In 1998, a conference for Ilya Piatetski-Shapiro was organized in the Fourier Institute (Grenoble, France), with participation of A.Andrianov, G.Henniart, H.Hida, J.-P.Labesse, J.-L.Waldspurger and others.

In IAS, we had the most intensive period of our joint work in the Fall 1999-2000.

My last meeting Ilya was on January 31, 2009 at the the Weizmann Institute home of Volodya Berkovich and his wife Lena, who is Grisha Freiman's daughter. Vera brought Ilya, Edith, and Edith's mother Ida to Berkovich's. This very pleasant gathering also included Grisha Freiman, his wife Nina, Steve and Mary Gelbart, Antoine Ducros, and my wife Marina, see also [CGS], p. 1268.

That was the last party in Ilya's life.

His favorite automorphic forms were the Eisenstein series, and the main subject of this talk will be my new construction of meromorphic p-adic families of Siegel-Eisenstein series in relation to the geometry of homogeneuos spaces, both complex and p-adic, for any prime p.

I am glad that this construction fits into the particular subject "Automorphic Forms and Related Geometry" of our conference.

p-adic Siegel-Eisenstein series and related geometry

Let us consider the symplectic group Γ = Sp m (Z) (of (2m × 2m)-matrices), and prove that the Fourier coefficients a h (k) of the original Siegel-Eisenstein series E m k admit an explicit p-adic meromorphic interpolation on k where h runs through all positive definite half integral matricies for det(2h) not divisible by p, where 

E m k (z) =

p-adic Siegel-Eisenstein series and related geometry

The homogeneuos space X = {(c, d)/ ∼} = P \ Sp m and its p-adic points admit Siegel's coordinates ν = det(c) and R = c -1 d defined on the main subset given by det(c) ∈ GL 1 , which is used in the construction.

I try also to present various applications: to p-adic L-functions, to Siegel's Mass Formula, to p-adic analytic families of automorphic representations.

Eisenstein series are basic automorphic forms, and there exist several ways to construct them via group theory, lattice theory, Galois representations, spectral theory... For me, the Eisenstein series is the main tool of analytic constructions of complex and p-adic L-functions, in particular via the doubling method, see [PSR], [GRPS], [START_REF] Böcherer | Über die Funktionalgleichung automorpher L-Funktionen zur Siegelscher Modulgruppe[END_REF], [START_REF] Shimura | Eisenstein series and zeta functions on symplectic groups[END_REF], [Boe-Schm],. . . , greatly thanks to Ilya Piatetski-Shapiro and his collaborators.

General strategy

For any Dirichlet character χ mod p v consider Shimura's "involuted" Siegel-Eisenstein series assuming their absolute convergence (i.e. k > m + 1):

E * k (χ, z) = (c,d)/∼ χ(det(c)) det(cz + d) -k = 0<h∈Bm a h (k, χ)q h .
The two sides of the equality produce dual approaches: geometric and algebraic. The Fourier coefficients can be computed by Siegel's method (see [START_REF] Sturm | The critical values of zeta-functions associated to the symplectic group[END_REF], [START_REF] Shimura | Eisenstein series and zeta functions on symplectic groups[END_REF], . . . ) via the singular series

a h (E * k (χ, z)) (1) = (-2πi) mk 2 m(m-1) 2 Γ m (k) R mod 1 χ(ν(R))ν(R) -k det h k-m+1 2 e m (hR)
The orthogonality relations mod p v produce two families of distributions (notice that terms in the RHS are invariant under sign changes, and (3) is algebraic after multiplying by the factor in (1)):

1 ϕ(p v ) χ mod p v χ(b) (c,d)/∼ χ(det(c)) det(cz + d) k = (c,d)/∼ det(c)≡b mod p v sgn(det(c)) k det(cz + d) k
(2)

1 ϕ(p v ) χ mod p v χ(b) R mod 1 χ(ν(R))e m (hR) ν(R) k = R mod 1 ν(R)≡b mod p v e m (hR)sgnν(R) k ν(R) k (3) 
The use of Iwasawa theory and pseudomeasures

We express the integrals of Dirichlet characters θ mod p along the distributions (3) through the reciprocal of a product of L-functions, and elementary integral factors.

The result turns out to be an Iwasawa function of the variable t = (1 + p) k -1 divided by a distinguished polynomial provided that det h is not divisible by p.

Thus the second family (3) comes from a unique pseudomeasure µ * h which becomes a measure after multiplication by an explicit polynomial factor (in the sense of the convolution product).

Then we deduce that (2) determines a unique pseudomeasure with coefficients in Q[[q Bm ]] whose moments are given by those of the coefficients (3) (after removing from the Fourier expansion f (z) = h≥0 a h e m (hz) all h with det h divisible by p): h>0,p |det h a h q h = p -m(m+1)/2 h 0 mod p p |det h 0 x∈S mod p e m (-h 0 x/p)f (z + (x/p)).

In this way a p-adic family of Siegel-Eisenstein series is geometrically produced. 

Generalities about p-adic L-functions

There exist two kinds of L-functions

• Complex-analytic L-functions (Euler products)

• p-adic L-functions (Mellin transforms L µ of p-adic measures) Both are used in order to obtain a number (L-value) from an automorphic form. Usually such a number is algebraic (after normalization) via the embeddings

Q ֒→ C, Q ֒→ C p = Q p .
How to define and to compute p-adic L-functions? We use Mellin transform of a Z p -valued distribution µ on a profinite group

Y = lim ← i Y i , µ ∈ Distr (Y, Z p ) = Z p [[Y ]] = lim ← i Z p [Y i ] =: Λ Y (the Iwasawa algebra of Y ). L µ (x) = Y x(y)dµ, x ∈ X Y = Hom cont (Y, C * p ) (the Mellin transform of µ on Y ).
Examples of p-adic measures and L-functions

• Y = Z p , X Y = {χ t : y → (1 + t) y }. The Mellin transform L µ (χ t ) = Zp (1 + t) y dµ(y)
of any measure µ on Z p is given by the Amice transform, which is the following power series

A µ (t) = n≥0 t n Zp y n dµ(y) = Zp (1 + t) y dµ(y), e.g. A δm = (1 + t) m . Thus, Distr (Z p , Z p ) ∼ = Z p [[T ]]. • Y = Z * p = ∆ × Γ = {y = δ(1 + p) z , δ p-1 = 1, z ∈ Z p } X Z * p = {θχ (t) | θ mod p, χ (t) (χ (t) ) = (1 + t) z , where ∆ is the subgroup of roots of unity, Γ = 1 + pZ p . The p-adic Mellin transform L µ (θχ (t) ) = Z * p θ(δ)(1 + t) z µ(y) of a measure µ on Z * p is given by the collection of Iwasawa series G θ,µ (t) = n≥0
a n,θ t n , where

(1 + t) z = n≥0 z n t n , a n,θ = δ mod p, n≥0 θ(δ)t n • Zp z n µ(δ(1 + p) z ).
• A general idea is to construct p-adic L-functions directly from Fourier coefficients of modular forms (or from the Whittaker functions of automorphic forms).

2 p-adic meromorphic continuation of the Siegel-Eisenstein series

Mazur's p-adic integral

For any choice of a natural number c ≥ 1 not divisible by p, there exists a p-adic measure µ c on Z * p , such that the special values

ζ(1 -k)(1 -p k-1 ) = Z * p y k-1 dµ c 1 -c k ∈ Q (k ≥ 2 even ), produce the Kubota-Leopoldt p-adic zeta-function ζ p : X p → C p (where X p = X Z * p = Hom cont (Z * p , C * p )) as the p-adic Mellin transform ζ p (x) = Z * p x(y)dµ c (y) 1 -cx(c) = L µc (x) 1 -cx(c) ,
with a single simple pole at x = x -1 p ∈ X, where C p = Qp the Tate field, the completion of an algebraic closure of the p-adic field Q p , x ∈ X p (a C p -analytic Lie group), x p (y) = y ∈ X p , and x(y) = χ(y)y k-1 as above.

Explicitly: Mazur's measure is given by

µ c (a + p v Z p ) = 1 c ca p v + 1 -c 2c = 1 c B 1 ({ ca p v }) -B 1 ( a p v ), B 1 (x) = x - 1 2 ,
see [LangMF], Ch.XIII.

Meromorphic p-adic continuation of

1 ζ(1-k)(1-p k-1 )
For any odd prime p take the Iwasawa series G θ,c (t) of Mazur's measure µ c where

θ is a character modp, G θ,c (t) := Z * p θ(y)χ (t) ( y )µ c = ∞ n=0 a n t n ∈ Z p [[t]], and 
χ (t) : (1 + p) z → (1 + t) z , y = y ω(y)
, ω the Teichmüller character. Mazur's integral of the character

y k-1 = ω k-1 • χ (t) shows that θ = ω k-1 , (1 + t) = (1 + p) k-1 ζ(1 -k)(1 -p k-1 ) = G θ,c ((1 + p) k-1 -1) 1 -c k . (4) 
By the Weierstrass preparation theorem we have a decomposition

G θ,c (t) = U θ,c (t)P θ,c (t)
with a distinguished polynomial P θ,c (t) and invertible power series U θ,c (t). The inversion of (4) for any even k ≥ 2 gives :

1 ζ(1 -k)(1 -p k-1 ) = G θ,c ((1 + p) k-1 -1) -1 (1 -c k ).
The answer: for any prime p > 2 and even k ≥ 2

is the following Iwasawa function on t = t k = (1 + p) k -1 divided by a distingushed polynomial:

1 ζ(1 -k)(1 -p k-1 ) = U * θ,c ((1 + p) k-1 -1)(1 -c k ) P θ,c ((1 + p) k-1 -1) (5) = U * θ,c ((1 + t k )(1 + p) -1 -1)(1 -c k ) P θ,c ((1 + t k )(1 + p) -1 -1)
which is meromorphic in the unit disc of the variable t = (1 + p) k -1 with a finite number of poles (expressed via roots of P θ,c ) for θ = ω k-1 , and

U * θ,c ((1 + p) k-1 -1) := 1/U θ,c ((1 + p) k-1 -1).
The above formula immediately extends to all Dirichlet L-functions of characters χ mod p v as the following Iwasawa function divided by a polynomial:

1 L(1 -k, χ)(1 -χ(p)p k-1 ) = U * θ,c (χ(1 + p)(1 + p) k-1 -1)(1 -χ(c)c k ) P θ,c (χ(1 + p)(1 + p) k-1 -1)
where Fourier expansion of the Siegel-Eisenstein series hz) , h runs over semi-definite half integral m × m matrices.

U * θ,c (χ(1 + p)(1 + p) k-1 -1) := 1 U θ,c (χ(1 + p)(1 + p) k-1 -1) Illustration: numerical values of ζ(1-2k) -1 (1-p 2k-1 ) -1 for p = 37 gp >zetap1(p,n)= -2*n/(bernfrac(2*n)*(1-pˆ(2*n-1)+O(pˆ5))); gp > p=37; gp > for(k=1,(p-1)/2, print(2*k, zetap1(p,k))) 2k ζ(1 -2k) -1 (1 -p 2k-
has the form E m k (z) = γ∈P \Γ det(cz + d) -k = h∈Bm a h q h , where a h = a h (k) = a h (E m k ), q h = e 2πitr(
The rationality of the coefficients a h was established in Siegel's pioneer work [START_REF] Siegel | Über die analytische Theorie der quadratischen Formen[END_REF] in connection with a study of local densities for quadratic forms. Siegel expressed a h (k) as a product of local factors over all primes and ∞.

In a difficult later work [START_REF] Siegel | Über die Fourierschen Koeffizienten der Eisensteinsehen Reihen[END_REF] Siegel proved the boundedness of their denominators, and S.Boecherer [START_REF] Böcherer | Über die Fourierkoeffizienten Siegelscher Eisensteinreihen[END_REF] gave a simplified proof of a more precise result in 1984. M.Harris extended the rationality to wide classes of Eisenstein series on Shimura varieties [START_REF] Harris | The rationality of holomorphic Eisenstein series[END_REF], [START_REF] Harris | Eisenstein Series on Shimura Varieties[END_REF]. Their relation to the Iwasawa Main Conjecture and p-adic L-functions on the unitary groups was established in [HLiSk].

Explicit p-adic continuation of a h (k)

as Iwasawa functions on t = (1 + p) k -1 divided by distinguished polynomials. Let a (p) h (k) denote the p-regular part of the coefficient a h (k) (i.e. with the Euler p-factor removed from the product). Namely, for any even k, a

(p) h (k) = a h (E m k ) times      1/((1 -p k-1 )(1 + ψ h (p)p k-m 2 -1 ) (m/2)-1 i=1 (1 -p 2k-2i-1 )) = (1 -ψ h (p)p k-m 2 -1 )/((1 -p k-1 ) m/2 i=1 (1 -p 2k-2i-1 )), m even 1/((1 -p k-1 ) (m-1)/2 i=1 (1 -p 2k-2i-1 )), m odd,
where the p-correcting factor is a p-adic unit, and 

ψ h (n) := det(2h)(-1)
h (k) = S E θ,h ((1 + p) k-1 -1) P E θ,h ((1 + p) k-1 -1)
with a finite number of poles expressed via the roots of P E θ,h (T ) where the denominator depends only on det(2h) mod 4p and k mod p -1.

Computation of the Fourier coefficients

Recall that Siegel's computation of the coefficients a h = a h (E m k ) :

E m k (z) = γ∈P \Γ det(cz + d) -k = h∈Bm a h q h
is based on the Poisson summation formula giving the equality (see [START_REF] Maass | Siegel's modular forms and Dirichlet series[END_REF], p.304):

a∈Sm det(z + a) -k = (-2πi) mk 2 m(m-1) 2 Γ m (k) h∈Cm det(h) k-m+1 2 e 2πitr(hz) ,
where Γ m (k) = π m(m-1)/4 m-1 j=0 Γ(s -j 2 ), q h = e 2πitr(hz) , h runs over the set C m of positive definite half integral m × m symmetric matrices, and a runs over the set S m of integral m × m symmetric matrices, see [START_REF] Siegel | Einführung in die Theorie der Modulfunktionen n-ten Grades[END_REF], p.652, [START_REF] Sturm | The critical values of zeta-functions associated to the symplectic group[END_REF], p.338.

Formulas for the Fourier coefficients for det(2h) = 0

a h (E m k ) = (-2πi) mk Γ -1 m (k) ζ(k) [m/2] i=1 ζ(2k -2i) × det(2h) k-m+1 2 M h (k) L(k - m 2 , ψ h ), m even, 1, m odd. The integral factor M h (k) = ℓ∈P (h) M ℓ (h, ℓ -k
) is a finite Euler product, extended over primes ℓ in the set P (h) of prime divisors of all elementary divisors of the matrix h. The important property of the product is that for each ℓ we have that

M ℓ (h, t) ∈ Z[t] is a polynomial with integral coefficients.
Notice the L-factor L(k -m 2 , ψ h ) depends on the index h of the Fourier coefficient; this makes a difference to the case of odd m; the case of GL(2) corresponds to m = 1.

Proof: the use of the normalized Siegel-Eisenstein series defined as in [START_REF] Ikeda | On the lifting of elliptic cusp forms to Siegel cusp forms of degree 2n[END_REF], [PaSE] and [PaLNM1990] by

E m k = E m k (z)2 m/2 ζ(1 -k) [m/2] i=1 ζ(1 -2k + 2i),
I show that it produces a nice p-adic family, namely:

Proposition 2.2
(1) For any non-degenerate matrice h ∈ C m the following equality holds

a h (E m k ) = 2 -m 2 det h k-m+1 2 M h (k) (6) × L(1 -k + m 2 , ψ h )C m 2 -k+(1/2) h , m even, 1, m odd,
where C h is the conductor of ψ h .

(2) for any prime p > 2, and det(2h) not divisible by p, define the p-regular

part a h (E m k ) (p) of the coefficient a h (E m k ) of E m k by introducing the factor (1 -ψ h (p)p k-m 2 -1 )C m 2 -k+(1/2) h , m even, 1, m odd. Then a h (E m k ) (p) is a p-adic analytic Iwasawa function of t = (1 + p) k -1 for all k with ω k fixed,

and divided by the elementary factor

1 -ψ h (c h )c k-m 2 h .

Proof of (1) of Proposition 2.2

Proof of (1) is deduced like at p.653 of [START_REF] Ikeda | On the lifting of elliptic cusp forms to Siegel cusp forms of degree 2n[END_REF] from the Gauss duplication formula

Γ( s 2 )Γ( s + 1 2 ) = 2 1-s √ πΓ(s),
the definition

Γ m (k) = π m(m-1)/4 m-1 j=0 Γ(s - j 2 )
and the functional equations

ζ(1 -k) = 2(k -1)! (-2πi) k ζ(k), ζ(1 -2k + 2i) = 2(2k -2i -1)! (-2πi) 2k-2i ζ(2k -2i), L(1 -k + m 2 , ψ h ) = 2(k -m 2 -1)! (-2πi) k-m 2 L(k - m 2 , ψ h )C k-m 2 -1 2 h Proof of (2) of Proposition 2.2 is then deduced easily : Notice that for any a ∈ Z * p , the function of t = (1 + p) k -1 k → a k = ω(a) k a k = ω(a) k (1 + p) k log a log(1+p) (7) = ω(a) k (((1 + p) k -1) + 1) log a log(1+p) = ω(a) k ∞ n=0 log a log(1+p) n t n is a p-adic analytic Iwasawa function denoted by ã(t) ∈ Z p [[t]], of t = (1 + p) k -1 with ω k fixed, where x n = x(x-1)•••(x-n+1) n! . Then Mazur's formula applied to L(1 -k + m 2 , ψ h )(1 -ψ h (p)p k-m 2 -1 ) shows that this function is a p-adic analytic Iwasawa function of t = (1 + p) k -1 with ω k fixed (a single simple pole may occur at k = m 2 only if ω k-m 2 is trivial).

Proof of Main Theorem 2.1

Let us use the equality

E m k = E m k (z) • 2 -m/2 ζ(1 -k) [m/2] i=1 ζ(1 -2k + 2i
) and the properties of the normalized series

E n k (z) in Proposition 2.2.
First let us compute the reciprocal of the product of L-functions

ζ(1 -k) [m/2] i=1 ζ(1 -2k + 2i)
using the above: for even k ≥ 2,

ζ(1 -k) -1 (1 -p k-1 ) -1 = U * θ k ,c ((1 + p) k-1 -1)(1 -c k ) P θ k ,c ((1 + p) k-1 -1) (8) ζ(1 -2k + 2i) -1 (1 -p 2k-2i-1 ) -1 = U * θ 2k-2i ,c ((1 + p) 2k-2i-1 -1)(1 -c 2k-2i ) P θ 2k-2i ,c ((1 + p) 2k-2i-1 -1) (9) 
which is meromorphic in the unit disc with a finite number of poles (expressed via roots of P θ ) for

θ k = ω k-1 .
Let us use again the notation

1 + t = (1 + p) k with k ∈ Z p . 2 -m/2 ζ(1 -k)(1 -p k-1 ) [m/2] i=1 ζ(1 -2k + 2i)(1 -p 2k-2i-1 ) = U E ω k (t) P E ω k (t) (10) 
where the numerator is (an Iwasawa function)

U E ω k (t) = U * θ k ,c ( 1 + t 1 + p -1)(1 -c k ) [m/2] i=1 U * θ 2k-2i ,c ( (1 + t) 2 (1 + p) 2i+1 -1)(1 -c 2k-2i ),
and

P E ω k (t) = P θ,c 1 + t 1 + p -1 [m/2] i=1 P θ 2k-2i ,c (1 + t) 2 (1 + p) 2i+1 -1
is the polynomial denominator which depends only on k mod p -1.

Proof of Main Theorem 2.1: control over the conductor of ψ h

Moreover, Mazur's formula applied to

L(1 -k + m 2 , ψ h )(1 -ψ h (p)p k-m 2 -1 ) (in the numerator)
shows that for all h with det(2h) not divisible by p,

L(1 -k + m 2 , ψ h )(1 -ψ h (p) k-m 2 -1 ) (11) = G θ,h ((1 + p) k-m 2 -1 -1) 1 -ψ h (c h )c k-m 2 h
which is meromorphic in the unit disc with a possible single simple pole at k = m 2 for all k with θ = ω k-1 . It comes from Mazur's measure on the finite product

ℓ∈P h Z *
ℓ extended over primes ℓ in the set P h = P (h) ∪ {p}; recall that P (h) is the set of prime divisors of all elementary divisors of the matrix h as above. Indeed, for any choice of a natural number c h > 1 coprime to ℓ∈P h ℓ, there exists a p-adic measure µ c h ,h on Z * p , such that the special values

L(1 -k + m 2 , ψ h )(1 -ψ h (p)p k-1-m 2 ) = Z * p y k-m 2 -1 dµ c h ,h 1 -ψ h (c h )c k-m 2 h := (1 -ψ h (c h )c k-m 2 h ) -1 ℓ∈P h Z * ℓ ψ h (y)y k-m 2 -1 p dµ c h ,
where Mazur's measure µ c h extends on the product

ℓ∈P h Z * ℓ yp -→Z * p (see §3,Ch.XIII
of [LangMF]):

µ c h (a + (N )) = 1 c h c h a N + 1 -c h 2c h = 1 c h B 1 ({ c h a N }) -B 1 ( a N )
for any natural number N with all prime divisors in P h . The regularizing factor is the following Iwasawa function which depends on c h mod 4p and k mod p -1:

1 -ψ h (c h )c k-m 2 h = 1 -(ψ h ω k-m 2 )(( (1 + p) k (1 + p) m 2 -1) + 1) log c h log(1+p) (12) = 1 -(ψ h ω k-m 2 )(c h ) ∞ n=0 log c h log(1+p) n (( (1 + p) k (1 + p) m 2 -1) n = 1 -(ψ h ω k-m 2 )(c h ) ∞ n=0 log c h log(1+p) n ( (1 + t) (1 + p) m 2 -1) n ∈ Z p [[t]],
where we write c h in place of i p (c h ) and use the notation

1 + t = (1 + p) k . The function (12) is divisible by t or invertible in Z p [[t]] according as ω k-m 2 ψ c h is trivial or not because t = 0 ⇐⇒ k = 0 and 1 + t = (1 + p) k .

Elementary factors

Notation:

u c h (t) = (1 -ψ h (c h )c h (t))/t, if ω k-m 2 ψ h is trivial, 1 -ψ h (c h )c h (t),
otherwise.

By (12) we have that

u c h (t) ∈ Z p [[t]
] * , and we denote by u * c h (t) its inverse. Moreover, (6) gives the elementary factor

M h ((1 + p) k -1) = 2 -m 2 det h k-m+1 2 ℓ|P (h) M (h, ℓ -k )C k-m+1 2 h
which is also an Iwasawa function as above:

M h ((1 + p) k -1) = M h (t) ∈ Z p [[t]].
Proof of Main Theorem 2.1: the numerator

It follows that a (p) h (k) = S E θ,h ((1 + p) k -1) P E θ,h ((1 + p) k -1) = S E θ,h (t) P E θ,h (t) 
,

where

S E θ,h = u * c h ((1 + p) k -1)M((1 + p) k -1) × U θ,h ((1 + p) k-m 2 -1 -1)(1 -c k h )U * θ k ,c ((1 + p) k-1 -1) × [m/2] i=1 U * θ 2k-2i ,c ((1 + p) 2k-2i-1 -1)(1 -c 2k-2i h ) = u * c h (t)M(t)U θ,h ((1 + t)(1 + p) -m 2 -1 -1) × (1 -ch (t))U * θ k ,c h ((1 + t)(1 + p) -1 -1) × [m/2] i=1 U * θ 2k-2i ,c h ((1 + t) 2 (1 + p) -2i-1 -1)(1 -c2 h (t)c -2i h ),

Proof of Main Theorem (end)

The denominator is the following distinguished polynomial

P E θ,h ((1 + p) k-1 -1) = (1 + ((1 + p) k-1 -2)δ(ω k-m 2 ψ c h )) × P θ k ,c h ((1 + p) k-1 -1) [m/2] i=1 P θ 2k-2i ,c h ((1 + p) 2k-2i-1 -1) = (1 + (t -1)δ(ω k-m 2 ψ c h ))P θ k ,c h ((1 + t)(1 + p) -1 -1) × [m/2] i=1 P θ 2k-2i ,c ((1 + t) 2 (1 + p) -2i-1 -1), where δ(ω k-m 2 ψ c h ) = 1, if ω k-m 2 ψ c h is trivial, 0, otherwise, so that 1 + (t -1)δ(ω k-m 2 ψ c h ) = t, if ω k-m 2 ψ c h is trivial, 1, otherwise.
.

It remains to notice that different choices of c h coprime to p det(2h) give the same polynomial factors P E θ,h (up to invertible Iwasawa function). Indeed they all give the same single simple zero.

Pseudomeasures and their Mellin transform

Interpretation: Mellin transform of a pseudomeasure Pseudomeasures were introduced by J.Coates [Co] as elements of the fraction field L of the Iwasawa algebra. Such a pseudomeasure is defined by its Mellin transform which is a ring homomorphism and we can extend it by universality (the extension of the integral along measures in Λ = Z p [[T ]] to the whole fraction field L).

The p-adic meromorphic function

a (p) h (k) = S E θ,h ((1 + p) k -1) P E θ ((1 + p) k -1) = S E θ,h (t) P E θ (t)
, is attached to an explicit pseudo-measure:

ρ E h = µ E h ν E h , S E θ,h (t) P E θ (t) = Z * p θχ (t) µ h Z * p θχ (t) ν h • S(x) = Z * p xµ E h is given by the collection of Iwasawa functions S θ (t) = Z * p θχ (t) µ E h (the numerator), • P(x) = Z * p xν E h is given by the collection of polynomials P θ (t) = Z * p θχ (t) ν E h (the denominator).

Pseudomeasure ρ as a family of distributions

A pseudomeasure ρ can be described as a certain family of distributions, parametrized by the set X p of p-adic characters.

For any x ∈ X p we have a distribution given by the formula

ρ E h,x (a + (p v )) = 1 ϕ(p v ) χ mod p v ′ χ(a) -1 S E (χx) P E (χx)
where ′ means that the terms with P(χx) = 0 are omited. It follows that

Z * p χρ E h,x =    S E (χx) P E (χx) , if P E (χx) = 0 0, otherwise,
where

S E h (χx) = S E (χx)∆,h (χx(1 + p) -1) = S E θ,h ((1 + p) t -1), θ = (χx) ∆ , (χx)(1 + p) = 1 + t, P E h (χx) = P E (χx)∆,h (χx(1 + p) -1) = P E θ,h ((1 + p) t -1).
A geometric construction: Siegel's method and duality

For any Dirichlet character χ mod p v consider Shimura's "involuted" Siegel-Eisenstein series assuming their absolute convergence (i.e. k > m + 1):

E * k (χ, z) = (c,d)/∼ χ(det(c)) det(cz + d) -k = h∈Bm a h (E * k (χ, z))q h
The series on the left is geometrically defined, and the Fourier coefficients on the right can be computed by Siegel's method (see [START_REF] Sturm | The critical values of zeta-functions associated to the symplectic group[END_REF] [Shi95], . . . ) via the singular series

a h (E * k (χ, z)) (13) = (-2πi) mk 2 m(m-1) 2 Γ m (k) R mod 1 χ(ν(R))ν(R) -k det h k-m+1 2 e m (hR) If χ = χ 0 mod p is trivial and p | det h then a h (E * k (χ 0 , z)) (14) = (-2πi) mk 2 m(m-1) 2 Γ m (k) R mod 1 χ 0 (ν(R))ν(R) -k det h k-m+1 2 e m (hR) = a h (E m k ) ×      (1 -p -k )(1 + ψ h (p)p -k+ m 2 ) (m/2)-1 i=1 (1 -p -2k+2i ), m even (1 -p -k ) (m-1)/2 i=1 (1 -p -2k+2i ), m odd.
The formula (14) means that the series E * k (χ 0 , z) coincides with E m k after removing h with det h divisible by p and normalizing by the factor in (14). Moreover, the Gauss reciprocity law shows that the normalizing factor depends only on det h mod 4p = det h 0 mod 4p, where h 0 ≡ h mod 4p runs through a representative system. Let us denote this factor by C + (h 0 , k, 4p): for the trivial character χ = χ 0 mod p and det h not divisible by p

a h (E * k (χ 0 , z)) = a h (E m k )C + (h 0 , k, 4p), where (15) 
C + (h 0 , k, 4p) =      (1 -p -k )(1 + ψ h (p)p -k+ m 2 ) (m/2)-1 i=1 (1 -p -2k+2i ), m even (1 -p -k ) (m-1)/2 i=1 (1 -p -2k+2i ), m odd.
From the Fourier coefficients to modular forms:

If we remove in the Fourier expansion E m k (z ) = h≥0 a h e m (hz ) all terms with det h divisible by p the equality of Fourier coefficients (15) transforms to the equality of the series

E * k (χ 0 , z) = (4p) -m(m+1)/2 h 0 mod 4p p |det h 0 C + (h 0 , k, 4p)× (16) x∈S mod 4p e m (-h 0 x/4p)E m k (z + (x/4p)).

A geometric construction

Let us apply the interpolation theorem (Theorem 2.1) to all the coefficients

a (p) h (k) = a h (E m k )C -(h 0 , k, 4p), where (17) 
C -(h 0 , k, 4p) =        1-ψ h (p)p k-m 2 -1 (1-p k-1 ) m/2 i=1 (1-p 2k-2i-1 ) , m even 
1 (1-p k-1 ) (m-1)/2 i=1 (1-p 2k-2i-1 )
, m odd, and (16) becomes a "geometric-algebraic equality" of two families of modular forms

E * k (χ 0 , z) = (4p) -m(m+1)/2 h 0 mod 4p p |det h 0 C + (h 0 , k, 4p)× (18) C -(h 0 , k, 4p) x∈S mod 4p e m (-h 0 x/4p)E m k (z + (x/4p)).

A geometric construction (end)

We deduce by the orthogonality that

x ′ ∈S mod 4p e m (-h 0 x ′ /4p)E * k (χ 0 , z + (x ′ /4p)) = (19) C + (h 0 , k, 4p) x∈S mod 4p e m (-h 0 x/4p)E m k (z + (x/4p)).
Each series C -(h 0 , k, 4p) x∈S mod 4p e m (-h 0 x/4p)E m k (z + (x/4p)) in (18) determines a unique pseudomeasure with coefficients in Q[[q Bm ]] whose moments are given by those of the coefficients (17).The unicity means that a pseudomeasure is determined by its Mellin transform. It is also a family of distributions geometrically defined by the series

C -(h 0 , k, 4p) C + (h 0 , k, 4p) x∈S mod 4p e m (-h 0 x/4p)E * k (χ 0 , z + (x/4p)).
4 Application to Minkowski-Siegel Mass constants p-adic version of Minkowski-Siegel Mass constants.

An application of the construction is the p-adic version of Siegel's Mass formula. It expresses the Mass constant through the above product of L-values. This product can be viewed as the proportionality coefficient between two kinds of Eisenstein series in the symplectic case extending Hecke's result (1927) of the two kinds of Eisenstein series and the relation between them. However, there is no direct analogue of Hecke's computation in the symplectic case. Thus this mass constant admits an explicit product expression through the values of the functions (5) at t j = (1 + p) j -1, for j = k, and j = 2, 4, . . . , 2k -2.

Recall that ([ConSl98], p.409) unimodular latticies have the property that there are explicit formulae, the mass formulae, which give appropriately weighted sums of the theta-series of all the inequivalent latticies of a given dimension. In particular, the numbers of inequivalent latticies is given by Minkowski-Siegel Mass constants for unimodular latticies.

In the particular case of even unimodular quadratic forms of rank m = 2k ≡ 0(mod8), this formula means that there are only finitely many such forms up to equivalence for each k and that, if we number them Q 1 , . . . , Q h k , then we have the relation

h k i=1 1 w i Θ Qi (z) = m k E k
where w i is the number of automorphisms of the form Θ Qi is the theta series of Q i , E k the normalized Eisenstein series of weight k = m/2 (with the constant term equal to 1), The dimension of lattices is 2k and the Mass formula express an identity of a sum of weighted theta functions and a Siegel-Eisenstein series of weight k, multiplied by the Mass constant

m k = 2 -k ζ(1 -k) k-1 i=1 ζ(1 -2k + 2i) = (-1) k B k 2k × k-1 j=1 B 2j 4j 
which is related the above normalising coefficient. gp > mass(4) % = 1/696729600 gp > mass(8) % = 691/277667181515243520000

The present result says that the p-regular part of 1/m k is a product of values of the p-adic meromorphic functions (5) at t j = (1 + p) j -1, j = k and j = 2, 4, . . . , 2k -2.

It is known that the rational number m k becomes very large rapidly, when k grows (using the functional equation). It means that the denominator of 1/m k becomes enormous. The explicit formula (10) applied to the reciprocal of the product of L-functions as above shows that these are only irregular primes which contribute to the denominator, and this contribution can be evaluated for all primes knowing the Newton polygons of the polynomial part P θ , which can be found directly from the Eisenstein measure. Precisely, for the distingushed polynomial P (t) = P θ (t) = a d t d + • • • + a 0 , ord p a d = 0, and ord p a i > 0 for 0 ≤ i ≤ d -1, and ord p (t j ) = ord p j + 1, where t j = (1 + p) j -1 for j = k and j = 2, 4, . . . , 2k -2. Then ord p P (t j ) = min i=0,...,d

(ord p a i,k + i(ord p j + 1)) .

the values ord p a i,k for 0 ≤ i ≤ d come from the Iwasawa series in the denominator in the left hand side of (10). Also, it gives an important information about the location of zeroes of the polynomial part as in (10)). However P (t j ) = 0 in our case because all the L-values in question do not vanish. 5 Link to Shahidi's method for SL(2) and regular prime p

Methods of constructing p-adic L-functions

Our long term purposes are to define and to use the p-adic L-functions in a way similar to complex L-functions via the following methods:

(1) Tate, Godement-Jacquet;

(2) the method of Rankin-Selberg;

(3) the method of Euler subgroups of Piatetski-Shapiro and the doubling method of Rallis-Böcherer (integral representations on a subgroup of G × G);

(4) Shimura's method (the convolution integral with theta series), and (5) Shahidi's method. There exist already advances for (1) to (4), and we are also trying to develop (5).

We use the Eisenstein series on classical groups and p-adic integral of Shahidi's type for the reciprocal of a product of certain L-functions.

Link to Shahidi's method in the case of SL(2) and regular prime p

The starting point here is the Eisenstein series

E(s, P, f, g) = γ∈P G f s (γg),
on a reductive group G and a maximal parabolic subgroup P = M U P (decomposition of Levi).

This series generalizes

E(z, s) = 1 2 y s |cz + d| 2s , (c, d) = 1.
Here f s is an appropriate function in the induced representation space I(s, π) =

Ind G A P A (π ⊗ |det M (•)| s A ))
, see (I.2.5.1) at p. 34 of [GeSha].

Computing a non-constant term (a Fourier coefficient)

of this Eisenstein series provides an analytic continuation and the functional equation for many Langlands L functions L(s, π, r j ).

In this way the ψ-th Fourier coefficient (with ψ of type ψ(x) = exp(2πinx), n ∈ N, n = 0) of the series E(s, P, f, e) is determined by the Whittaker functions W v in the form (see [GeSha], (II.2.3.1), p.78):

E ψ (e, f, s) = v∈S W v (e v ) m j=1 1 L S (1 + js, π, r j )
,

where r j are certains fundamental representations of the dual group L M . 

(A)/U (Q), U = { 1 0 * 1 } ∼ = G a , let E ψ (s, f, e) = E(s, f, n)ψ(n)
dn, the integration on the quotient space of U (A) by U (Q). Then the first Fourier coefficient has the form

E ψ (s, f, e) = W ∞ (s) 1 ζ(1 + s) ,
for a certain Whittaker function W ∞ (s) (see [Kub], p.46).

Theorem 5.2 (a p-adic version, a work in progress) (with S.Gelbart, S.Miller, F.Shahidi) Let p be a regular prime. Then there exists an explicitly given distribution µ * on Z * p such that for all k ≥ 3 and for all primitive Dirichlet characters χ mod p v with χ(-1) = (-1) k one has

Z * p χy k p µ * = 1 (1 -χ(p)p k-1 )L(1 -k, χ)
, where L(s, χ) is the Dirichlet L-function. More precisely, the distribution µ * can be expressed through the non-constant Fourier coefficients of a certain Eisenstein series Φ * .

Remark. Using Siegel's method for the symplectic groups GSp m , and for all primes p, this result also follows from Main Theorem 2.1 by specializing it to the case of regular p and m = 1.

Doubling method and Ikeda's constructions

Further applications: we only mention the proof of the p-adic Miyawaki Modularity Lifting Conjecture by pullback of families Siegel modular forms (jointly with Hisa-Aki Kawamura), see [Kawa], [START_REF] Panchishkin | Families of Siegel modular forms, L-functions and modularity lifting conjectures[END_REF].

Ikeda's constructions ( [START_REF] Ikeda | On the lifting of elliptic cusp forms to Siegel cusp forms of degree 2n[END_REF], [START_REF] Ikeda | Pullback of the lifting of elliptic cusp forms and Miyawaki's Conjecture Duke[END_REF]) extend the doubling method to pullbacks of cusp forms instead of pullbacks of Eisenstein series.

In the Fall 1999 in IAS, Ilya was much inspired by the preprint of the first Ikeda's lifting, and tried to interpret it representation-theoretically.

Indeed, it extends his own work [START_REF] Piatetski-Shapiro | On the Saito-Kurokawa lifting[END_REF] on Saito-Kurokawa lifting from genus 2 to arbitrary genus 2m.

In fact, there is a relation of Ikeda's work to Arthur's conjecture [START_REF] Arthur | Unipotent automorphic representations: Conjectures. in: Orbites unipotentes et représentations[END_REF].

In the same period, Ilya studied the preprint of [KMS2000] on p-adic Rankin-Selberg L-functions in an informal seminar in his office in IAS together with me and other participants: Jim Cogdell, Siegfried Böcherer, Reiner Schulze-Pillot, . . .

The use of the The Eisenstein family E (n) k

as above plays a crucial role in Ikeda's work: the idea was to substitute the Satake parameter α p (k) of a cusp form in place of the parameter k in the Siegel-Eisenstein family.

Both p-adic and complex analytic L-functions are produced in this way. Thus obtained cuspidal p-adic measures generalize the Eisenstein measure, and produce families of cusp forms.

A version of this construction produces Klingen-Eisenstein series and Langlands Eisenstein series, see [PaSE] (p-adic Peterson product of a cusp form with a pullback of the constructed family), more recently used by Skinner-Urban [MC].

For genus two, my student P.Guerzhoy found in 1998 a p-adic version of the holomorphic Maass-Saito-Kurokawa lifting [Gue], answering a question of E.Freitag. P.Guerzhoy visited Ilya here in Yale in 1999.

A Appendix. On p-adic L-functions for GSp(4) talk by Alexei Panchishkin on December 2, 1999, at Automorphic Forms and Lfunctions Seminar in IAS.

A.0 Introduction.

The purpose of this talk is to describe a joint work in progress with I.I.Piatetski-Shapiro started in February 1998 in Jerusalem during the conference "p-Adic Aspects of the Theory of Automorphic Representations".

Let G be a semi-simple algebraic group over a number field F , and p ≥ 5 be a fixed prime number. Recall that the Iwasawa albebra Λ is defined as Z p [[T ]] and let L = QuotΛ denote its quotient field. Elements a(T ) ∈ L represent some C pmeromorphic functions with finite number of poles on the unit disc U p = {t ∈ C p | |t| p < 1} ⊂ C p where C p = Qp the Tate field. We consider the following problem: how to attach to a (complex valued) Langlands L-functions L(s, π, r) a certain p-adic valued meromorphic L function L π,r,p with a finite number of poles where π is an automorphic representation of the adelic group G(A F ) and r is a finite dimensional complex representation r : L G(C) → GL m (C) of the Langlands group L G(C). The p-adic L-function L π,r,p should belong to L or to its finite extension. The first example of a function of this type comes from the work of Kubota and Leopoldt [Ku-Le] and Iwasawa [Iw]: there exists a unique element g(T ) ∈ L such that for all positive integers k ≡ 0(mod(p -1)), g((1 p . In this case we have actually T g(T ) ∈ Λ × so that ζ p (s) has no zeroes, unnike the complex zeta-function. However, one could start from another progrssion k ≡ i(modp -1), k > 0, i mod (p -1) and obtain in the same way other branches ζ p,i (s) of p-adic zeta function which have interesting zeroes important in the Iwasawa theory [START_REF] Iwasawa | Lectures on p-adic L-functions[END_REF][START_REF] Wiles | The Iwasawa conjecture for totally real fields[END_REF].

+ p) k -1) = ζ * (1 -k),
Constructions of L π,r ∈ L are known in a number of cases but there exists no general definition. For example, the standard L functions L(s, π, St 2n+1 ) of degree 2n+1 for the group GSp 2n ⊂ GL 2n over F = Q attached to the standard orthogonal representation of L GSp 2n (C) and to a cuspidal irreducible representation π = π f coming from a holomorphic Siegel cusp eigenform f admits a p-adic analogue which was constructed using the Rankin-Selberg method in the p-ordinary case [PaLNM] for even n. This construction was extended by S.Böcherer and C.-G. Schmidt [Bo-Sch] to the general case of p-ordinary forms of arbitrary genus n and weight k > n, by using the method of doubling of variables. The critical values in the sense of Deligne [START_REF] Deligne | Valeurs de fonctions L et périodes d'intégrales[END_REF] of the L-function L(s, π f ⊗χ, St 2n+1 ) are s ∈ Z such that 1-k +n ≤ s ≤ k -n satisfying the following parity condition:

(-1) s = χ(-1), if s ≥ 0 -χ(-1), if s < 0
for a Dirichlet character χ mod p N . This description follow from the form of Γfactor

L ∞ (s, π f ⊗ χ, St 2n+1 ) = n j=1 Γ C (s + k -j)Γ(s + δ), (A.0.1) Γ C (s) = 2(2π) -s Γ(s), Γ R (s) = (π) -s/2 Γ(s/2), δ = (1 -χ(-1))/2.
In this case the algebraic numbers

L s,χ = L * ((s, π f ⊗ χ, St 2n+1 ) f, f can be interpo- lated to values of some Iwasawa-type series g f,i (χ(1 + p)(1 + p) k -1)
where f, f is the Petersson scalar product, i runs over residues mod(p -1). In this case L GSp 2n (C) = GSpin 2n+1 , the universal cover of the orthogonal group GO 2n+1 (C),

St 2n+1 : GO 2n+1 (C) ֒→ GL 2n+1 (C).
In order to construct in general p-adic automorphic L-functions out of their complex critical special values one can successfully use p-adic integration along a (many variable) Eisenstein measure which was introduced by N.Katz [START_REF] Katz | p-adic L-functions for CM fields[END_REF] and used by H.Hida [START_REF] Hida | On p-adic L-functions of GL(2) × GL(2) over totally real fields[END_REF] in the case of G = GL 2 over a totally real field F (i.e. for the elliptic modular forms and Hilbert modular forms). The application of such a measure to a given p-adic family of modular forms provides a general construction of p-adic L-functions of several variables. On the other hand, the evaluation of this measure at certain points gives another important source of p-adic L-functions [START_REF] Katz | p-adic L-functions for CM fields[END_REF]. In the Siegel modular case the Eisenstein measure was constructed in [PaSE].

The goal of our work is to construct a p-adic version of the L-function L(s, π f , r 4 ) of degree 4 attached to a Siegel-Hilbert cusp egenform of degree 4 over a totally real field F , i.e. for the symplectic group

GSp 4 = g ∈ GL 4 | t gJ 4 g = ν(g)J 4 , ν(g) ∈ GL 1 ,
over F where

J 4 = 0 2 -1 2 1 2 0 2
We use the Eisenstein measure and a p-adic analogue of the Petersson product for Λ-adic automorphic forms on GL 2 over a totally real field, see [START_REF] Hida | Le produit de Petersson et de Rankin p-adique. Séminaire de Théorie des Nombres[END_REF][START_REF] Hida | p-adic ordinary Hecke algebras for GL(2)[END_REF]. Instead of p-adic interpolation of critical values we try to imitate in the p-adic case a known complex analytic integral representation for L(s, π f , r 4 ). Main Theorem is given in Section 4.

A.1 Complex analytic L-functions for GSp(4).

Let F be a global field of characteristic = 2, and V a four dimensional vector space over F endowed with a non-degenerate skew-symmetric form ρ :

V × V → F , G ρ = GSp 4 = g ∈ GL(V ) | ρ(gu, gv) = ν g ρ(u, v), ν g ∈ F × ,
the algebraic group of symplectic similitudes of ρ over F . Let π = ⊗ v π v be an irrreducible cuspidal automorphic representation of G ρ (A F ) where v runs over all places of F , then according to Langlands' classification of irreducible supercuspidal representations π v of G ρ (F v ) for almost all v π v correspond to a semi-simple conjugacy class of a diagonal matrix

h v = diag{α 0 , α 0 α 1 , α 0 α 2 , α 0 α 1 α 2 } ∈ L G ρ (C) ∼ → GSP 4 (C) r4 → GL 4 (C) (α j = α j (v), v ∈ S, |S| < ∞).
The Andrianov L-function (or the spinor L-function) of π is then the following Euler product

L(s, π, r 4 ) = v ∈S det (1 4 -r 4 (h v ) • N v -s ) -1 × a finite Euler product over v ∈ S (A.1.1)
This L function plays an impotant role in arithmetic, in particular it is related to l-adic Galois representation on H 3 of the corresponding Siegel threefold [Tay], [Lau].

This L function was introduced by Andrianov [AndBud], [START_REF] Andrianov | Euler products attached to Siegel modular forms of degree 2[END_REF] in the classical fashion, for F = Q, and for π = π f coming from a holomorphic Siegel cusp eigenform f = ξ A ξ q ξ for the Siegel modular group Γ 2 = Sp 4 (Z) over the Siegel upper half plane of genus two

H 2 = {z = t z ∈ M 2 (C) | Im (z) > 0},
where ξ runs over the semi-group B 2 of semi-definite half integral symmetric 2 × 2matrices ξ, A ξ ∈ C, so that q ξ = exp(2πiTr(ξz)) form a multiplicative semi-group q B2 . Consider the Hecke algebra H = (Γ 2 gΓ 2 ) = ⊗ p H p generated by all double coset classes (Γ 2 gΓ 2 ) with g ∈ GSp 4 (Q). Then we have that

H p = Q[x ± 0 , x ± 1 , x ± 2 ] W2 ( 
W 2 the Weyl group) and one has a Q-algebras homomorphism λ f : H → C given by f |X = λ f (X)f , X ∈ H, and α j are defined as λ f (x j ), j = 0, 1, 2. In the notation of Andrianov,

Z f (s) = L(s -k + (3/2), π f , r 4 ) = p det (1 4 -h p p k-(3/2) ) -1 p -s (A.1.2)
is called the spinor L function of f , and he proved that it coincides with a linear combination of the Dirichlet series

L(s, f, ξ 0 ) = ∞ m=1
A mξ0 m s where ξ 0 > 0 is a positive definite matrix of a fixed discriminant -det ξ 0 . Starting from this identity, he obtained an integral representation for Z f (s) using the group GL 2,K where K = Q( √ -det ξ 0 ) an imaginary quadratic field. This integral representation implied an analytic continuation of Z f (s) to the whole complex plane and the functional equation of the type

Ψ f (s) = Γ C (s)Γ C (s -k + 2)Z f (s) = (-1) k Ψ f (2k -2 -s). (A.1.3)
where Γ C (s) = 2(2π) -s Γ(s) is the standard Γ-factor. Its analytic properties were studied by A. N. Andrianov [START_REF] Andrianov | Euler products attached to Siegel modular forms of degree 2[END_REF] but still little is known about algebraic and arithmetic properties of critical values of this function; however, the general Deligne conjecture on critical values of L-functions predicts that algebraicity properties could exist only for s = k -1 (see [START_REF] Böcherer | Bemerkungen über die Dirichletreihen von Koecher and Maass[END_REF] for evidences and discussions).

The work of A.N.Andrianov was extended by I.I.Piatetski-Shapiro [PShBud], [Psh-Pac] to arbitrary F using a quadratic extension K/F and the following construction. Put

V = K 2 = x = x 1 x 2 , x j ∈ K, j = 1, 2
then V may be viewed as a four dimensional F vector space, dim F V = 4, and define ρ(x, y) = Tr K/F (x 1 y 2 -x 2 1 ). Let us consider the following F -algebraic group

G = {g ∈ GL 2,K | det g ∈ GL 1,F }, SL 2 (K) ⊂ G(F ) ⊂ GL 2 (K) (A.1.4)
then there is an imbedding of F -algebraic groups i : G ֒→ G ρ because x 1 y 2 -x 2 y 1 = det (x, y) and det (gx, gy) = det g • det (x, y), so that ρ(gx, gy) A.2 Initial idea of a p-adic construction.

= det g • ρ(x, y). Note that SL 2 (A K ) ⊂ G(A F ) ⊂ GL 2 (A K ) and G(A F ) ֒→ G ρ (A F ) = GSp 4 (A F ).
Let p ≥ 5 be a prime number. We consider the case of two totally real fields K ⊃ F and a representation π f attached to a holomorphic Siegel-Hilbert cusp form f (z) = φ of scalar weight k = (k, . . . , k) on the Siegel-Hilbert half plane

H 2,F = H 2 × • • • × H 2 (n copies); (A.2.1)
in this case there is also a critical value s = k -1 for L-functions of the type L(s, π f , ⊗χ, r) where χ is a character of finite order of A × F /F × . According to general conjectures on motivic L-functions there should exist p-adic L-functions which interpolate p-adically their critical values, see [Co], [Co-PeRi], [PaIF]. However in our present construction instead of p-adic interpolation of their special values of the type L(k -1, π f ⊗χ, r) we use directly a p-adic version of (A.1.5) using techniques of Λ-adic modular forms (see Section 3). We hope that the resulting p-adic L-function provide also the above p-adic interpolation. [START_REF] Colmez | Fonctions L p-adiques[END_REF]) and satisfies the following "functional equation" ζ +,p (s) = 2ζ p (1 -s).

which interpolate k → ζ * + (k) = Γ(k) (2πi) k ζ(k)(1 -p k-1 ) (see
Definition A.1 (The Serre ring) Λ[[q]] is the ring of all formal q-expansions with coefficients in Λ:

Λ[[q]] = {f = ∞ n=0 a n (T )q n | a n (T ) ∈ Λ}; Definition A.2 The Λ-module M (Λ) ⊂ Λ[[q]]
of Λ-adic modular forms (of some fixed level N , (N, p) = 1 is generated by all f = ∞ n=0 a n (T )q n ∈ Λ[[q]] such that for each k ≥ 5, k ≫ 0 the specialisation

f k = f | T =(1+p) k -1 ∈ Z p [[q]]
is a classical modular form of weight k and level N p. In more precise terms f is given by a p-adic measure µ f on Z × p with values in Z p [[q]] such that the integrals

Z × p x k p µ f = f k (A.3.1)
are classical modular forms.

Example A.3 (The Λ-adic Eisenstein series) f ∈ M (Λ) (of level N = 1) is defined by (U p ( n≥0 a n q n ) = n≥0 a pn q n is the Atkin U -operator), S(Λ) is the Λ-submodule of Λ-adic cusp forms.

f k = ζ * (1 -k) 2 + n≥1 σ * k-1 (n)q n , σ * k-1 (n) =
The Hilbert modular case.

According to the classical theorem of Klingen [Kli], for a totally real field K and for k ≥ 1 the special values ζ K (1 -k) are rational numbers where ζ K (s) is the Dedekind zeta function of K. The Deligne-Ribet p-adic zeta function [De-Ri] interpolates p-adically these special values as an element g K ∈ L: for all positive integers k ≡ 0(mod(p -1)),

g K ((1 + p) k -1) = ζ * K (1 -k), where ζ * K (s) = p |p (1 -Np -s )ζ K (s)
is the Dedekind zeta function of K with all the p-factors over p removed from its Euler product. The function ζ K,p (s) = g K ((1 + p) 1-s -1) is analytic for all s ∈ Z p \1 with values in Q p and it is called the Deligne-Ribet p-adic zeta function. It has the following properties:

ζ K,p (1 -k) = ζ * K (1 -k)
for all positive integers k ≡ 0(mod(p -1)), and its residue Res s=1 ζ K,p (s) was computed by Colmez [START_REF] Colmez | Résidu en s = 1 des fonctions zêta p-adiques[END_REF]:

Res s=1 ζ K,p = 2 d h K R p E p (1) w K √ D K where d = [K : Q], E p (s) = p |p (1 -Np -s ), R p the
p-adic regulator of K (which does not vanish according to the Leopoldt conjecture). A Λ-adic Hilbert modular form could be defined as a formal Fourier expansion

f = 0 ≪ = η∈LK a η q η ∈ Λ[[q LF ]] (L K ⊂ K a lattice)
( η runs over totally positive elements or 0) whose appropriate specialisations are classical Hilbert modular form. When h K > 1 one needs to consider collections of such series {f λ } (λ = 1, 2, . . . , h K ) in order to be able to use the action of the Hecke algebra. Λ-adic Hilbert modular forms were used by Wiles in his proof of the Iwasawa conjecture over totally real fields (see [START_REF] Wiles | The Iwasawa conjecture for totally real fields[END_REF] where a precise definition of a Λ-adic Hilbert modular form is contained in Section 3). It is required that for all appropriate sufficiently large k the specialization f k = f | T =(1+p) k -1 is the Fourier expansion of a classical Hilbert modular form. As over Q, the first natural example of a Λ-adic Hilbert modular form is given by a Λ-adic Eisenstein series (more precisely, this series is given by the Katz-Hilbert-Eisenstein measure, see [START_REF] Katz | p-adic L-functions for CM fields[END_REF]). Also, Hida's theory could be extended to the Hilbert modular case and even to the general case of cohomological modular forms on GL 2,K over an arbitrary number field K (see [START_REF] Hida | p-adic ordinary Hecke algebras for GL(2)[END_REF]).

The Siegel-Hilbert modular case.

A Λ-adic Siegel-Hilbert modular form could be defined as a formal Fourier expansion

f = ξ∈L2,F A ξ q ξ ∈ Λ[[q L2,F ]] (L 2,F ⊂ M 2,F ) (L 2,F
is the semi-group of all symmetric totally non-negative matrices ξ in a sublattice of M 2,F ) whose appropriate specialisations f k = f | T =(1+p) k -1 are classical Siegel-Hilbert modular form. The first example of a Λ-adic Siegel-Hilbert modular form is given by an Eisenstein series (for F = Q these series are described in [PaSE]). It seems that Hida's theory also could be extended to the Siegel-Hilbert modular case [Hi98], [Til-U], [Til].

A.4 p-adic L-functions.

Recall that we consider the case of two totally real fields K ⊃ F and an irreducible representation π = π f attached to a holomorphic Siegel-Hilbert cusp form f (z) = φ of scalar weight k = (k, . . . , k) on the Siegel-Hilbert half plane

H 2,F = H 2 × • • • × H 2 (n copies);
Then we rewrite the integral representation (1.5) in the form of the Petersson scalar product over K = F ( √ D):

I π (1/2) = ĩ * φ, Ẽ(s, µ) K (4.1)
where i denotes both the imbedding i : G ֒→ G ρ and the corresponding modular imbedding

i : H F × H F → H 2,F , H F = H × • • • × H ; H 2,F = H 2 × • • • × H 2 (n copies); (4.2)
If we write this imbedding in coordinates it takes the form

(z 1 , z 2 ) → Z(z 1 , z 2 ) = Cdiag{z 1 , z 2 } t C (z 1 , z 2 ∈ H F )
(see [START_REF] Shimura | The special values of zeta functions associated with Hilbert modular forms[END_REF], [START_REF] Wiles | The Iwasawa conjecture for totally real fields[END_REF], p. 521), where we could take

C = 1 2 1 1/ √ D 1 -1/ √ D ∈ M 2 ( 
F ) so that i * φ = φ • i is a holomorphic Hilbert modular form with an explicitely given Fourier expansion. If φ = ξ∈L2,F A ξ q ξ then i * φ = η∈LF a η q η where each Fourier coefficient a η is a finite sum of certain A ξ :

a η = ξ:η= 1 4 (ξ11+ξ22+2ξ12/ √ D)
A ξ , so that the map φ → i * φ could be defined in terms of their formal q-expansion. For the Λ-adic construction let us take a Λ-adic Siegel-Hilbert cusp form φ on GSp 4,F then i * φ is a Λ-adic Hilbert modular form over K which is explicitely described as a formal Fourier expansion. Now let us take G to be the Λ-adic Hilbert-Eisenstein series for GL 2,K . In order to define the Petersson product

ĩ * ϕ, G K (4.3)
we use the Eisenstein projection 1 Eis (i * φ) (the projection in the L-vector space M (L) to the (finite-dimensional) L-subspace Eis K (L) of Hilbert-Eisenstein series with an explicitely given base coming from the Katz-Hilbert-Eisenstein p-adic measure). The projection 1 Eis (i * φ) could be explicitely computed using the Fourier expansions of i * φ and of the Fourier expansions of a L-basis of Eis K (L).

ĩ * ϕ, G K = 1 Eis (i * φ), G K .

Then we are reduced to the case of G 1 , G 2 K , where G 1 and G 2 are two normalized Hilbert-Eisenstein series, and in order to define their Petersson product we use the method of Rankin-Selberg.

Let us recall a classical formula We see that if G 1 , G 2 were two cusp forms of weight k their Petersson product would essentially coincide with a normalized residue of the Rankin zeta function L G1,G2 (s) at s = k. In the case of normalised Eisenstein series the Rankin zeta function L G1,G2 (s) is explicitely evaluated via Rankin's lemma as a product of abelian Dirichlet L-functions. Let now G 1 = {G 1,k }, G 2,k = {G 2,k } denote two p-adic families of Hilbert Eisenstein series. We may define the I G1,G2 = G 1 , G 2 K as an element of L such that for all k ≫ 0

L G k ,G k (s) = ∞ n=1 σ k-1 (n)σ k-1 (n)n -s = ζ ( 
(G 1 , G 2 ) = Res s=k L G 1,k ,G 2,k (s) ∈ Q p (s ∈ Z p )
in a similar way as in [START_REF] Zagier | The Rankin -Selberg method for automorphic functions which are not of rapid decay[END_REF] and [Ko-Za] as the normalised p-adic residue of the padic Rankin convolution L G1,G2 (s) (which is defined in terms of the corresponding Deligne-Ribet p-adic zeta function).

Main Theorem A.5 Let φ be a Λ-adic Siegel-Hilbert modular eigenform then there exists a canonically defined element I φ,p = ĩ * ϕ, G K ∈ L i * φ the Λ-adic pullback of ϕ, i * φ is a Λ-adic Hilbert modular form over K explicitely described by its Fourier expansion, G is a certain Λ-adic Hilbert-Eisenstein series, such that the function I φ,p gives a p-adic interpolation of the residue of the normalized p-adic Rankin L function L * i * φk ,G k (s) (at s = k), the scalar weight of a specialisation φk ):

I φ,p | T =(p+1) k -1 = Res s=k L * i * φk ,G k (s) (s ∈ Z p )
A.5 p-adic families of automorphic representations.

We use the occasion to discuss here the following general definition of a p-adic family of automorphic representations (or of a Λ-adic automorphic form). We shall view the Iwasawa algebra Λ as the algebra Meas(Z p , Z p ) of all Z p -measures on Z p (with the additive convolution as a multiplication). Let V Q ⊂ C(G(A F )) be a certain Qvector space of (complex-valued) continuous functions on the adelic group G(A F ) over a number field F . We suppose that V Q has an integral structure V Z ⊂ V Q so that V Q = V Z ⊗ Q. Put V p = V Z ⊗Z p (the completed tensor product). Define D p (V p ) = Meas(Z p , V p ) (as a module over Λ = D p (Z p )).

Definition A.6 A p-adic family of automorphic representations on G is a p-adic measure ϕ ∈ D p (V p ) such that for almost all positive integers k we have that the integral Zp x k ϕ = ϕ k ∈ V p belongs to V Z and the function ϕ k generates an automorphic representation π k of G(A F ). We call such ϕ a Λ-adic automorphic form on G(A F ).

Let AF G (Λ) denote the Λ-module generated by such elements ϕ. An element ϕ is called an eigenform if the representations π k are all irreducible.

A natural example of such a vector space V for the group GL 2 over Q comes from holomorphic functions f = ∞ n=0 a n exp(2πinz) having rational Fourier coefficients a n ∈ Q with bounded denominators, i.e. for which there exists a positive integer N = N (f ) such that N a n ∈ Z. However there are other ways to attach such a vector space V to G by considering cohomology groups of the corresponding locally-symmetric spaces and automorphic forms ϕ on G(A F ) represented by rational cohomology classes ( [Ko-Za]). Put AF G (L) = AF G (Λ) ⊗ L. We hope that one could find in this way a general construction of p-adic automorphic L functions L π,r,p as certain L-linear forms l = l G,r on the L-vector space AF G (L). Such a linear form should play a role of an integral representation for p-adic L-functions: L π k ,r,p = l G,r (ϕ)| T =(1+p) k -1 . A natural example of such a linear form comes from the Λ-adic Petersson product of Hida which provides a construction of p-adic Lfunctions for GL 2 × GL 2 [START_REF] Hida | On p-adic L-functions of GL(2) × GL(2) over totally real fields[END_REF].

On the other hand, there exist nice constructions of p-adic families of Galois representations attached to automorphic forms (Λ-adic Galois representations, see [START_REF] Hida | Galois representations into GL 2 (Z p [[X]]) attached to ordinary cusp forms[END_REF], [Til-U]) which played an important role in the work of Wiles [START_REF] Wiles | Modular elliptic curves and Fermat's Last Theorem[END_REF]. It would be interesting to formulate a general Λ-adic Langlands conjecture relating Λ-adic automorphic forms and Λ-adic Galois representations.

(

  c,d)/∼ det(cz + d) -k = γ∈P \Γ det(cz + d) -k = h∈Bm a h exp(tr(hz)) on the Siegel upper half plane H m = {z = t z ∈ M m (C)|Im (z) > 0} of degree m,(c, d) runs over equivalence classes of all coprime symmetric couples,
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  (k) of the Fourier coefficient a h (k) admit the following p-adic meromorphic interpolation on all even k with θ = ω k fixed a (p)

  Theorem 5.1 (a complex version) With the data G = SL(2), M = { a 0 0 a -1 } ∼ = GL 1 , π = I, and ψ a non-trivial character of the group U

  where ζ * (s) = (1 -p -s )ζ(s) is the Riemann zeta function with the p-factor removed from its Euler product. The function ζ p (s) = g((1 + p) 1-s -1) is analytic for all s ∈ Z p \1 with values in Q p and it is called the Kubota-Leopoldt p-adic zeta function. It has the following properties: ζ p (1 -k) = ζ * (1 -k) for all positive integers k ≡ 0( mod (p -1)), and Res s=1 ζ p (s) = 1 -1

  It turns out that there is an integral representation for L(s, π, r) of the following type:L(s, π, r) = G(F )C(AF )\G(AF ) ϕ(i(g))E(g, s)dg := I π (s) (A.1.5)where ϕ is an automorphic form on G ρ (A F ) = GSp 4 (A F ) from the representation space of π, C(A F ) the center of G(A F ) ⊂ GL 2 (A K ), E Φ (g, s) is a certain Eisenstein series on G(A F ) ⊂ GL 2 (A K ) attached to a Schwartz function Φ ∈ S(V A ) ([PshPac], §5).

A. 3

 3 Λ-adic modular forms.Let us consider the Iwasawa algebra[Iw] Λ = Z p [[T ]] ∼ = Z p [[Γ]] as the completed group ring of the profinite group Γ = 1 + pZ p = 1 + p ⊂ Z × p . We shall view elements of its quotient field L = QuotΛ as C p -meromorphic functions with a finite number of poles on the unit discU = {t ∈ C p | | |t| p < 1} ⊂ C p .According to the theorem of Kubota-Leopoldt [Ku-Le], there exists a unique element g(T ) ∈ L such that for all k ≥ 1, k ≡ 0 mod (p -1)g((1 + p) k -1) = ζ * (1 -k)where ζ * (1 -k) denotes the special value at s = 1 -k of the Riemann zeta-function with a modified Euler p-factor: ζ * (s) = (1 -p -s )ζ(s). One could also start from positive values s = k, k ≡ 0 mod (p -1), and construct a p-adic zeta function ζ +,p

  Hida's families) f are elements of S ord (Λ) = eS(Λ), e = lim n→∞ U n! p

  Res s=k L f,g (s)for the Petersson product (f, g) = Γ\H f (z)g(z)y k-2 dx dy (see [Ra39, Za81]) where L f,g (s) = ∞ n=1 a n b n n -sdenotes the Rankin L-function of two holomorphic modular forms of weight k on SL 2 (Z) , with at least one of them a cusp form (i.e. a 0 b 0 = 0 ): f (z) = ∞ n=0 a n e 2πinz and g(z) = ∞ n=0 b n e 2πinz . This equality makes it possible to define the Petersson scalar product (a renormalized value) (G k , G k )whereG k = -B k 2k + ∞ n=1 σ k-1 (n) (k ≥ 4, k even).We have [Za81, p.435]:

  s)ζ(s -k + 1) 2 ζ(s -2k + 2) ζ(2s -2k + 2) which implies (G k , G k ) = (-1) k/2-1 Γ(k)Γ(k -1) 2 3k-3 π 2k-1 ζ(k)ζ(k -1) = i 3k-3 2 2-k Γ(k) (2πi) k ζ(k) Γ(k -1) (2πi) k-1 ζ(k -1).