Modeling of fault gouges with Cosserat Continuum Mechanics: Influence of thermal pressurization and chemical decomposition as coseismic weakening mechanisms - Archive ouverte HAL Access content directly
Journal Articles Journal of Structural Geology Year : 2012

Modeling of fault gouges with Cosserat Continuum Mechanics: Influence of thermal pressurization and chemical decomposition as coseismic weakening mechanisms

Emmanuil Veveakis
  • Function : Author
  • PersonId : 923934
Jean Sulem
Ioannis Stefanou

Abstract

In this paper we study the impact of thermal pressurization and mineral decomposition reactions under seismic deformation conditions (e.g., slip rates of about 1 m/s) triggered by shear heating, to the stability of a saturated fault material. By using higher order continuum considerations, allowing for rotational degrees of freedom to the gouge material, we verify that the micro-inertia of the Cosserat Continuum may regularize the ill-posed problem of simple shear of a fault and that the thermal effects promote localization of deformation into ultra-thin shear bands. It is shown that the width of these structures depends on the parameters of the decomposition reaction considered, obtaining values as low as 100 μm, in agreement with microstructural evidence from natural and artificial faults.
Fichier principal
Vignette du fichier
JSG_Personal_copy.pdf (1.04 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00688670 , version 1 (12-01-2014)

Identifiers

Cite

Emmanuil Veveakis, Jean Sulem, Ioannis Stefanou. Modeling of fault gouges with Cosserat Continuum Mechanics: Influence of thermal pressurization and chemical decomposition as coseismic weakening mechanisms. Journal of Structural Geology, 2012, 38, pp.254-264. ⟨10.1016/j.jsg.2011.09.012⟩. ⟨hal-00688670⟩
522 View
421 Download

Altmetric

Share

Gmail Facebook X LinkedIn More