

unimodal distribution while there was evidence of a bimodal

distribution for older large-sized males. Dentin d13C values had a

unimodal distribution for individuals younger than 3 years old,

and a clear bimodal distribution after that age (Figures 1 and 2).

However, this approach only described the growth pattern of d13C
conditional on a foraging strategy. Furthermore it made the

restrictive assumption that the growth curve shape of individuals

with the same foraging strategy is identical. However this model

was used for descriptive purposes, and below we present the results

of an explanatory approach which aimed at identifying ecological

correlates of longevity.

Joint Modelling
We adopted a joint modelling approach for analyzing lifespan

[42–47]. We used a hierarchical change-point model [48,49] to

describe individual time-series of d13C values (see Figure 3A),

which enabled us to identify an ontogenetic shift between a

juvenile stage and an adult one when males were committed to

either an Antarctic or a Subantarctic strategy [41]. For the adult

stage, the regression slope of d13C values against age is either close

to zero, which means a very stable strategy of foraging in either

Subantarctic or Antarctic waters, or negative reflecting the

preponderance of foraging in Antarctic waters (see Figure 3A).

We estimated 4 individual parameters describing a broken-stick

model and subsequently used them as predictors in an Accelerated

Failure Time (AFT) model [50,51].

With an AFT, survival times are directly modelled, which eases

the interpretations of coefficients; but a parametric distribution

family must be specified [50,51] in contrast to the semi-parametric

Cox Proportional Hazard (PH) model [52]. We nevertheless opted

for the AFT model and assumed survival times to follow a Weibull

distribution [43], whose core assumption is a monotonic hazard

function [53], which seems reasonable for these data (Figure 4B

and Figure S2). We embedded the AFT within a hierarchical

change-point model for d13C values [41] (See the annotated code

in Supplementary Materials).

The best survival model was the joint change-point/survival

model (Table 1), but the model fit as assessed using Kolmogorov-

Smirnov test was poor (D~0:57, pv0:001, Figure S3). Further

investigations also revealed modest to strong correlations (w0:6)

between the bk[½1:4�
(Figure S4). Close inspection of the individual-

specific parameters ak[½1:4� revealed that the only parameter to truly

covary with longevity was a4, the slope after the ontogenetic shift

(Figure 4B). This was further checked and confirmed with

Stochastic Search Variable Selection [54] (not shown). Hence

only the posterior estimate of b4 is reported in Table 2. Since b4

was negative, males with a very stable foraging strategy (a4&0)

had on average a larger life-span than the other males.

Discussion

Ecological correlates of longevity
As expected, male Southern Elephant Seals showed a clear

mixture of two foraging strategies as they aged [31,55]. Using

carbon stable isotopic measurement from tooth, we found that

some males had an Antarctic signature (&{20 : {19%), while

others had a Subantarctic signature (&{17 : {16%). The

pattern in Figure 1B suggested that d13C values reflective of an

Antarctic signature increased in proportion over time. Such a

pattern may reflect the progressive disappearance of males

foraging elsewhere than in Antarctic waters, either because of an

ontogenetic shift in foraging behaviour [56] or because of

differential survival of males with different foraging strategies.

To investigate this matter further, we adopted a joint change-

point/survival modelling approach to explicitly relate the age of an

individual [39] with a proxy of its foraging behaviour [34,35].

Males foraging in Antarctic waters didn’t have a longer

longevity than males foraging in the Subantarctic waters. The

increasing proportion of Antarctic d13C values (Figure 1) was more

the result of small sample size [57] for advanced age classes and of

ignoring within-individual correlation (recall that a seal of a given

age can contribute up to 4 isotopic values because of the sampling

design, see Materials & Methods). A joint modelling approach,

which accounted for the longitudinal nature of our data, revealed

a relationship between the stability of a foraging strategy and

longevity. Seals that exhibited little variation in their tooth 13C
profile were also the most long-lived. A change-point model

evidenced a negative correlation between the age at ontogenetic

shift and the slope after this shift [41]: seals that had an early shift

were constant in their foraging behaviour for the rest of their lives.

Thus, this sophisticated modelling approach confirmed what an

‘‘eye-ball’’ analysis suggested: profiles with the smallest isotopic

variation were from seals with the longest life-span (Figure 1A).

The two modes that progressively appear with age on Figure 1B

reflects how seals that became faithful to a foraging strategy early

in life lived longer that others. Thus, the two modes in the

distribution of d13C values (Figure 1B) partly arose from the

selective disappearance of males with a variable d13C profile.

This pattern of an early shift in life associated with far-reaching

consequences in later-life underscore how crucial are the first years

Foraging and Longevity in Southern Elephant Seals
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of life in this species [58]. There was in fact a small (in magnitude)

positive correlation between the (positive) slope before and the

(negative) slope after the shift [41]. The positive slope before the

shift was expected because weaned pups rely exclusively on

maternal milk before weaning. Phociid milk is very rich in lipids

[59,60], which are depleted in the heavier carbon isotope [61].

Thus the positive slope before the shift may in part reflect the

progressive independence from maternal resources [34,40,62,63].

Pups which became early on independent from maternal

ressources, were able to forage on their own and adopted a very

stable foraging strategy. Those same pups also lived longer than

the others, suggesting thereby the potential importance of early life

history on latter performances [64–66].

Bradshaw et al. [67] studied the fidelity of adult female Southern

Elephant Seals to their foraging grounds. Using a measure of

overlap between visited zones along at least two consecutives

foraging journeys, Bradshaw et al. [67] directly evaluated how

females seemed to behave according to simple navigation rules,

that is how females were ‘‘rational’’ in the sense that their

behaviour was predictable. One major finding of this elegant

analysis was the lack of a relationship between mass gain and

spatial overlap between two successive foraging trips: females

showed fidelity to a foraging ground irrespective of foraging

success. Although Bradshaw et al. [67] lacked data on long-term

survival and lifetime reproductive success of these females, which

were of the same age-period-cohort to limit potential counfoun-

ders, they speculated that the stability shown by these females may

have arisen in their early life. While our study is confined to males,

it is in agreement with the results of Bradshaw et al. [67]. Despite a

cruder spatial resolution compared to tracking data, stable isotopes

enabled us to look into the ontogeny of foraging strategy in male

Southern Elephant Seals, and thus to evidence how foraging

fidelity was associated with longevity.

We were nonetheless surprised that the Antarctic strategy was

not associated with an increased life-span. At least for females, an

Antarctic strategy may yield higher fitness pay-offs. There is a

latitudinal gradient in pup weaning mass with pups born in

colonies closer to Antarctica having a larger weaning mass on

average than pups born at lower latitude rookeries [68]. As

weaning mass correlates with first-year survival [69], this suggests

Figure 1. Spaghetti and density plots of the tooth d13C values from male Southern Elephant Seals. The distribution is unimodal up to
age 3 but changes to a bimodal distribution afterwards. Observations belonging to the component with the smallest mean are first in a minority but
progressively increase in proportion until becoming the majority.
doi:10.1371/journal.pone.0032026.g001
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that resources in Antarctic waters may be more profitable.

Chaigne et al. [70] analysed blood stable isotopes of juvenile

Southern Elephant Seal males. Their study design was cross-

sectional, but Chaigne et al. [70] showed that older males, as

assessed from their body length, were more likely to forage in

Antarctic waters compared to younger ones. They have interpret-

ed this pattern as an ontogenetic shift in foraging grounds, which is

consistent with the stable isotope analysis of dentin [41]. Foraging

in Antarctic waters thus seems to be favored by bigger males,

possibly because of higher fitness pay-offs.

Yet our longevity data did not suggested an increased survival of

Antarctic foragers. Unlike females which remained in the marginal

sea-ice zone, juvenile Southern Elephant Seal males from ı̂les

Kerguelen readily foraged in the pack ice [55]. Getting trapped in

the ice is a potential cause of mortality that males foraging over the

Kerguelen Plateau or at the Polar Front do not face [31]. Our

present analysis does not point to different foraging grounds

influencing male life-span. The pattern uncovered is one of the

benefit of a very stable foraging strategy with no deviation from an

early age in life. This pattern may lend support to a spatial

familiarity hypothesis [71,72], although a direct experimental test

of such an hypothesis is currently not possible with Southern

Elephant Seals.

That isotopic profiles covaried with longevity thus suggests that

variability in foraging strategy is costly. Such costs may arise from

unfamiliarity with novels environments, such as a greater

susceptibility to predators, or increased travel costs. A non-

exclusive alternative is that some individuals were more able to

extract resources efficiently from the environment, either in

Antarctic or Subantarctic waters. None of these interpretations

suppose a strategy to be superior to the other in terms of fitness

return. However, the second interpretation implies that seals

which are less efficient to acquire resources may switch between

foraging strategies while those which are efficient have no reason

Figure 2. Mean d13C values of the two-components growth mixture in relation to Southern Elephant Seal age. Posterior means along
with 95% Highest Probability Density (HPD) intervals are depicted. For advanced age classes (w9 years), this model suggested an increase in mean
d13C values for Subantartic foragers, and a decrease for Antarctic foragers. This effect seems artefactual in light of Figure 1 where isotopic values are
stable after age 9. The artefact results from the restrictive assumption on the growth curve shape (see Methods).
doi:10.1371/journal.pone.0032026.g002
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to do so. Under this latter interpretation, the d13C profile of seals

may reflect their ‘quality’, quality being understood as a static trait

that positively correlated with fitness [73]. We chose the term

quality over fitness here as the reproductive success of males in our

sample is unknown. Yet given the breeding biology of male

Southern Elephant Seals, living long enough to grow large and

defend a harem is a pre-requisite to contribute offspring to the

next generation [23].

Limitations
A potential confounding factor in our data is that teeth were

sampled from dead animal on beaches, thus we had to assume our

sample was representative of the larger population of all males on

ı̂les Kerguelen. Assuming otherwise would imply that male found

dead on beaches were different than those dying at sea. The

average longevity in our sample was 7 years, and only 5 males

were older than 10 years (Figure S5). In their study on

reproduction costs on Sea Lion Island (520269S, 590059W),

Galimberti et al. [25] found only 4 males out of 78 (&5%) to be

older than 10 years old, while McCann [74] reported a proportion

of &22% for South Georgia (540159S, 370059W). The observed

proportion in our sample was 11(4,24)%, compatible with both the

Sea Lion Island and South Georgia estimates. Age in our study

was estimated from teeth growth layers: there is an uncertainty

associated with age (+1 year). It is, however, very small [40] and

cannot reverse the observed pattern. Defining a species’ longevity

as the time by which 99% of a cohort has died [75], the specific

longevity of male Southern Elephant Seals is 13 years [76]. The

oldest male in our sample was estimated to be 12 years old, which

suggested that our sample did not seem atypical with respect to old

age classes.

Of concern may be the lack of fit of the AFT model to the data.

Even our best model in term of AICc did not provide an adequate

fit to the data (see Figure S3). Yet it has been argued that the poor

predictive ability is an intrinsic feature of survival models with

realistic parameter values [77]. Our approach here was explan-

atory rather than predictive [78]. The joint model clearly captured

some aspect of the data unaccounted for by the Null model given

its large Akaike weight. Further model checking revealed that this

model was overparametrized, but still performed better than the

null model despite the penalty for the larger number of

(unnecessary) parameters. The mixture model also has a larger

likelihood than the null model, but its larger number of parameters

put it on a par with the null model (similar Akaike weights). Thus

Figure 3. Survival curve estimated from the joint change-point/AFT model. The upper panel illustrates the different isotopic profiles
observed in our data. A density strip plot of the estimated survival function is depicted on the lower panel to emphasize uncertainty [100,101]. The
probability of male Southern Elephant Seals to live up to 7 years, the mean longevity observed in our sample, is depicted as a function of the slope of
the isotopic profile after an ontogenetic shift. Seals that had a stable foraging strategy were also long-lived individuals.
doi:10.1371/journal.pone.0032026.g003
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the data suggest an effect of the foraging strategy that we seemed

to have picked up best with a change-point model.

Conclusion
Stable isotopes, while lacking the fine scale resolution of tracking

data, can reveal surprising ecological features of a species [26].

However, this crudeness may proved a strength: by summarizing a

whole foraging trip with a single number, isotopic data provided

an integrative measure that can be easily fed into a model

specifically tailored to the problem at hand. Using an appropriate

tissue, stable isotopes can also provide longitudinal data [33–37].

The explicitly modelling of foraging strategy ontogeny in male

Southern Elephant Seal via a change-point (or broken-stick) model

of d13C values revealed how long-lived animals were those faithfull

to a foraging strategy from an early age. This finding emphasizes

the importance of early life in life-history trajectories. It also

suggests that variability in foraging strategies might be costly for

adult male Southern Elephant Seals from ı̂les Kerguelen. In other

words, faithfulness to a foraging strategy predicted a long-life for

males.

Studying of the life-span of wild animals is a difficult endeavour:

ecological correlates can be uncovered but a large amount of

variation usually remains unaccounted for in the analysis [79].

This is unsurprising in light of all the potential factors, related to

fitness or accidental, that may affect an individual throughout its

whole life [3,12,80].

Materials and Methods

Ethics Statement
The ethics committee of the French Polar Institute (Institut Paul

Emile Victor - IPEV) approved this study. All animals in this study

were cared for in accordance with its guidelines. This study is part

of a national research program (no. 109, H. Weimerskirch and the

Figure 4. Survival analysis of male Southern Elephant Seals. The upper panel depicts the empirical Kaplan-Meier survival curves [102], with
the continuous line representing the mean, and dashed lines a 95% confidence interval. The lower panel illustrates the empirical hazard ratio, along
with a loess curve (continuous black line): the assumption of a monotonic hazard is reasonable as hazards are ever increasing. 95% confidence
intervals (dashed lines) for the empirical hazard ratio are also represented: these intervals widen with age as the number of individuals at risk
decreases in advanced age classes.
doi:10.1371/journal.pone.0032026.g004
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observatory Mammifères Explorateurs du Milieu Océanique, MEMO

SOERE CTD 02) supported by the French Polar Institute (IPEV).

The approval ID for this study is IPEV research program no. 109,

which is evaluated every year by the ethics committee of the

French Polar Institute.

Sample Collection
Teeth were collected from male elephant seals that died of

natural causes on ı̂les Kerguelen (49 309S, 69 309E), Southern

Indian Ocean. Canines grow continuously throughout the whole

life of males without closing of the pulp cavity, allowing for age

determination [81]. Canines from 47 males were analyzed and

sampled for isotopic analysis (see [40] for a full description of age

determination and isotopic sampling). Briefly, each tooth was cut

longitudinally and observed under diffused light to count growth

layers. The alterning pattern of two opaque and two translucent

growth layers corresponds to the annual biological cycle of

Southern Elephant Seals [39]. Translucent bands are enriched in

vitamin D and synthesized when seals are ashore to breed and to

molt, while opaque ones are synthesized when at sea [82].

Within a year, a Southern Elephant Seal comes onshore to

breed, returns to the sea, then comes onshore to moult and

forages once more at sea before the next breeding season. Thus

each growth layer was assumed to correspond to one forth of a

year [40]. Each growth layer was sampled for 1 mg of bulk

dentin using a MicromillTM sampler (ISEM, Université de

Montpellier 2).

As a recent study raised concerns about non-linear offsets of

organic %C, %N and
C

N
after acid treatment [83], we forwent any

acid (or demineralization) treatment prior to isotopic measure-

ment. As a result, the measured 13C is a mixture of organic carbon

with a small amount of inorganic carbon. To test the impact of the

inorganic fraction, Martin et al. [40] compared acid-treated and

untreated samples but found no differences (+0:02). Schulting

et al. [84] found similar
C

N
ratios between bulk dentin and collagen,

with a lower carbon and nitrogen contents in bulk dentin most

likely due to the mineral fraction. Here we assumed that the

impact of the mineral fraction is negligible.

For measurement of carbon stable isotopes and C
N

ratio, a total

of 1,233 dentin increments over the 47 male teeth were analyzed.

Elemental C and N contents (%) and carbon isotope values were

measured by dry combustion using a Euro Vector 3000 Elemental

Analyzer coupled with a Micromass Optima Isotope Ratio Mass

Spectrometre (ISEM, Université de Montpellier 2). Results are

expressed in percentage of powder weight (Total C and N) and as

d13C (%) with respect to the Vienna-Pee Dee Belemnite standard

using the conventional delta notation:

d~1000|(
Rsample

Rstandard

{1)

where Rsample and Rstandard refer to the
13C
12C

ratios of sample and

standard, respectively. Analytical precision was better than 0:20%.

We used
C

N
ratio thresholds of bone and tooth collagen (2:9 to 3:6)

as criteria for the identification of diagenetic alteration [85];

assuming that total dentin, whose organic phase is mainly collagen

and water [86], has the same
C

N
ratio than bone and tooth

collagen. From the 1,233 analyzed sampled, 118 were discarded,

yielding a final sample size of 1,115 isotopic values from 47 males.

Given the alterning pattern of tooth growth layers, up to 4 isotopic

measurements were available for a given year of life.

Growth Mixture Modelling
Data were first analyzed using growth mixture models [87].

This approach respects the longitudinal nature of our data, and is

superior to simple mixture models. The aim of this modelling

exercise was primarily descriptive, that is we aimed at summariz-

ing our data. Bailleul et al. [31] found that males from ı̂les

Kerguelen were mainly foraging either in Subantarctic waters

(mostly the Kerguelen Plateau) or on the Antarctic Plateau (see

Table 1. Accelerated Failure Time (AFT) model selection.

Model K Dev̂iance AICc DAICc wAICc

Joint 6 202.2 215.6 0.0 94.5

Null 2 218.4 222.5 6.9 3.0

Mixture 4 215.6 224.1 9.0 1.4

Random 3 218.3 224.6 9.5 1.1

Four models were considered and we kept a ratio of number of parameters to be estimated to the number of datum close to 8. The Akaike Information Criterion
corrected for small sample size (AICc) is reported. DAICc

is model AICc minus the minimum observed AICc , and wAICc
are model weights. The best model in terms of

predictive ability was the joint change-point/survival model.

Table 2. Summary statistics for the parameters of the joint change-point/survival model.

Parameters Median 2:5% 97:5% Interpretation

r 3.3 2?6 4?2 Shape of the Weibull distribution

b0 {6.7 28?6 25?0 Intercept

b4 {1.4 22?8 20?1 Slope after shift

doi:10.1371/journal.pone.0032026.t002
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Figure S1). We thus assumed a two-components mixture. For the

jth male, we modelled its blood isotopic signature at age t as:

d13Cj,t~Lj,1zat,k|eLj,2zEj,t ð1Þ

where

Ej,t

is a normally distributed residual

term with 0 mean and variance 2
res

Lj,1 is the isotopic value at birth

Lj,2

is the logarithm of the absolute isotopic

difference between 12 and 0 years

at,1

are weights describing the growth curve for

individuals foraging in Subantarctic waters

at,2

are weights describing the growth curve for

individuals foraging in Antarctic waters

k is a latent indicator variable of the foraging strategy

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

For model identification purposes, we constrained a0,kin1,2
~0,

a12,1~1 and a12,2~{1. In addition, to circumvent any label

switching issues, we further constrained the isotopic value of

Antartic foragers to be lower than that of Subantartic foragers.

Practically, we allowed the batch of weight coefficients of the first

component of the mixture to be positive (0ƒat,1ƒ1) but forced

the second batch to be negative ({1ƒat,2ƒ0). Finally, we

assumed the growth curves to be isotonic: for all age t, at,1ƒatz1,1

and at,2§atz1,2. Isotonicity translates an assumption about

isotopic equilibration to a foraging habitat signature. A crucial

assumption of this approach is that the growth curve shape of

individuals with the same foraging strategy is identical, which is

not reasonable given the variety of profiles observed in Figure 1.

To relax this assumption, we used a hierarchical random change-

point model [41].

Joint Modelling
Change-point models aim at finding an abrupt rupture in a

time-series. The time-series is assumed to be the juxtaposition of

piece-wise linear homogeneous segments, each segment separated

from the next by a change-point. These models are very flexible as

they allow specifying different probability distributions to describe

different parts of a time series. Different curve shapes can thus be

generated. Change-point models thus seem appropriate to

describe ontogenetic shifts [41,56]. A time-series is summarized

in 4 parameters: a value at the change-point, the timing of the

change-point, and a slope before and after the change-point. In a

previous paper [41], we used a hierarchical change-point model to

describe individual time-series of 13C measurement in Southern

Elephant Seal teeth and found evidence of ontogenetic shifts.

Here, we assessed the impact of these ontogenetic shifts on

longevity.

Because teeth were sampled from dead animals that were

subsequently aged, all survival times are observed: there is no

censoring in the data. Denoting Tj the survival time of the jth

male, we assumed the Tj to follow a Weibull distribution of

parameters r and lj :

Tj*Weibull(r,lj) ð2Þ

log(lj)~b0zb1|a1,jzb2|a2,jzb3|a3,jzb4|a4,j ð3Þ

where

a1,j~ isotopic value at change point

a2,j~ slope before the change point
a3,j~ logarithm of the age at change point

a4,j~ slope after the change point

8>><
>>:

The shape parameter r controls the hazard rate with rw0 (resp.

v0) describing an increasing (resp. decreasing) hazard with time.

With our data, we expected rw0 (Figure 4). The parameters b1,2,4

then quantify the association between foraging location (via d13C)

and longevity. The parameter b3 captures the relation between

age at ontogenetic shift and longevity. The parameter we are

particularly interested in is b4 as it reflects the correlation between

the stable foraging habitat of adults and their longevity. In the

AFT, a positive b|x, where x is the covariate value, accelerates

the occurrence of the event (death), while a negative value retards

it. A negative b4 means that individuals foraging in two different

water masses (negative slope) die earlier than those males which

have a very stable strategy (null slope). The joint modelling

approach is especially suited here as it makes use of all the

available data and the Bayesian framework guarantees that

uncertainties in estimating the ak[½1:4�,j are taken into account

[43,46].

To assess the appropriatedness of our joint model, we compared

it with 3 other AFT survival models:

N a null model with with no individual-level covariate;

N a random-effect model wherein an individual-specific devia-

tion from the mean d13C value was incorporated as a covariate

for the AFT model; and lastly

N a mixture model wherein each male was first assigned to a

group depending on its mean d13C value and then group

membership was included as a covariate for the AFT model.

Strictly speaking, both the random and mixture models are also

joint models, as time-series of d13C values were used to derived

predictors for the survival analysis. Model comparison were done

using the Akaike Information Criterion with a small sample

correction, AICc [88]. Our sample size is modest (N~47) and the

most complex AFT model considered had 6 parameters, keeping

the ratio of sample size to parameter number above &8 which is

slightly below the recommended 10 [53]. The goodness-of-fit of

the selected model was checked by comparing the predicted

longevity with the observed one using Kolmogorov-Smirnov test.

Finally, we investigated in a preliminary analysis whether males

born before and after the 1970s population crash [89] had

different longevity and found none (Likelihood Ratio Test:

x2
1~0:03, p~0:86).

Growth layer synthesized while seals were ashore were kept in

all analyses. These layers may differ from the others since

Southern Elephant Seals fast on land. Retaining these layers may

add measurement error linked to physiological processes. We then

compared for each seal the distribution of isotopic values

measured in dentin synthesized ashore versus at-sea with a

Kolmogorov-Smirnov test. Except for one individual, there was

no statistically significant differences (See Table S1). Excluding this

individual did not change our results. Balasse et al. [90] estimated

the isotopic equilibration of dentin after diet change to take

between 1 to 4 months in cattle (Bos taurus). This time-span is

commensurate with, if not longer than, the typical haul-out

duration of a Southern Elephant Seal. Assuming similar

equilibration time for cattle and elephant seals, this may explain
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why no statistically significant differences were found (See Table

S1).

Software
We used winBUGS [91] called from R [92] with the package

R2WinBUGS [93]. Weakly informative priors were used [94,95].

For the growth mixture model, we used a uniform prior for the

residual variance; Normal priors for regression parameters on

the natural scale; the default Student-t prior of [95] for

regression parameters on a logarithmic scale; and a beta(2,2)

prior for the mixing proportion. We used the SVD prior of

Tokuda et al. [96] for the covariance matrix controlling the Lj :

random orthogonal matrices were generated as described in

Anderson et al. [97]. Three chains were initialized with

overdispersed starting values. After appropriate burn-in (40,000
iterations) and thinning of the chains (1 value every 10 iterations

stored), convergence was assessed using the Gelman-Rubin

convergence diagnostic [98] with the coda package [99]. For the

joint model, Authier et al. [41] detailed the hierarchical change-

point model fitted to the isotopic data. We used for the AFT

model the default Student-t prior of [95] for the parameter bk[½1:4�
,

and a uniform prior bounded between 0 and 10 for r. Three

chains were initialized with overdispersed starting values. After

appropriate burn-in (200,000 iterations) and thinning of the

chains (1 value every 200 iterations stored), convergence was

assessed using the Gelman-Rubin convergence diagnostic [98]

with the coda package [99]. Unless stated otherwise, posterior

mean and standard error of the mean are reported, either with

its standard error (+se) or with 95% Highest Probability Density

(HPD) intervals (Mean(2:5%,97:5%)). Inferences are based on a

posterior sample of 3,000 iterations. Annotated BUGS code is

available in Text S1 (Growth Mixture Models) and Text S2

(Joint Change-point/Survival Model).

Supporting Information

Figure S1 Satellite tracking of Southern Elephant Seal
males breeding on ı̂les Kerguelen. Examples of 24 tracks

are represented (solid blue lines) to illustrate the different

strategies: males mainly forage in the Antarctic Zone, on the

Kerguelen Plateau or in Subantarctic waters (waters lying

between the Sub-Antarctic Front and the Southern Antarctic

Circum-Polar Front). Îles Kerguelen (Ker), and the Antarctic

coastline’s contour are depicted in black, and while the

2000 metres isobath is depicted in light grey. Dotted lines

symbolized fronts [103], within the Southern Ocean: SubTrop-

ical Front (STF), Sub-Antarctic Front (SAF), Polar Front (PF)

and Southern Antarctic Circum-Polar Front (SACCF). Margin-

al histograms of localisations are represented on the side to

illustrate the different strategies.

(EPS)

Figure S2 Checking the appropriatedness of the Accel-
erated Failure Time model. With the BUGS parametrization:

Tj*Weibull(r,lj)

log(lj)~b0zb1|a1,jzb2|a2,jzb3|a3,jzb4|a4,j

The hazard function is: h(t)~lrtr{1, and the survival function is:

S(t)~exp({ltr). An empirical test for the Weibull distribution is

provided by the plot of the estimate of ln({ln(S(Tj))) versus ln(Tj),

which should give a straight line: ln({ln(S(t)))~r � ln(t)zln(l).
(EPS)

Figure S3 Goodness-of-fit of the joint change-point/
survival model. The selected model, although being the best in

term of predictive performance among the set of competiting

model, could be still improved. A Kolmogorov-Smirnoff goodness-

of-fit test indicated that the considered covariates were not a

sufficient set for these data (D~0:57, pv0:001).

(EPS)

Figure S4 Correlations between the predictors of the
Accelerated Failure Time survival model. The large

correlations means that these parameters are not independent.

Further model checking revealed that only b4 covaried with

longevity.

(EPS)

Figure S5 Histogramm of the observed longevity of
males included in the sample.
(EPS)

Table S1 Kolmogorov-Smirnoff tests for comparing
dentin layers grown onshore or at sea. For only one

individual was there a significant difference. Removing this

individual did not change the analysis.

(XLS)

Text S1 WinBUGS code to fit the Growth Mixture
Model.
(TXT)

Text S2 WinBUGS code to fit the joint Accelerated
Failure Time\Change-point Model.
(TXT)
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