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We prove the existence of a new type of solutions to a nonlinear Schrödinger system. These solutions, which we call multi-speeds solitary waves, are behaving at large time as a couple of scalar solitary waves traveling at different speeds. The proof relies on the construction of approximations of the multi-speeds solitary waves by solving the system backwards in time and using energy methods to obtain uniform estimates.

Introduction

We consider the following nonlinear Schrödinger system:

(1)

i∂ t u 1 + ∆u 1 + µ 1 |u 1 | 2 u 1 + β|u 2 | 2 u 1 = 0, i∂ t u 2 + ∆u 2 + µ 2 |u 2 | 2 u 2 + β|u 1 | 2 u 2 = 0,
where for j = 1, 2 we have u j : R × R d → C, d = 1, 2, 3, µ j > 0, and β ∈ R \ {0}. This type of systems appears in various physical settings, of which we give now three examples.

When d = µ 1 = µ 2 = β = 1, the system (1) is sometimes called Manakov system, as it was examined by Manakov [START_REF] Manakov | On the theory of two-dimensional stationary self-focusing of electromagnetic waves[END_REF] as an asymptotic model for the propagation of the electric field in a wageguide. With this specific choice of parameters, the system is completely integrable and can be solved by means of the inverse scattering transform. Such analysis is performed in details in the book [START_REF] Ablowitz | Discrete and continuous nonlinear Schrödinger systems[END_REF], which contains also many examples of physical situations where (1) is used.

Later on, (1) was derived to model the propagation of light in an optical fiber when taking into account polarization of light and birefringence of the fiber, see e.g. [START_REF]Nonlinear fiber optics[END_REF]. In this case d = µ 1 = µ 2 = 1 and the parameter β, which measure the strength of the XPM (cross phase modulation) interaction, varies depending on the nature of the fiber (e.g. β = 2 for dual-core fibers or β = 2/3 for single-core fibers).

In higher dimension d = 3, (1) can model the interaction of two Bose-Einstein condensates of atoms in different spin states (see e.g [START_REF] Esry | Hartree-fock theory for double condensates[END_REF]). In this case, if N denotes the number of atoms in the j-st condensate and a jk is a factor proportional to the scattering length between a j-species atom and a k-species atom (a jk may be positive or negative, depending if the collision between particles results into an attractive of repulsive interaction), the parameters of (1) stands for µ j = (N -1)a jj and β = N a jk . The trapping potential is turned off to model the expansion of the condensates in experiments.

From the mathematical point of view, there has been recently an increasing interest for [START_REF] Ablowitz | Discrete and continuous nonlinear Schrödinger systems[END_REF] and its stationary versions. We give only a few samples of the mathematical studies around [START_REF] Ablowitz | Discrete and continuous nonlinear Schrödinger systems[END_REF]. As mentioned before, the system is completely integrable in the Manakov case, but any modification of the parameters breaks integrability and the analysis of the dynamics of (1) in non-integrable cases is largely open. A lot of recent studies (see e.g. [START_REF] Ambrosetti | Standing waves of some coupled nonlinear Schrödinger equations[END_REF][START_REF] Lin | Ground state of N coupled nonlinear Schrödinger equations in R n , n 3[END_REF][START_REF] Maia | Positive solutions for a weakly coupled nonlinear Schrödinger system[END_REF][START_REF] Sirakov | Least energy solitary waves for a system of nonlinear Schrödinger equations in R n[END_REF][START_REF] Terracini | Multipulse phases in k-mixtures of Bose-Einstein condensates[END_REF][START_REF] Wei | Radial solutions and phase separation in a system of two coupled Schrödinger equations[END_REF]) are concerned with the existence of standing waves solutions for various ranges of parameters µ 1 , µ 2 , β. The stability of such standing waves was also investigated in various cases (see, among many others, [START_REF] Colin | Stability of solitary waves for a system of nonlinear Schrödinger equations with three wave interaction[END_REF][START_REF] Maia | Orbital stability property for coupled nonlinear Schrödinger equations[END_REF][START_REF] Ohta | Stability of solitary waves for coupled nonlinear Schrödinger equations[END_REF]).

In this work, we want to investigate the existence of solutions to [START_REF] Ablowitz | Discrete and continuous nonlinear Schrödinger systems[END_REF] where each component behaves like a soliton, as we explain precisely now.

When u 1 ≡ 0 or u 2 ≡ 0, the system (1) reduces to the scalar Schrödinger equation

(2) i∂ t u + ∆u + µ|u| 2 u = 0.

It is well known that (2) admits solitary waves (see [START_REF] Lamb | Elements of soliton theory[END_REF][START_REF] Schuur | Asymptotic analysis of soliton problems[END_REF]), which are solutions with a fixed profile, possibly rotating and traveling on a line (see Theorem 1 and Section 2 for more details). If R 1 denotes a solitary wave solution to (2), then (R 1 , 0) ⊺ is trivially a solution to [START_REF] Ablowitz | Discrete and continuous nonlinear Schrödinger systems[END_REF]. If R 2 is another solitary wave solution to [START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF], then, due to the nontrivial interaction β = 0, the couple (R 1 , R 2 ) ⊺ has no reason to be a solution to [START_REF] Ablowitz | Discrete and continuous nonlinear Schrödinger systems[END_REF]. Nevertheless, our goal in this paper is to exhibit solutions of (1) behaving in large time like a couple of solitary waves (R 1 , R 2 ) ⊺ , provided the relative speed of the solitary waves is large enough. We call such solutions multispeeds solitary waves. To our knowledge, this is the first time that such solutions are exhibited for non-integrable Schrödinger systems. Our main result is the following.

Theorem 1. For j = 1, 2, let ω j > 0, γ j ∈ R, x j , v j ∈ R d , and Φ j ∈ H 1 (R d ) solution to (3) -∆Φ j + Φ j -|Φ j | 2 Φ j = 0, Φ j ∈ H 1 (R d ). Define R j (t, x) := e i(ωj t-|v j | 2 t 4 + 1 2 vj •x+γj) ω j µ j Φ j √ ω j (x -v j t -x j ) , (4) 
v ⋆ := |v 1 -v 2 |, ω ⋆ := 1 4 min{ω 1 , ω 2 }. ( 5 
)
There exists v ♯ > 0 such that if v ⋆ > v ♯ , then there exists T 0 ∈ R and a multispeeds solitary wave (u 1 , u 2 ) ⊺ solution of (1) defined on [T 0 , +∞) such that for all t ∈ [T 0 , +∞) the following holds:

(6) u 1 (t) u 2 (t) - R 1 (t) R 2 (t) H 1 ×H 1 e -√ ω⋆v⋆t .
The strategy of the proof of Theorem 1 is inspired by the one developed for the study of multi-solitons for scalar nonlinear Schrödinger equations in [START_REF] Côte | High-speed excited multi-solitons in nonlinear Schrödinger equations[END_REF][START_REF] Côte | Construction of multi-soliton solutions for the L 2supercritical gKdV and NLS equations[END_REF][START_REF] Martel | Multi solitary waves for nonlinear Schrödinger equations[END_REF][START_REF] Merle | Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity[END_REF]. The idea is to solve (1) backward in time taking as final data at the final time T n a couple of solitary waves, where T n is an increasing sequence of time. In this way, we define a sequence of solutions to (1) which are approximated multi-speeds solitary waves. Then the proof relies on two main steps. First we show that the approximate solutions satisfy the required estimate (6) on a sequence of time-intervals [T 0 , T n ], with T 0 independent of n (see Proposition 2). Then we prove that the sequence of initial data obtained at T 0 is compact (see Proposition 3). Therefore, we can extract an initial data giving rise to a solution of (1) which satisfies the conclusion of Theorem 1.

Our approach is very flexible and can probably be extended to many other situations. We do not need many of the technical features present in [START_REF] Côte | High-speed excited multi-solitons in nonlinear Schrödinger equations[END_REF][START_REF] Côte | Construction of multi-soliton solutions for the L 2supercritical gKdV and NLS equations[END_REF][START_REF] Martel | Multi solitary waves for nonlinear Schrödinger equations[END_REF][START_REF] Merle | Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity[END_REF] like modulation theory or localization procedures. Neither do we require any assumptions on the attractiveness (β < 0) or repulsiveness (β > 0) of the coupling, or on the strength of the nonlinearities µ 1 , µ 2 . Whereas it is common when working with solitary waves to consider only ground states profiles Φ j of (3), in our case, as in [START_REF] Côte | High-speed excited multi-solitons in nonlinear Schrödinger equations[END_REF], the profiles can be ground states or excited states. Our only limitation is the assumption on large relative speed v ⋆ , which is due to technical restrictions when proving the uniform estimates (see Section 4).

The rest of the paper is divided as follows. In Section 2, we gather some useful facts about scalar nonlinear Schrödinger equations and their solitary waves. Then in Section 3 we prove the existence of multi-speeds solitary waves assuming uniform estimates and a compactness result. The proof of the uniform estimates and the compactness result are given in Sections 4 and 5.

Notations. Before going further, we precise some notations. The norms of L p (R d ) spaces will be denoted by • L p and the norm of

H 1 (R d ) by • H 1 . The spaces L 2 (R d ) × L 2 (R d ) and H 1 (R d ) × H 1 (R d ) are endowed with the norms u 1 u 2 L 2 ×L 2 = u 1 2 L 2 + u 2 2 L 2 , u 1 u 2 H 1 ×H 1 = u 1 2 H 1 + u 2 2 H 1 .
When writing vectors inside the text, we will use the superscript ⊺ to denote the transpose of a vector, that is:

(u 1 , u 2 ) ⊺ = u 1 u 2 .
The derivative with respect to the time t will be denoted either by ∂ ∂t or simply ∂ t . Throughout the paper the letter C will denote various positive constants whose exact values may change from line to line but are of no importance for the analysis.

Scalar solitary waves

In this section we summarize the results on scalar solitary waves that we will need for the proof of Theorem 1. For more on scalar Schrödinger equations, the reader can refer to [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF][START_REF] Sulem | The nonlinear Schrödinger equation[END_REF][START_REF] Tao | Nonlinear dispersive equations[END_REF] and the references cited therein. Consider the scalar Schrödinger equation [START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF] i∂ t u + ∆u + µ 0 |u| 2 u = 0, where µ 0 is a positive constant. The energy, mass and momentum, defined as follows, are conserved along the flow of [START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF].

E(u, µ 0 ) := 1 2 ∇u 2 L 2 - µ 0 4 u 4 L 4 , M (u) := 1 2 u 2 L 2 , P (u) := 1 2 Im R d u∇ūdx.
A basic solitary wave u is a solution of (7) of the form u(t, x) = e it √ µ0 Φ(x), where Φ is a solution of ( 8)

-∆Φ + Φ -|Φ| 2 Φ = 0, Φ ∈ H 1 (R d ).
The existence and properties of solutions to equations of the type (8) are well-known (see e.g. the fundamental work of Berestycki and Lions [START_REF] Berestycki | Nonlinear scalar field equations I[END_REF][START_REF] Berestycki | Nonlinear scalar field equations II[END_REF]). All solutions to [START_REF] Cazenave | The Cauchy problem for the critical nonlinear Schrödinger equation in H s[END_REF] are smooth and exponentially decreasing. Precisely, for all η < 1, for all solutions Φ to [START_REF] Cazenave | The Cauchy problem for the critical nonlinear Schrödinger equation in H s[END_REF], and for all x ∈ R d , there exists C Φ > 0 such that the following estimate holds:

|Φ(x)| + |∇Φ(x)| C Φ e -η|x| .
Equation ( 8) admits a unique ground state, i.e. a positive and radial solution which minimizes among all solutions the action S := E(•, 1) + M . In dimension d 2, there exist also infinitely many other solutions called excited states. Apart when d = 1, the classification of solutions to [START_REF] Cazenave | The Cauchy problem for the critical nonlinear Schrödinger equation in H s[END_REF] is still an active research area. Classification of radial solutions was completed recently in the works [START_REF] Cortázar | On the uniqueness of the second bound state solution of a semilinear equation[END_REF][START_REF] Cortázar | On the uniqueness of sign changing bound state solutions of a semilinear equation[END_REF]. Among non radial solutions we mention the vortices, which were first constructed by Lions [START_REF] Lions | Solutions complexes d'équations elliptiques semilinéaires dans R N[END_REF]. In dimension 2, a vortex is a solution of (8) of the form Φ(ρ, θ) = e imθ Ψ(ρ) where (ρ, θ) are polar coordinates and m ∈ R. In this work, we treat any type of solutions to [START_REF] Cazenave | The Cauchy problem for the critical nonlinear Schrödinger equation in H s[END_REF].

Invariances by scaling, translation, phase shift and galilean transform generate a (2d + 2)-parameters family of solitary waves solutions to [START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF]. Precisely, let ω 0 > 0, γ 0 ∈ R, x 0 , v 0 ∈ R d , and take Φ 0 ∈ H 1 (R d ) a solution to [START_REF] Cazenave | The Cauchy problem for the critical nonlinear Schrödinger equation in H s[END_REF]. Then R 0 defined by

(9) R 0 (t, x) := e i(ω0t-|v 0 | 2 4 + 1 2 v0•x+γ0) ω 0 µ 0 Φ 0 √ ω 0 (x -v 0 t -x 0 )
is a solution to [START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF]. Note that, for t fixed, R 0 (t, •) is a critical point of the functional S 0 defined by ( 10)

S 0 := E(•, µ 0 ) + ω 0 + |v 0 | 2 4 M + v 0 • P.
Coercivity properties of linearizations of S 0 -like functionals will play an important role in our analysis. We define the linearized action

H 0 for t ∈ R and ε ∈ H 1 (R d ) by (11) H 0 (t, ε) := S ′′ 0 (R 0 (t))ε, ε . Lemma 1 (Scalar Coercivity). Take ω 0 > 0, γ 0 ∈ R, x 0 , v 0 ∈ R d , Φ 0 ∈ H 1 (R d )
a solution to [START_REF] Cazenave | The Cauchy problem for the critical nonlinear Schrödinger equation in H s[END_REF] and let R 0 be the solitary wave solution of [START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF] given by (9), S 0 and H 0 the functionals given by (10)- [START_REF] Cortázar | On the uniqueness of sign changing bound state solutions of a semilinear equation[END_REF]. Then there exists c 0 > 0, ν 0 ∈ N, and a family of normalized functions

{ξ k 0 ∈ L 2 (R d ); ξ k 0 L 2 = 1, k = 1, ..., ν 0 } such that for all t ∈ R and for all ε ∈ H 1 (R d ) we have c 0 ε 2 H 1 H 0 (t, ε) + ν0 k=1 ε, ξ k 0 (t) 2 2 ,
where by ξ k 0 (t) we denote the functions defined by

ξ k 0 (t)(x) := e i(ω0t-|v 0 | 2 4 + 1 2 v0•x+γ0) ω 0 µ 0 ξ k 0 √ ω 0 (x -v 0 t -x 0 ) .

Sketch of proof.

The result being classical we only recall the main arguments. Consider Φ a real solution of [START_REF] Cazenave | The Cauchy problem for the critical nonlinear Schrödinger equation in H s[END_REF]. Then Φ is a critical point of the functional

S = E(•, 1) + M . For ε ∈ H 1 (R d ), the functional S ′′ (Φ)ε, ε can be decomposed by writing S ′′ (Φ)ε, ε = L + Re(ε), Re(ε) + L -Im(ε), Im(ε) ,
where L + , L -are two self-adjoint linear operators defined by:

L + = -∆ + 1 -3|Φ| 2 , L -= -∆ + 1 -|Φ| 2 .
The operators L + and L -are self adjoint compact perturbations of -∆ + 1, hence their spectrums lie on the real line and consist of essential spectrum on [1, +∞) and a finite number of eigenvalues on (-∞, η] for any η < 1. Hence, there exists c 0 > 0, ν 0 ∈ N corresponding to the number of non-positive eigenvalues of L + and L -(counted with multiplicity) and a family of normalized eigenfunctions

{ξ k 0 ∈ L 2 (R d ); ξ k 0 L 2 = 1, k = 1, ..., ν 0 } such that c 0 ε 2 H 1 S ′′ (Φ)ε, ε + ν0 k=1 ε, ξ k 0 2 2 .
The conclusion of the Lemma follows by extending the arguments to complex-valued Φ and applying scaling, phase shift, translations and galilean transform (see [START_REF] Côte | High-speed excited multi-solitons in nonlinear Schrödinger equations[END_REF][START_REF] Martel | Multi solitary waves for nonlinear Schrödinger equations[END_REF] for details).

Construction of the solution

Starting from now and for the rest of the paper we fix for j = 1, 2 a set of parameters [START_REF] Ambrosetti | Standing waves of some coupled nonlinear Schrödinger equations[END_REF]. Let R j denote the corresponding solitary wave defined in (4), v ⋆ the relative speed and ω ⋆ the minimal frequency, both defined in [START_REF] Berestycki | Nonlinear scalar field equations II[END_REF].

ω j > 0, γ j ∈ R, x j , v j ∈ R d , and Φ j ∈ H 1 (R d ) solution to
Before starting the proof, we need some preliminaries on the local well-posedness of (1). In our setting, local well-posedness follows from classical arguments of the local Cauchy theory for Schrödinger equations (see e.g. [6, Remark 3.3.12] and [START_REF] Cazenave | The Cauchy problem for the critical nonlinear Schrödinger equation in H s[END_REF]). Precisely, for any 0 < σ 1 such that 2 < 4 d-2σ or σ = 1 and for any initial

data (u 0 1 , u 0 2 ) ⊺ ∈ H σ (R d ) × H σ (R d ) there exist T ⋆ , T ⋆ > 0 and a solution to (1) (u 1 , u 2 ) ⊺ ∈ C (-T ⋆ , T ⋆ ), H σ (R d ) × H σ (R d ) such that (u 1 (0), u 2 (0)) ⊺ = (u 0 1 , u 0 2 ) ⊺ . If in addition (u 0 1 , u 0 2 ) ⊺ ∈ H 1 (R d ) × H 1 (R d )
, then the solution also belongs to

C 1 (-T ⋆ , T ⋆ ), H -1 (R d ) × H -1 (R d ) and the blow-up alternative holds, that is if T ⋆ < +∞ (resp. T ⋆ < +∞) then lim t→T ⋆ u 1 (t) u 2 (t) H 1 ×H 1 = +∞, resp. lim t→-T⋆ u 1 (t) u 2 (t) H 1 ×H 1 = +∞ .
In the sequel, we shall mainly work with the scalar energy E(•, µ), momentum P and masse M defined in Section 2, but we remark here that the system (1) admits its own conservation laws. Precisely, the total energy E, the total momentum P (defined as follows) and the masses M of each component are conserved quantities for the H 1 (R d )-flow of ( 1):

E u 1 (t) u 2 (t) := E(u 1 (t), µ 1 ) + E(u 2 (t), µ 2 ) - β 2 R d |u 1 (t)| 2 |u 2 (t)| 2 = E u 0 1 u 0 2 , ( 12 
) P u 1 (t) u 2 (t) := P (u 1 (t)) + P (u 2 (t)) = P u 0 1 u 0 2 , (13) 
M (u 1 (t)) = M (u 0 1 ), M (u 2 (t)) = M (u 0 2 ). ( 14 
)
We can now define a sequence of approximated multi-speeds solitary waves. Let T n ∈ R be an increasing sequence of times such that lim n→+∞ T n = +∞. For each n ∈ N, let (u n 1 , u n 2 ) ⊺ be the solution of (1) defined on the interval (T n , T n ] and such that the final data satisfy (u n

1 (T n ), u n 2 (T n )) ⊺ = (R 1 (T n ), R 2 (T n )) ⊺ .
We will prove that there exists some T 0 independent of n such that for every n large enough (u n 1 , u n 2 ) ⊺ is defined on [T 0 , T n ] and is close to (R 1 , R 2 ) ⊺ . More precisely, we have the following proposition, which will be proved in Section 4.

Proposition 2 (Uniform estimates). There exists v ♯ such that if v ⋆ > v ♯ , then the following holds. There exists T 0 ∈ R, and n 0 ∈ N such that for all n n 0 and for all t ∈ [T 0 , T n ] the following estimate is satisfied:

(15) u n 1 (t) u n 2 (t) - R 1 (t) R 2 (t) H 1 ×H 1 e -√ ω⋆v⋆t .
As T n goes to +∞, the sequence (u n 1 , u n 2 ) ⊺ provides a better and better approximation of a multi-speeds solitary wave. What remains to show is the convergence of this sequence. Due to local well-posedness and uniform estimates, the main issue is to obtain the convergence of the sequence of initial data (u n 1 (T 0 ), u n 2 (T 0 )) ⊺ . This is the object of the following proposition, which will be proved in Section 5.

Proposition 3 (Compactness). There exists

(u 0 1 , u 0 2 ) ⊺ ∈ H 1 (R d ) × H 1 (R d ) such that, possibly for a subsequence only, (u n 1 (T 0 ), u n 2 (T 0 )) ⊺ → (u 0 1 , u 0 2 ) ⊺ strongly in H s (R d ) × H s (R d ) for any s ∈ [0, 1) when n → +∞.
We can now prove Theorem 1.

Proof of Theorem 1. Let (u 0 1 , u 0 2 ) ⊺ be the initial data given by Proposition 3 and let (u 1 , u 2 ) ⊺ be the solution to [START_REF] Ablowitz | Discrete and continuous nonlinear Schrödinger systems[END_REF] 

on [T 0 , T ∞ ) with initial data (u 1 (T 0 ), u 2 (T 0 )) ⊺ = (u 0 1 , u 0 2 ) ⊺ .
We show that T ∞ = +∞ and that (u 1 , u 2 ) ⊺ fulfils the conclusions of Theorem 1. From Proposition 3, the local well-posedness theory for (1), and the boundedness in

H 1 (R d ) × H 1 (R d ) (implied by Proposition 2), we have for t ∈ [T 0 , T ∞ ) the convergences u n 1 (t) u n 2 (t) H s ×H s -----→ -----⇁ H 1 ×H 1 u 1 (t) u 2 (t) ,
where the convergence is taken strongly in H s (R d ) × H s (R d ) for any 0 s < 1 and weakly in

H 1 (R d ) × H 1 (R d ).
Consequently, we can estimate for all t ∈ [T 0 , T ∞ ):

u 1 (t) u 2 (t) - R 1 (t) R 2 (t) H 1 ×H 1 lim inf n→+∞ u n 1 (t) u n 2 (t) - R 1 (t) R 2 (t) H 1 ×H 1 e -√ ω⋆v⋆t .
In particular, this implies that (u

1 (t), u 2 (t)) ⊺ is bounded in H 1 (R d ) × H 1 (R d ) on [T 0 , T ∞ ).
Hence, the blow-up alternative implies that T ∞ = +∞ and therefore (u 1 , u 2 ) ⊺ satisfies the conclusions of Theorem 1.

Uniform Estimates

In this section, we prove Proposition 2. From the local well-posedness theory, estimate [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry I[END_REF] always holds on some short interval around T n . The goal of the following Lemma is to allow us to stretch this interval up to the interval [T 0 , T n ].

Lemma 4 (Bootstrap).

There exists v ♯ such that if v ⋆ > v ♯ , then there exists T 0 ∈ R and n 0 ∈ N such that for all n n 0 the following property is satisfied for

any t 0 ∈ [T 0 , T n ]. If for all t ∈ [t 0 , T n ] we have u n 1 (t) u n 2 (t) - R 1 (t) R 2 (t) H 1 ×H 1 e -√ ω⋆v⋆t ,
then for all t ∈ [t 0 , T n ] we have

u n 1 (t) u n 2 (t) - R 1 (t) R 2 (t) H 1 ×H 1 1 2 e -√ ω⋆v⋆t .
Before going further, we indicate how Lemma 4 is used to prove Proposition 2.

Proof of Proposition 2. Let T 0 , n 0 , v ♯ be given by Lemma 4, fix n > n 0 and assume v ⋆ > v ♯ . Define

t ♯ := inf{t † such that (15) holds for all t ∈ [t † , T n ]}.
From the local well-posedness theory we know that t ♯ < T n . We prove by contradiction that t ♯ = T 0 . Assume that t ♯ > T 0 . By Lemma 4, for all t ∈ [t ♯ , T n ] we have

u n 1 (t) u n 2 (t) - R 1 (t) R 2 (t) H 1 ×H 1 1 2 e -√ ω⋆v⋆t .
Therefore, by continuity of (u n 1 , u n 2 ) ⊺ , there exists t ‡ < t ♯ such that (15) holds on [t ‡ , T n ], hence contradicting the minimality of t ♯ . As a consequence, t ♯ = T 0 and the proposition is proved.

Before proving Lemma 4, we need some preparation. We will work for fixed n, hence dependency in n will only be understood, except for T n . In particular, we shall denote

u n 1 by u 1 , etc. Let (ε 1 , ε 2 ) ⊺ ∈ H 1 (R d ) × H 1 (R d ) be such that (16) u 1 u 2 = R 1 R 2 + ε 1 ε 2 .
Take t 0 < T n and assume the following bootstrap hypothesis:

(17) ε 1 (t) ε 2 (t) H 1 ×H 1 e -√ ω⋆v⋆t for all t ∈ [t 0 , T n ].
For j = 1, 2, we denote by S j and H j the functionals defined for the solitary wave R j in the same way as S 0 and H 0 were for R 0 in [START_REF] Cortázar | On the uniqueness of the second bound state solution of a semilinear equation[END_REF] and [START_REF] Cortázar | On the uniqueness of sign changing bound state solutions of a semilinear equation[END_REF]. Note that, conversely to what was happening in the works [START_REF] Côte | High-speed excited multi-solitons in nonlinear Schrödinger equations[END_REF][START_REF] Côte | Construction of multi-soliton solutions for the L 2supercritical gKdV and NLS equations[END_REF][START_REF] Martel | Multi solitary waves for nonlinear Schrödinger equations[END_REF], we do not need to localize the functionals around each solitary wave, since in our case the coupling will act as a localizing factor. Let S be the functional defined for (w 1 , w 2

) ⊺ ∈ H 1 (R d ) × H 1 (R d ) by (18) S w 1 w 2 := S 1 (w 1 ) + S 2 (w 2 ).
and H be the functional defined for (t, (̟

1 , ̟ 2 ) ⊺ ) ∈ R × H 1 (R d ) × H 1 (R d ) by H t, ̟ 1 ̟ 2 := H 1 (t, ̟ 1 ) + H 2 (t, ̟ 2 ).
A direct consequence of Lemma 1 on H is the following result.

Lemma 5 (Vectorial Coercivity).

There exists c ⋆ > 0 such that for all t ∈ R and for all

(̟ 1 , ̟ 2 ) ⊺ ∈ H 1 (R d ) × H 1 (R d ) we have: (19) c ⋆ ̟ 1 ̟ 2 2 H 1 ×H 1 H t, ̟ 1 ̟ 2 + j=1,2 νj k=1 ̟ j , ξ k j (t) 2 2 
,

where (ξ k j ) are given for for j = 1, 2 by Lemma 1. Note that the use of coercivity properties is reminiscent from the stability theory for standing waves of scalar nonlinear Schrödinger equation developed in [START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF][START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry I[END_REF][START_REF] Weinstein | Modulational stability of ground states of nonlinear Schrödinger equations[END_REF][START_REF] Weinstein | Lyapunov stability of ground states of nonlinear dispersive evolution equations[END_REF]. However, in this theory, the functional equivalent to S is a conserved quantity, which is not the case for S (remark that S is build upon the conserved quantities of the scalar problem and not upon those of (1) given in ( 12)-( 14)). However, we will still be able to estimate the RHS of ( 19) thanks to an L 2 (R d )-control (to deal with the scalar products) and thanks to the fact that S is almost a conservation law (to deal with H).

Lemma 6 (L 2 (R d )-control). Let (ε 1 , ε 2 ) ⊺ be given by [START_REF] Lamb | Elements of soliton theory[END_REF] and assume [START_REF] Lin | Ground state of N coupled nonlinear Schrödinger equations in R n , n 3[END_REF]. Then there exists C > 0 independent of v ⋆ such that for all t ∈ [t 0 , T n ] the following estimate holds:

ε 1 (t) ε 2 (t) L 2 ×L 2 C √ ω ⋆ v ⋆ e -√ ω⋆v⋆t .
Lemma 7 (Almost Conservation Law). Assume [START_REF] Lin | Ground state of N coupled nonlinear Schrödinger equations in R n , n 3[END_REF]. There exists T 0 > 0 depending only on v 1 , v 2 such that if t 0 > T 0 then there exists C > 0 independent of n and of v ⋆ such that for all t ∈ [t 0 , T n ] the following estimate holds:

(20) S u 1 (t) u 2 (t) -S u 1 (T n ) u 2 (T n ) C √ ω ⋆ v ⋆ e -2 √ ω⋆v⋆t .
Before showing Lemmas 6 and 7, we prove Lemma 4.

Proof of Lemma 4. Let (ε 1 , ε 2 ) ⊺ be given by ( 16), assume [START_REF] Lin | Ground state of N coupled nonlinear Schrödinger equations in R n , n 3[END_REF] and assume also that t 0 > T 0 where T 0 is given by Lemma 7. Let t ∈ [t 0 , T n ]. By Lemma 5, we have the following estimate

(21) c ⋆ ε 1 (t) ε 2 (t) 2 H 1 ×H 1 H t, ε 1 (t) ε 2 (t) + j=1,2 νj k=1 ε j (t), ξ k j (t) 2 2 . 
Using that R 1 and R 2 are critical points of S 1 and S 2 , we have

(22) S u 1 (t) u 2 (t) = S R 1 (t) + ε 1 (t) R 2 (t) + ε 2 (t) = S R 1 (t) R 2 (t) + H t, ε 1 (t) ε 2 (t) + O ε 1 (t) ε 2 (t) 3 H 1 ×H 1
.

By Lemma 7, we have

(23) S u 1 (t) u 2 (t) -S u 1 (T n ) u 2 (T n ) C √ ω ⋆ v ⋆ e -2 √ ω⋆v⋆t .
By definition of (u 1 , u 2 ) ⊺ and since S is made of conserved quantities for R 1 and R 2 , we have:

(24) S u 1 (T n ) u 2 (T n ) = S R 1 (T n ) R 2 (T n ) = S R 1 (t) R 2 (t) .
From the bootstrap assumption [START_REF] Lin | Ground state of N coupled nonlinear Schrödinger equations in R n , n 3[END_REF] we have

(25) O ε 1 (t) ε 2 (t) 3 H 1 ×H 1 = Ce -3 √ ω⋆v⋆t .
Combining ( 22)-( 25), we infer that, possibly increasing T 0 , we have:

(26) H t, ε 1 (t) ε 2 (t) C √ ω ⋆ v ⋆ e -2 √ ω⋆v⋆t .
Hence to control the

H 1 (R d ) × H 1 (R d )-norm it remains to control the L 2 (R d )
scalar products in the RHS of ( 21). This is done using Lemma 6 and remembering that the ξ k j are bounded in L 2 (R d ):

(27) j=1,2 νj k=1 ε j (t), ξ k j (t) 2 2 C ε 1 (t) ε 2 (t) 2 L 2 ×L 2 C √ ω ⋆ v ⋆ e -2 √ ω⋆v⋆t .
Combining ( 21), ( 26) and( 27) we get

ε 1 (t) ε 2 (t) 2 H 1 ×H 1 C √ ω ⋆ v ⋆ e -2 √ ω⋆v⋆t .
Therefore, there exists v ♯ such that if v ⋆ > v ♯ then we have

ε 1 (t) ε 2 (t) H 1 ×H 1 1 2 e -√ ω⋆v⋆t ,
which is the desired conclusion.

The following estimate on the interaction of the two solitary waves will be central in the proofs of Lemmas 6 and 7.

Lemma 8 (Solitary Waves Interaction).

There exists C > 0 depending on Φ 1 , Φ 2 , ω 1 , ω 2 , µ 1 , µ 2 , but not on v 1 , v 2 such that for all x ∈ R d we have

|R 1 (t)||R 2 (t)| L 2 Ce -3 2 √ ω⋆v⋆t , |R 1 (t)| + |∇R 1 (t)| |R 2 (t)| + |∇R 2 (t)| L 2 C(1 + |v 1 | + |v 2 |) 2 e -3 2 √ ω⋆v⋆t . Proof. Take 0 < η < 1. Each Φ j verifies |Φ j (x)| + |∇Φ j (x)| Ce -η|x| ,
where C = C(Φ j ). Using the definition (4) of a solitary wave, we have for each R j the estimate

|R j (t, x)| + |∇R j (t, x)| C(1 + |v j |)e -η √ ωj |x-vjt-xj | , where C = C(Φ j , ω j , µ j ). Therefore, (|R 1 (t, x)| + |∇R 1 (t, x)|)(|R 2 (t, x)| + |∇R 2 (t, x)|) C(1 + |v 1 | + |v 2 |) 2 e -η √ minj=1,2{ωj }(|x-v1t-x1|+|x-v2t-x2|) ,
where

C depends on Φ 1 , Φ 2 , ω 1 , ω 2 and µ 1 , µ 2 . Let 0 < δ < η. Since |(v 1 -v 2 )t| |x -v 1 t| + |x -v 2 t|,
we infer that

(|R 1 (t, x)| + |∇R 1 (t, x)|)(|R 2 (t, x)| + |∇R 2 (t, x)|) C(1 + |v 1 | + |v 2 |) 2 e -δ √ minj=1,2{ωj }(|x-v1t-x1|+|x-v2t-x2|) • e -(η-δ) √ minj=1,2{ωj }|(v1-v2)t| ,
where now C depends also on x 1 , x 2 . Choosing η = 7 8 , δ = 1 8 and remembering that ω

⋆ = 1 4 min{ω 1 , ω 2 } and v ⋆ = |v 1 -v 2 |, we obtain (|R 1 (t, x)| + |∇R 1 (t, x)|)(|R 2 (t, x)| + |∇R 2 (t, x)|) C(1 + |v 1 | + |v 2 |) 2 e -1 2 √ ω⋆(|x-v1t-x1|+|x-v2t-x2|) e -3 2 √ ω⋆v⋆t .
Taking the L 2 (R d )-norm and using Cauchy-Schwartz inequality, we get

|R 1 (t)| + |∇R 1 (t)| |R 2 (t)| + |∇R 2 (t)| L 2 C(1 + |v 1 | + |v 2 |) 2 e -3 2 √ ω⋆v⋆t e -1 2 √ ω⋆|x| L 2 C(1 + |v 1 | + |v 2 |) 2 e -3 2
√ ω⋆v⋆t , which is the desired conclusion.

To prove the L 2 (R d )-control Lemma 6, as in [START_REF] Côte | High-speed excited multi-solitons in nonlinear Schrödinger equations[END_REF] we adopt the following strategy. We first write the system satisfied by (ε 1 , ε 2 ) ⊺ . Then, we differentiate in time the L 2 (R d )-masses of ε 1 and ε 2 , and estimate the result with e -2 √ ω⋆v⋆t . Integrating in time finally allows us to gain the extra factor 1 √ ω⋆v⋆ .

Proof of Lemma 6. The couple (ε 1 , ε 2 ) ⊺ satisfies the equation

i∂ t ε 1 ε 2 + L ε 1 ε 2 + N ε 1 ε 2 + F = 0
where L denote the linear part in (ε 1 , ε 2 ) ⊺ , N the nonlinear part and F the source term. Precisely, we set

L ε 1 ε 2 := L 1 (ε 1 , ε 2 ) L 2 (ε 1 , ε 2 ) , N ε 1 ε 2 := N 1 (ε 1 , ε 2 ) N 2 (ε 1 , ε 2 ) , F := β |R 1 | 2 R 2 |R 2 | 2 R 1 ,
where

L 1 (ε 1 , ε 2 ) L 2 (ε 1 , ε 2 ) = ∆ε 1 + (2µ 1 |R 1 | 2 + β|R 2 | 2 )ε 1 + µ 1 R 2 1 ε1 + β(R 1 R2 ε 2 + R 1 R 2 ε2 ) ∆ε 2 + (2µ 2 |R 2 | 2 + β|R 1 | 2 )ε 2 + µ 2 R 2 2 ε2 + β( R1 R 2 ε 1 + R 1 R 2 ε1 ) , N 1 (ε 1 , ε 2 ) N 2 (ε 1 , ε 2 ) = µ 1 R1 ε 2 1 + 2R 1 |ε 1 | 2 + |ε 1 | 2 ε 1 µ 2 R2 ε 2 2 + 2R 2 |ε 2 | 2 + |ε 2 | 2 ε 2 + β R 2 ε2 ε 1 + R2 ε 2 ε 1 + R 1 |ε 2 | 2 + |ε 2 | 2 ε 1 R 1 ε1 ε 2 + R1 ε 1 ε 2 + R 2 |ε 1 | 2 + |ε 1 | 2 ε 2 .
We make the computations for ε 1 , the case of ε 2 being exactly symmetric.

(

) ∂ ∂t M (ε 1 ) = 1 2 ∂ ∂t ε 1 (t) 2 L 2 = -Im R d (L 1 (ε 1 , ε 2 )ε 1 + N 1 (ε 1 , ε 2 )ε 1 + β|R 1 | 2 R 2 ε1 )dx. 28 
Using the bootstrap assumption [START_REF] Lin | Ground state of N coupled nonlinear Schrödinger equations in R n , n 3[END_REF], we immediately obtain the following estimate:

Im R d L 1 (ε 1 , ε 2 )ε 1 dx = Im R d µ 1 R 2 1 ε2 1 + β(R 1 R2 ε1 ε 2 + R 1 R 2 ε1 ε2 )dx , C( R 1 2 L ∞ + R 2 2 L ∞ )( ε 1 2 H 1 + ε 2 2 H 1 ), Ce -2 √ ω⋆v⋆t . (29) 
Here, and in the rest of the proof, the constant C may depend on

β, µ 1 , µ 2 , Φ 1 , Φ 2 , x 1 , x 2 , but not on v 1 , v 2 . This is due to the fact that R j L ∞ = ωj µj Φ j L ∞ for j = 1, 2.
We consider now the nonlinear part. Since d 3 we have the embedding of H 1 (R d ) into L 3 (R d ) and L 4 (R d ) and therefore we can prove that

Im R d N 1 (ε 1 , ε 2 )ε 1 dx R d µ 1 R1 ε 2 1 + 2R 1 |ε 1 | 2 + |ε 1 | 2 ε 1 ε1 dx + R d β|(R 2 ε2 ε 1 + R2 ε 2 ε 1 + R 1 |ε 2 | 2 + |ε 2 | 2 ε 1 )ε 1 dx C( R 1 L ∞ + R 2 L ∞ )( ε 1 2 H 1 ε 2 2 H 1 + ε 1 3 H 1 + ε 1 4 H 1 ) Ce -3 √ ω⋆v⋆t . (30) 
Last, in order to estimate the source term, we need to use also Lemma 8 in combinaison with the bootstrap assumption [START_REF] Lin | Ground state of N coupled nonlinear Schrödinger equations in R n , n 3[END_REF]. ( 31)

Im |R 2 | 2 R 1 ε1 R 2 L ∞ |R 1 ||R 2 | L 2 ε 1 H 1 Ce -5 2 √ ω⋆v⋆t , Combining (28) 
-( 31) we get:

∂ ∂t M (ε 1 ) Ce -2 √ ω⋆v⋆t .
Integrating in time and recalling that by definition we have ε 1 (T n ) = 0, we obtain:

M (ε 1 (t)) T n t ∂ ∂s M (ε 1 (s)) ds C √ ω ⋆ v ⋆ e -2 √ ω⋆v⋆t ,
which is the desired conclusion for ε 1 . As already said, the calculations for ε 2 are perfectly symmetric, hence the lemma is proved.

Recall that S is build with scalar energies, masses and momentums. To prove Lemma 7, the idea is, as for the proof of Lemma 6, to differentiate in time the various quantities involved in S (see [START_REF] Lions | Solutions complexes d'équations elliptiques semilinéaires dans R N[END_REF] and ( 10)), control the result with e -2 √ ω⋆v⋆t and then integrate to gain the extra factor 1 √ ω⋆v⋆ .

Proof of Lemma 7. Since the scalar masses are conserved by the flow of ( 1) and (u 1 , u 2 ) ⊺ is a solution of (1), it follows immediatly that [START_REF] Weinstein | Lyapunov stability of ground states of nonlinear dispersive evolution equations[END_REF] |M (u

1 (t)) -M (u 1 (T n ))| + |M (u 2 (t)) -M (u 2 (T n ))| = 0.
For the momentum part, we need to estimate

|v 1 • (P (u 1 (t)) -P (u 1 (T n ))) + v 2 • (P (u 2 (t)) -P (u 2 (T n )))|.
In fact, since the total momentum ( 13) is a conserved quantity, we have to estimate

(33) |(v 1 -v 2 ) • (P (u 1 (t)) -P (u 1 (T n )))| = v ⋆ |P (u 1 (t)) -P (u 1 (T n ))|.
Hence we differentiating at time t the scalar momentum P 1 . Using the system (1) satisfied by (u 1 , u 2 ) ⊺ and integrations by parts, we obtain

∂ ∂t P (u 1 ) = -Im R d ∂ t u 1 ∇ū 1 dx = - 1 2 R d |u 2 | 2 ∇|u 1 | 2 dx.
We recall that u 1 = R 1 + ε 1 and u 2 = R 2 + ε 2 and replace in the previous equation to get

(34) ∂ ∂t P (u 1 ) = - 1 2 R d |R 2 | 2 ∇|R 1 | 2 + 2|R 2 | 2 ∇(Re( R1 ε 1 )) + |R 2 | 2 ∇|ε 1 | 2 + 2Re( R2 ε 2 )∇|R 1 | 2 + 4Re( R2 ε 2 )∇(Re( R1 ε 1 )) + 2Re( R2 ε 2 )∇|ε 1 | 2 + |ε 2 | 2 ∇|R 1 | 2 + 2|ε 2 | 2 ∇(Re( R1 ε 1 ) + |ε 2 | 2 ∇|ε 1 | 2 dx.
We treat the various products appearing differently depending on their order in R j and ε j . When there is a product of R 1 and R 2 or of their derivatives, we use Lemma 8, as for the following term.

(35)

R d |R 2 | ∇|R 1 | 2 dx C (|R 1 | + |∇R 1 |)|R 2 | 2 L 2 C(1 + |v 1 | + |v 2 |) 4 e -3 √ ω⋆v⋆t .
To deal with the ε j , we use the bootstrap assumption [START_REF] Lin | Ground state of N coupled nonlinear Schrödinger equations in R n , n 3[END_REF]. With the help of Cauchy-Schwartz and Hölder inequalities and Sobolev embeddings, we get (36)

R d |ε 2 | 2 ∇|ε 1 | 2 dx C ∇ε 1 L 2 ε 1 L 6 ε 2 2 L 6
Ce -4 √ ω⋆v⋆t .

We possibly combine the two arguments as follows.

(37)

R d Re( R2 ε 2 )∇(Re( R1 ε 1 ))dx |R 2 |(|R 1 | + |∇R 1 |) L 2 |ε 2 |(|ε 1 | + |∇ε 1 |) L 2 C(1 + |v 1 | + |v 2 |) 2 e -7 2 √ ω⋆v⋆t .
When there is an extra R j that we cannot use with Lemma 8, we just take its

L ∞ (R d )-norm: (38) R d |R 2 | 2 ∇(Re( R1 ε 1 ))dx + R d Re( R2 ε 2 )∇|R 1 | 2 dx C( R 1 L ∞ + R 2 L ∞ ) (|R 1 | + |∇R 1 |)|R 2 | L 2 ( |ε 1 | + |∇ε 1 | L 2 + ε 2 L 2 ) C(1 + |v 1 | + |v 2 |) 2 e -5 2 √ ω⋆v⋆t .
The following estimate is obtained with similar arguments:

(39)

R d Re( R2 ε 2 )∇|ε 1 | 2 dx R 2 L ∞ ε 1 L 4 ∇ε 1 L 2 ε 2 L 4 Ce -3 √ ω⋆v⋆t .
After an integration by parts, the next product can be treated as in (39) (40)

R d |ε 2 | 2 ∇(Re( R1 ε 1 ))dx = R d ∇|ε 2 | 2 (Re( R1 ε 1 )dx Ce -3 √ ω⋆v⋆t .
Before estimating the remaining two terms, we make a remark about ∇|R j | 2 L ∞ . From the definition of a solitary wave (4), we have

∇(|R j | 2 ) = ω j µ j ∇|Φ j √ ω j (x -v j t -x j ) | 2 = 2ω 3 2 j µ j Re Φj √ ω j (x -v j t -x j ) ∇Φ j √ ω j (x -v j t -x j ) .
This implies that

∇|R j | 2 L ∞ 2ω 3 2 j µ j Φ j L ∞ ∇Φ j L ∞ ,
and in particular ∇|R j | 2 L ∞ does not depend on v j . We can now write

R d |ε 2 | 2 ∇|R 1 | 2 dx ∇|R 1 | 2 L ∞ ε 2 2 L 2 C ε 2 2 L 2 ,
Here, if we use directly the bootstrap assumption ( 17), we will miss the correct estimate by a factor 1 v⋆ because of the v ⋆ appearing in (33). However, remembering that we already improved [START_REF] Lin | Ground state of N coupled nonlinear Schrödinger equations in R n , n 3[END_REF] at the L 2 (R d )-level in Lemma 6, we can conclude that:

(41) R d |ε 2 | 2 ∇|R 1 | 2 dx C √ ω ⋆ v ⋆ e -2 √ ω⋆v⋆ .
The last term is treated in a similar fashion after an integration by parts.

(42)

R d |R 2 | 2 ∇|ε 1 | 2 dx = R d ∇|R 2 | 2 |ε 1 | 2 dx C √ ω ⋆ v ⋆ e -2 √ ω⋆v⋆ .
Take now T 0 large enough so that v ⋆ (1

+ |v 1 | + |v 2 |) 4 e -1 2
√ ω⋆v⋆T0 < 1. With this assumption and the fact that t 0 > T 0 , we can now combine (34)-(42), and argue in the same fashion for the scalar momentum of u 2 , to finally find:

(43) v ⋆ ∂ ∂t P (u 1 ) Ce -2 √ ω⋆v⋆t for C depending on Φ 1 , Φ 2 , ω 1 , ω 2 , µ 1 , µ 2 but not on v 1 , v 2 .
Therefore, we obtain the following control on scalar momentums

(44) |v 1 • (P (u 1 (t)) -P (u 1 (T n ))) + v 2 • (P (u 2 (t)) -P (u 2 (T n )))| = v ⋆ |P (u 1 (t)) -P (u 1 (T n ))| T n t v ⋆ ∂ ∂s P (u 1 (s)) ds C √ ω ⋆ v ⋆ e -2 √ ω⋆v⋆t .
Now, we treat the energy part. The direct approach consisting in trying to differentiate in time the energies E(u j , µ j ) and then argue as for the momentums is bound to fail because of the appearance of terms like

R d Im(ε 1 ∇ε 1 )Re(ε 2 ∇ε 2 )dx,
which, unless d = 1, we cannot treat with an H 1 (R d )-information like [START_REF] Lin | Ground state of N coupled nonlinear Schrödinger equations in R n , n 3[END_REF]. However, if we use the conservation of the total energy E we remark that:

(45) E(u 1 (t), µ 1 ) -E(u 1 (T n ), µ 1 ) + E(u 2 (t), µ 2 ) -E(u 2 (T n ), µ 2 ) = E u 1 (t) u 2 (t) -E u 1 (T n ) u 2 (T n ) -β R d (|u 1 (t)| 2 |u 2 (t)| 2 -|u 1 (T n )| 2 |u 2 (T n )| 2 )dx = -β R d (|u 1 (t)| 2 |u 2 (t)| 2 -|u 1 (T n )| 2 |u 2 (T n )| 2 )dx.
Therefore, it is enough to prove that (46)

R d |u 1 (t)| 2 |u 2 (t)| 2 + |u 1 (T n )| 2 |u 2 (T n )| 2 dx C √ ω ⋆ v ⋆ e -2 √ ω⋆v⋆t .
To obtain (46), we do not differentiate in time the LHS but instead we try to obtain the estimate directly. First note that by definition of (u 1 , u 2 ) ⊺ and Lemma 8 we have

R d |u 1 (T n )| 2 |u 2 (T n )| 2 dx = R d |R 1 (T n )| 2 |R 2 (T n )| 2 dx Ce -3 √ ω⋆v⋆T n Ce -3 √ ω⋆v⋆t .
As before, for the other part, we replace u j by R j + ε j and develop.

(47)

R d |u 1 | 2 |u 2 | 2 dx = R d (|R 1 | 2 |R 2 | 2 + 2|R 1 | 2 Re( R2 ε 2 ) + |R 1 | 2 |ε 2 | 2 + 2Re( R1 ε 1 )|R 2 | 2 + 4Re( R1 ε 1 )Re( R2 ε 2 ) + 2Re( R1 ε 1 )|ε 2 | 2 + |ε 1 | 2 |R 2 | 2 + |ε 1 | 2 Re( R2 ε 2 ) + |ε 1 | 2 |ε 2 | 2 )dx.
The following estimates are obtained using the same arguments as in the momentum case, in particular Lemma 8 and the bootstrap assumption [START_REF] Lin | Ground state of N coupled nonlinear Schrödinger equations in R n , n 3[END_REF].

R d |R 1 | 2 |R 2 | 2 dx Ce -3 √ ω⋆v⋆t , (48) R d 2|R 1 | 2 Re( R2 ε 2 )dx C R 1 L ∞ |R 1 ||R 2 | L 2 ε 2 L 2 Ce -5 2 √ ω⋆v⋆t , (49) R d Re( R1 ε 1 )|R 2 | 2 dx C R 2 L ∞ |R 1 ||R 2 | L 2 ε 1 L 2 Ce -5 2 √ ω⋆v⋆t , (50) R d Re( R1 ε 1 )Re( R2 ε 2 )dx C |R 1 ||R 2 | L 2 |ε 1 ||ε 2 | L 2 Ce -7 2 √ ω⋆v⋆t , (51) R d Re( R1 ε 1 )|ε 2 | 2 dx C R 1 L ∞ ε 1 L 2 ε 2 2 L 4 Ce -3 √ ω⋆v⋆t , (52) R d |ε 1 | 2 Re( R2 ε 2 )dx R 2 L ∞ ε 1 2 L 4 ε 2 L 2 Ce -3 √ ω⋆v⋆t , (53) R d |ε 1 | 2 |ε 2 | 2 dx ε 1 2 L 4 ε 2 2 L 4 Ce -4 √ ω⋆v⋆t . ( 54 
)
We need an extra argument for the two remaining terms. Indeed, we have

R d |ε 1 | 2 |R 2 | 2 dx R 2 2 L ∞ ε 1 2 L 2 C ε 1 2 L 2 , R d |R 1 | 2 |ε 2 | 2 dx R 1 2 L ∞ ε 2 2 L 2 C ε 2 2 L 2 .
As for the momemtum part, if we use ( 17) here, we miss the correct estimate by a factor 1 √ ω⋆v⋆ . However, using Lemma 6, we can conclude that:

R d |ε 1 | 2 |R 2 | 2 dx C √ ω ⋆ v ⋆ e -2 √ ω⋆v⋆t , (55) R d |R 1 | 2 |ε 2 | 2 dx C √ ω ⋆ v ⋆ e -2 √ ω⋆v⋆t . ( 56 
)
Putting together (47)-( 56) and assuming T 0 large enough implies the desired estimate (46).

To conclude the proof, we combine (32), ( 44), ( 45), ( 46) to obtain (20).

Compactness of the sequence of initial data

In this section, we prove Proposition 3. The proof is similar to the one given in [START_REF] Côte | High-speed excited multi-solitons in nonlinear Schrödinger equations[END_REF][START_REF] Martel | Multi solitary waves for nonlinear Schrödinger equations[END_REF] and we repeat it here for the sake of completness. We again use the superscript n to indicate the dependency in n.

From Proposition 2, we know that (u n 1 (T 0 ),

u n 2 (T 0 )) ⊺ is bounded in H 1 (R d ) × H 1 (R d ). Hence there exist (u 0 1 , u 0 2 ) ⊺ ∈ H 1 (R d ) × H 1 (R d ) such that (57) u n 1 (T 0 ) u n 2 (T 0 ) H 1 --⇀ u 0 1 u 0 2 .
We now prove that convergence in (57) holds also strongly in L 2 (R d ) × L 2 (R d ), the result of Proposition 3 then readily following by interpolation. Take δ > 0, let n be large enough and let T δ ∈ [T 0 , T n ] be such that e -√ ω⋆v⋆t < δ 4 . Then, by Proposition 2, (58)

u n 1 (T δ ) u n 2 (T δ ) - R 1 (T δ ) R 2 (T δ ) H 1 ×H 1 δ 4 .
Take ρ δ > 0 such that (59)

|x|>ρ δ |R 1 (T δ )| 2 + |R 2 (T δ )| 2 dx δ 4 .
Then we infer from (58) that

|x|>ρ δ |u n 1 (T δ )| 2 + |u n 2 (T δ )| 2 dx δ 2 .
Our goal is transfer this smallness up to T 0 . Let τ : R → R be a C 1 cut-off function such that τ (s) = 0 for s < 0, τ (s) = 1 for s > 1, τ (s) ∈ [0, 1] for s ∈ R,

τ ′ L ∞ 2.
Take κ δ > 0 and define

V (t) := 1 2 R d |u n 1 | 2 + |u n 2 | 2 τ |x| -ρ δ κ δ dx.
Then we have

V ′ (t) = Re R d (ū n 1 ∂ t u n 1 + ūn 2 ∂ t u n 2 ) τ |x| -ρ δ κ δ dx.
Using the equation satisfied by u 1 and after an integration by part, we obtain: Choose now κ δ such that T δ -T0

Re

κ δ < δ 2 . Then (61) V (T 0 ) -V (T δ ) = T0 T δ V ′ (t)dt T δ -T 0 κ δ δ 2 .
Set r δ := κ δ + ρ δ (note that r δ is independant of n). Since from (59) and the definition of τ we have V (T δ ) < δ 2 , we deduce from (61) that

|x|>r δ |u n 1 (T 0 )| 2 + |u n 2 (T 0 )| 2 dx V (T 0 ) δ.
Therefore the sequence (u n 1 (T 0 ), u n 2 (T 0 )) ⊺ is L 2 (R d ) × L 2 (R d ) compact, which concludes the proof.
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