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Abstract: The Lattice Boltzmann (cellular automata) model equivalent to the 1D shallow
water equations is first introduced. Then, its state-space representation with the introduction of
input-output variables is presented. Finally, the discrete controllability problem is investigated.
First considerations and methods suitable for large scale discrete dynamical systems Gramian
computations are presented. Then controllability analysis arguments are developed based on
the obtained Gramians and on the convergence of energy properties.
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1. INTRODUCTION

Discrete models are extensively used to describe simply
complex distributed parameters systems. These discrete
models are often obtained from the discretization of par-
tial differential equations. However, more recently, models
have been built to represent dynamical systems directly
from discrete formulations of quantitative behaviors or
physical principles. Cellular automata models are exam-
ples of such an approach. Historically they have been
introduced by von Neuman and Ulam Neuman (1966) as
self-reproducing automata. However, more recently, they
have been extensively used to model distributed parame-
ters systems in epidemiology Ostfeld et al. (2005); Slimi
et al. (2009), ecosystems and population spatial dynam-
ics Chopard and Lagrava (2006); Hencinas et al. (2007),
biomedical applications Ouared et al. (2006); Chopard
et al. (2010), etc. In these application examples discrete
state space are convenient. However in many distributed
parameters systems based on conservation laws for macro-
scopic variables (in the thermodynamical meaning), con-
tinuous state spaces seem more appropriate. For this rea-
son, Lattice Boltzmann Models (LBM) are a convenient
extension of cellular automata models as they have real-
valued states. LBM have been used also to represent var-
ious kinds of physical models Chopard and Droz (2005).
They are now recognized as a powerful way to solve Navier-
Stokes equations. In this paper, we will first introduce
them in a general framework and then consider a particular
application to fluid flow modeling and control. LBM have
been recently developed for 1D and 2D shallow water flows
Pham et al. (2010); Zhou (2004); Salmon (1999). They

have proved to be very efficient alternative solutions to
classical discretizations of Shallow Water equations Pham
et al. (2010), especially to describe large and complex free
surface water transportation systems. However, very little
is known about their behavior in what concern qualitative
dynamical properties. This paper is an attempt to present
LBM in a state space formalism suitable for the analysis
of these properties. In section 2, the LBM for shallow
water equation is established. In section 3, the Gramian
computation problem is developed. Finally, in section 4,
the obtained results for the Gramians are analyzed

2. FROM THE LOCAL LATTICE-BOLTZMANN
MODEL TO THE GLOBAL STATE SPACE

REPRESENTATION

We will consider in the following the example of water
flow in a regular open channel with slope I and width B, as
represented in Fig.1. Under the shallow water assumptions
Pham et al. (2010), the water levels and flow in such a
canal reach satisfy:

∂th+ ∂x(hu) = 0

∂t(hu) + ∂x(
1
2
gh2 + hu2) = F

(1)

where h denotes the water depth, u the depth-averaged
horizontal velocity of the flow and g the gravitational
acceleration. The force term, F = gh(I − J), accounts
for the bed slope, I, and the bed friction, J , which
is modelled with the classical Manning formula: J =

n2u2/
(

Bh
B+2h

)4/3

, with n the Manning’s coefficient.



Fig. 1. Longitudinal (left) and lateral (right) views of an
open rectangular channel

2.1 The Lattice Boltzmann Model

The Lattice Boltzmann (LB) method has proven to be
a powerful numerical tool to simulate the fluid flows
and many other physical phenomena in a fully discrete
(time and space) grid Chopard and Droz (2005). The
dynamics in LBM consists of an alternation of collision
and streaming phases:

fouti (x, t) = f ini (x, t) + Ωi(f(x, t)) Collision
f ini (x+ viδt, t+ δt) = fouti (x, t) Streaming

(2)

where f in denotes the vector of all density distributions,
f ini , of particles entering a site, fouti denotes those dis-
tributions which result from the collision, δx is the lattice
spacing and δt is the time step. Ωi is the collision operator,
which is commonly defined by the Bhatnagar-Gross-Krook
(BGK) model Bhatnagar et al. (1954): Ωi = 1

τ (feqi − fi),
where τ is a relaxation time and feqi are the equilibrium
distribution functions which depend on the physical pro-
cess to be described. By combining the equations in (2),
we obtain the evolution equation

fi(x+ viδt, t+ δt) = fi(x, t) +
1
τ

(feqi − fi) (3)

where f stands for f in and where the spatial and temporal
arguments of the term feqi −fi is the same as the first term
of the right hand side. Here we will consider a 1D lattice
termed D1Q3 (1D spatial grid with densities or velocities
in each point, see Fig. 2) with a lattice spatial spacing δx
and a time step δt. This results in a lattice (or numerical)
velocity v = δx

δt . Thus we assign for the three velocities
in (Fig. 2) the values v0 = 0, v1 = v and v2 = −v. In

-�
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Fig. 2. Lattice D1Q3

the Shallow Water example, external forces have to be
considered in the evolution equations. For a constant force,
this can be done by adding the force terms F in equations
(3) in the following way Chopard and Droz (2005):

fi(x+ vδt, t+ δt) = fi(x, t) +
1
τ

(feqi − fi) + wi
δt

c2s
viF (4)

Many parameters and unknown equilibrium distributions
appear in such a LBM. Usually, they all are determined
by the physical assumptions required for the model. For
instance, in the D1Q3 case, symmetry reasons lead to a
choice of the parameters wi and c2s which must satisfy Zhou
(2004)

∑
i

wi = 1,
∑
i

viwi = 0,
∑
i

v2
iwi = c2s,∑

i

v3
iwi = 0,

∑
i

v4
iwi = 3c4s

(5)

This implies w0 = 2
3 , w1 = w2 = 1

6 , c2s = v2

3 . On
another hand the equilibrium distributions may be chosen
in order to give rise to the ”correct” (or physical) balance
equations Chopard and Droz (2005). In the 1D Shallow
Water example, this lead to the following relations between
microscopic (or mesoscopic) values of the equilibrium
distributions and the three ”macroscopic variables” which
are to total mass, momentum and energy. The three
balance equations read in this case Zhou (2004):∑

i

feqi = h,
∑
i

vif
eq
i = hu∑

i

v2
i f

eq
i =

1
2
gh2 + hu2

(6)

They lead to

feq0 = h− 1
2v2

gh2 − 1
v2
hu2

feq1 =
1

4v2
gh2 +

1
2v
hu+

1
2v2

hu2

feq2 =
1

4v2
gh2 − 1

2v
hu+

1
2v2

hu2

(7)

Finally, the macroscopic properties h and u must satisfy
at any time the relations

h =
∑
i

fi = f0 + f1 + f2

hu =
∑
i

vifi = vf1 − vf2

(8)

The variables h and u, are the variables classically used to
describe Shallow Water flows.

2.2 Linearized state space evolution equation

The state space in the case of a LBM is the set of values for
the distribution functions vector. It depends of dimension
and kind of lattice (see Chopard and Droz (2005); Zhou
(2004)). In a lattice with n sites where each site has |v|
neighbors, the state space is Zlbm =

(
(R+)|v|n

)
.

Local dynamic: The local dynamic is defined by the
distribution functions related to ”particles” arriving at
time t+1 on a given site from the neighbor sites where they
were at time t. In our D1Q3 lattice case, after normalizing
the time and space steps, these dynamics read:

fi(xk, t+ 1) = fi(xk+v̄, t) +
1
τ

(feqi − fi) (9)

with i = 0, 1, 2 and v̄ = vi

v .

Global dynamic: The global dynamic is obtained by clos-
ing the set of local dynamics equations (9) with the closure
relations (7) for the distributions equilibrium profiles. In
our D1Q3 lattice case, these nonlinear dynamics read:

fi(xk, t+ 1) = Ai

[
f0(xk+v̄, t)
f1(xk+v̄, t)
f2(xk+v̄, t)

]
(10)



with i = 0, 1, 2. Defining the state space vector as
x(k) = [f0(x1, k) f1(x1, k) f2(x1, k) · · ·

f0(xn, k) f1(xn, k) f2(xn, k)]T , (11)

we obtain a classical evolution model of the form
x(k + 1) = A(Fr,Ψ)x(k) (12)

with the matrices Ai, i = 0, 1, 2, and A given in the
appendix. It is remarkable that these matrices only depend
on the flow Froude number, Fr2 = u2

gh , and the lattice

Froude number, Ψ2 = v2

gh . These two dimensionless num-
bers characterize the kind of flow which arises locally at
the considered location (see appendix A). It is important
to notice that, since Fr and Ψ are functions of h and
u which are in turn functions of the distributions fi (see
equations (8)), we have A = A(x) and the global evolution
equation (12) is nonlinear.

Linearized global dynamics: We will consider the lin-
earization around stationary equilibrium profiles for the
water levels he and flows heue in the classical sense.
Note that in general, equilibrium profiles for the water
levels (he) or depth-averaged horizontal velocities (ue) in
the Saint-Venant equations (1) need not to be uniform
stationary profiles. These equilibrium profiles correspond
to distribution functions f̄i such that

∑
i f̄i = he and∑

i vif̄i = heue. Note also that these stationary distri-
butions are not the equilibrium distributions, feqi in the
Maxwell Boltzmann relaxation meaning which are given
in equations (7). Writing fi = f̄i + εi, one obtains for the
macroscopic variables:

h =
∑
i

fi = he +
∑
i

εi

hu =
∑
i

vifi = heue + v(ε1 − ε2)

u = ue −
ue
he

∑
i

εi +
v

he
(ε1 − ε2)

hu2 = heu
2
e − u2

e

∑
i

εi + 2vue(ε1 − ε2)

(13)

The LBM evolution equation (3) leads to the evolution
equation for the variations εi

εi(xk + viδt, t+ δt) = (1− 1
τ

)εi(xk, t)+
1
τ

(feqi − f̄i)
(14)

Since the distribution functions feq and f̄i are related, one
gets the evolution equations on the linearized variables
(variations εi):

εi(xk, t+ 1) = Ti

[
ε0(xk+v̄, t)
ε1(xk+v̄, t)
ε2(xk+v̄, t)

]
, i = 0, 1, 2 (15)

Defining similarly to previously the linearized state as
z(k) = [ε0(x1, k) ε1(x1, k) ε2(x1, k) · · ·

ε0(xn, k) ε1(xn, k) ε2(xn, k)]T , (16)

we obtain around the stationary profiles (he, ue) a lin-
earized autonomous state dynamical system

z(k + 1) = Tz(k) (17)

with the matrices T0, T1, T2 and T given in the appendix.

Adding the force terms: The force term F may be
linearized around (he, ue) as well by neglecting the terms
of order two and higher in power of εi series expansion.
For a site xk, one obtains:

εi(xk, t+ 1) = (Ti + v̄N)

[
ε0(xk+v̄, t)
ε1(xk+v̄, t)
ε2(xk+v̄, t)

]
+ v̄ghe(I − Je)

where Je = J(he, ue), and N is given in the appendix.
Then the linearized LBM with force terms may be written:

z(k + 1) = Tfz(k) (18)

where the state z(k) is defined as before (see (16)) and
with Tf given in appendix.

2.3 Inputs and outputs

From a control point of view, once a global state space
model has been obtained from the LBM, inputs and
outputs variables need still to be defined. In this paper we
will focus on the input variables denoted hereafter u (to
make the difference with the macroscopic velocity u clear).
We wish to define these input variables for general (N -
dimensional) lattices, for various kind of controls (such as,
for instance, distributed or boundary controls) and in such
a way that the forced solution exists for any admissible
controls. For this, we consider:

• a lattice T , which covers the whole spatial domain of
interest;
• a region T x ⊂ T where the lattice sites can be excited;
• a state space Zlbm containing x(k) or z(k) here above
• a control space U = l2(T x,R) with

l2(T x,R) =

u : T x → R/
∑
xj∈T x

u(xj) ∗ u(xj) <∞


The space l2(T x,R) may be, in the finite dimensional
case (finite number of excitable sites in the lattice),
identified with the space Rp where p := card(T x).
The l2 convergence is then trivial. We will consider
this case in the following.

• an input operator G : U → Zlbm, u → Gu. Usually,
in LB models, local input maps gxj

may be defined
describing how the states corresponding to the excited
site xj ∈ T x are locally controlled. The global input
operator may then be defined as

Gu =
{
gxj (u(xj)) if xj ∈ T x
0 if not (19)

In the general case, these definitions result in a LBM
controlled system

xk+1 = Flbm(xk,uk), x0 ∈ Zlbm (20)

In the linear case it reduces to a classical state space
system

zk+1 = Flbmzk +Glbmuk, z0 ∈ Zrlbm (21)

Zrlbm is a reduced state space where controlled states
have been removed. Flbm is the matrix obtained when
the rows corresponding to excited states (considered as
inputs) have been removed from the dynamic matrix



Fig. 3. Interconnected scheme

Tf : Flbm = MTTfM where M is the projection matrix
corresponding to the cancellation of the states used in the
control. Glbm is the control matrix defined as: Glbm =
MTTfMc, where Mc is the projection matrix selecting
those columns corresponding to the controlled states.
Naturally, Glbm may be viewed as a control operator
and Flbm as the infinitesimal generator of a semi-group
{F klbm}k≥0, Gibson (1972); Packel (1972). In the example
of the canal described by the (Fig. 3), we assume n sites
and 3 gates. We consider the whole canal as the domain
T . The two sites around each gate as those belonging to
T x. When we introduce a gate in the canal, we can impose
some distribution functions to the lattice, see Pham et al.
(2010). We can for instance define a control such that:

• if xj ∈ T x is before the gate, u(xj) = ε2(xj , k);
• if xj ∈ T x is after the gate, u(xj) = ε1(xj , k).

And this, for each gate. If the sites before the gates are,
for example, x2, x8 and x14, we shall have as control:

u = [ε2(x2) ε1(x3) ε2(x8) ε1(x9) ε2(x14) ε1(x15)]T (22)

Matrices Flbm and Glbm for this example are easily derived
by noticing that the rows to be withdrawn from the
dynamic matrix Tf for form the matrix Flbm are : 6,
8, 24, 26, 42 and 44, and the matrix M is obtained by
withdrawing the columns corresponding in the identity
matrix.

3. CONTROLLABILITY FOR LARGE SCALE LB
CONTROL SYSTEMS

3.1 Analytical or direct methods

To determine the controllability of a system, either the
controllability matrix or the controllability Gramian may
be used. For the LB control systems (21), the controllabil-
ity matrix is given by

C = [Glbm FlbmGlbm . . . Fm−1
lbm Glbm] (23)

where m is the dimension of Flbm. The LB control systems
is then controllable if this controllability matrix is full
row rank. Controllability Gramian defined as CCT may be
computed as

Wc =
m−1∑
τ=0

F τlbmGlbmG
′
lbm(F ′lbm)τ (24)

Equivalently, the LB control systems will be controllable
if Wc is full rank.

Due to the large scale of the considered LB control system,
it is very difficult to obtain any analytical result for the

structural behavior of the controllability matrix. In fact we
do not even succeed in finding some qualitative structural
information about this matrix. Similarly, we neither obtain
analytical expressions for the controllability Gramians.
Therefore we focused on the numerical solution for con-
trollability Gramians which are (semi)positive solutions of
Lyapunov equations:{

FlbmWcF
′
lbm +GlbmG

′
lbm = Wc

Wc ≥ 0 (25)

Hence various LMI/LME tools may be tried to compute
the controllability Gramians. We tried the Yalmip toolbox
for Matlab (see Lofberg (2004)). However this tool is
not suited for large scale (sparse) dynamical systems
where it provides meaningless values for the controllability
Gramians (complex or negative eigenvalues).

The Matlab’s toolbox Lyapack may be used to compute
the Lyapunov equation solution for larger scale and sparse
problems Penzl (2000). Originally it is designed for con-
tinuous problems. However the Cayley’s transform (see
Haynes (1991)) may be used to convert the discrete Lya-
punov equation (25) into a continuous Lyapunov equation
of the form AWc +WcA

T = D with{
A = (Flbm − I)(Flbm + I)−1

D = −0.5 ∗ (I − Flbm)GlbmGTlbm(I − FTlbm)
(26)

However, using this approach (with n = 200 sites) gives
large maximal eigenvalues for the residuals which are
respectively 1.33 and 1.59e + 02 in discrete Lyapunov
equation (25) and in the continuous Lyapunov equation
obtained from the Cayley transform (26). Therefore, we
finally adopted a fixed point iterative method to solve our
Gramian computation problem.

3.2 An iterative method for solving Stein’s equation

Stein’s equations are equations of the general form
AXA′ −X + C = 0 (27)

Lyapunov’s equation is thus a particular case. Since they
are fixed point problems, iterative schemes such as Smith’s
iterations (see Benner et al. (1999))

X0 = C
Xk+1 = C +AXkA

′ for k = 0, 1, 2, .... (28)

may be used to solve numerically the problem. One of
the advantages of such an iterative method is that it is
perfectly suited to sparse matrix problems. This reduces
drastically the complexity for large scale sparse problems
like the Gramian computation of LM control systems.
Moreover, in our case, the error estimation in Frobenius
norm ‖.‖F

ρk = ‖Wc,k −Wc,k−1‖F (29)

rapidly converges to 1.0e− 17 (the machine accuracy).

From Benner et al. (1999), if σ(A) < 1, there exist real
constants 0 < L and 0 < r < 1 such that

‖X −Xk‖2 ≤ L‖C‖2(1− r)−1r2k

(30)

This shows that the method converges for all equations
with a Schur stable coefficient matrix A. And with this, we



tried to see how vary the controllability, or how grow the
energy to give to the system for make it achieves a wanted
state. The results are presented in the next section.

4. PRESENTATION OF RESULTS

4.1 Simulation setup

We consider the canal from figure 3 discretized with a n
sites D1Q3 lattice. Numerical values for the canal parame-
ters are those from an experimental plant in the LCIS lab-
oratory in Valence, France. We used the gravitational ac-
celeration g = 9.81ms−2; the width B = 0.1m, the length
L = 8m, the Manning’s coefficient nm = 0.01s/m1/3 and
the relaxation time τ = 1.2s. The parameters of the model
are defined such that δx = L/(n− 1) and δt = δx/2. This
corresponds to a numerical lattice velocity of 2 which make
the method suitable for the subcritical Shallow Water
Flows.

4.2 Threshold of controllability

To determine controllability, it seems natural to check
if the controllability matrix is full row rank. Under the
considered configuration, it appears that the system is
controllable (under Kalman’s criterion) until the number
of sites reaches n = 30. The lost of controllability cor-
responds to lower eigenvalues of the controllability matrix
under the floating point accuracy. It is thus possible in this
example to define a numerical threshold of controllability
which will correspond to a maximum number of sites. In
the next subsections, the effect on the controllability of
growing of the number of sites beyond this maximum will
be investigated.

4.3 Energy convergence

We consider the given system in a zero initial state and
will compute the minimum input signal energy needed to
reach another state, given by xr = 0.033∗ [1 1 · · · 1]T
with dim(xr) = m and m = 3 ∗ n − 6, the dimension
of the state space Zrlbm . We also consider for simplicity
periodic boundary conditions (distributions in the first and
last sites are made equals, see Pham et al. (2010)). These
boundary conditions allow to compensate the dissipated
energy in the canal, injecting it at the upstream end.

We expect that for a controllable LB control system,
the state xr may be reached with a control signal with
finite energy, whatever the number of sites is. Indeed the
model is constructed on invariant macroscopic properties
(total mass, momentum, energy) which are indeed invari-
ant quantities in the numerical simulations. However, we
observe numerically (see Fig. 4) that the energy grows
quickly with the number of sites. The same remark applies
for the Gramian trace represented in (Fig. 5). The two
previous figures are obtained with Gramians computed
with the Smith’s iteration algorithm with residual error
in the discrete Lyapunov equation (25) near the machine’s
precision .

5. CONCLUDING REMARKS

In this paper we considered LB models for distributed
parameters systems. It has been shown how the local

Fig. 4. Energy of system
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evolution equation and equilibrium closure equations in
LBM may be used to obtain a global state space model
for the microscopic distributions.

We shown how a linearization around a macroscopic sta-
tionary profile may be derived on the shallow water equa-
tions example to derive a linearized state space model for
the distributions small variations.

We also shown on this shallow water example how input
variables may be introduced to derive a LBM control sys-
tem similar to classical finite dimensional approximations
of boundary control systems.

We also shown that the derived LB control system numeri-
cally looses its controllability property when the number of
sites increases beyond a limit. Neither the minimum energy
to reach a given state, nor the trace of the controllability
Gramian seem to be bounded when this number of sites
increases.

These numerical results clearly invite us to a deeper anal-
ysis and understanding of what numerical convergence of
the LB models (which has been proven to be quadratic
in space and time for the state, Zhou (2004)) means in
terms of controllability or observability properties. More
precisely, it appears that the meaning of controllability
itself has to be restricted in an appropriate way if we
expect convergence results. From one side, one has to
consider energy supplied through the inputs for clearly
identified scenarii and from the other side it seems that lo-
cal (regional) controllability property has to be considered
with respect to some controllability numerical threshold.
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Appendix A. MATRICES

In the sequel we will use the notations Fr2 = u2

gh and Ψ2 =
v2

gh to denote respectively the real Froude number and a
kind of lattice Froude number. The real Froude number
is an a-dimensional parameter characterizing locally the
kind of flow arising at the considered location. It expresses
the quotient between the kinetic and potential energies.
Fr < 1 corresponds two a ”fluvial” flow, Fr > 1 represents
a ”torrential” flow and Fr = 1 corresponds to a critical
flow.

A0 =
1
τ

[
τ − 1

2Ψ2
1− 1

2Ψ2
− Fr

Ψ
1− 1

2Ψ2
+
Fr
Ψ

]
A1 =

1
τ

[
1

4Ψ2

1
4Ψ2

+
Fr
2Ψ

+ τ − 1
2

1
4Ψ2

− Fr
2Ψ
− 1

2

]
A2 =

1
τ

[
1

4Ψ2

1
4Ψ2

+
Fr
2Ψ
− 1

2
1

4Ψ2
− Fr

2Ψ
+ τ − 1

2

]
and by letting a = 1

Ψ2
e
(1 − Fr2

e) and b = I + Je + 4JeRe

3he
,

we have

T0 =
1
τ

[τ − a 1− a− 2
Fre
Ψe

1− a+ 2
Fre
Ψe

]

T1 =
1
τ

[
a

2
τ − 1

2
+
a

2
+
Fre
Ψe

a

2
− 1

2
− Fre

Ψe
]

T2 =
1
τ

[
a

2
a

2
− 1

2
+
Fre
Ψe

τ − 1
2

+
a

2
− Fre

Ψe
]

N =
δt

2v
g[b (b− 2Jev

ue
) (b+

2Jev
ue

)]

A =



A0 0 0 · · · 0 0
0 0 0 · · · 0 A1

0 A2 0 · · · 0 0
0 A0 0 · · · 0 0
A1 0 0 · · · 0 0
0 0 A2 · · · 0 0

...
0 0 0 · · · A0 0
0 0 0 · · · 0 0
0 0 0 · · · 0 A2

0 0 0 · · · 0 A0

0 0 0 · · · A1 0
A2 0 0 · · · 0 0


The matrix T is obtained by replacing in the matrix A
each matrix Ai by a matrix Ti with the same direction i.

Tf =



T0 0 0 · · · 0 0
0 0 0 · · · 0 T1 +N
0 T2 −N 0 · · · 0 0
0 T0 0 · · · 0 0

T1 +N 0 0 · · · 0 0
0 0 T2 −N · · · 0 0

...
0 0 0 · · · T0 0
0 0 0 · · · 0 0
0 0 0 · · · 0 T2 −N
0 0 0 · · · 0 T0

0 0 0 · · · T1 +N 0
T2 −N 0 0 · · · 0 0




