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Abstract

We present an algorithm to solve BSDEs based on Wiener Chaos Expansion and Picard’s
iterations. We get a forward scheme where the conditional expectations are easily computed
thanks to chaos decomposition formulas. We use the Malliavin derivative to compute Z.
Concerning the error, we derive explicit bounds with respect to the number of chaos and the
discretization time step. We also present numerical experiments. We obtain very encouraging
results in terms of speed and accuracy.

1 Introduction

In this paper, we are interested in the numerical approximation of solutions (Y, Z) to backward
stochastic differential equations (BSDEs for short in the sequel). BSDEs have been introduced by
J.-M. Bismut in [Bis73] in the linear case, whereas the nonlinear case has been considered later
by E. Pardoux and S. Peng in [PP90]. A BSDE is an equation of the following form

T T
Yt:§+/ f(s,YS,ZS)dsf/ Zs-dBs, 0<t<T, (1.1)
t t

where B is a d-dimensional standard Brownian motion, the terminal condition £ is a real-valued
Fr—measurable random variable where {F; }o<¢<7 stands for the augmented filtration of the Brow-
nian motion B and the generator f is a map from [0, 7] x R x R? into R. A solution to this equation
is a pair of processes {(Y;, Z;) }o<i<r which is required to be adapted to the filtration {F;}o<i<7-
We will assume the conditions of Pardoux and Peng to ensure existence and uniqueness of solu-
tions.

Our main objective in this study is the numerical approximation of the solution (Y, Z) to
BSDE (1)) (even though there exists a large literature on this subject). The first two contributions
to this topic are due to D. Chevance [Che97], who considered generators independent of Z, and
V. Bally [Bal97], who used a random time mesh. J. Ma and J. Yong [MY99] proposed numerical
schemes based on the link between Markovian BSDEs and semilinear partial differential equations
(PDEs). Another approach, based on Donsker’s theorem and close to [Che97], was proposed by
F. Coquet, V. Mackevicius and J. Mémin [CMM99] in the case of a generator f independent of
Z; the general case was treated by Ph. Briand, B. Delyon and J. Mémin in [BDMO0I], who later
extended it to a more general framework [BDMO02], including the case of a "stepwise constant
Brownian motion". This extension led to the formulas

Y = E(Yien | Fo) + hf (6,1, Z0),  Zi = h™ VP E (Yien (Biyn — By) | Fo)
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known as the dynamic programming algorithm. Even though the convergence was proved in the
case of path-dependent terminal condition &, the rate of convergence was left as an open question
in [BDMO02]. This problem was solved by J. Zhang [Zha04] and B. Bouchard and N. Touzi [BT04]
in the case of Markovian BSDE, namely in the case of a terminal condition £ = g(Xr) where
X is the solution to a stochastic differential equation (in [Zha04], the author considers the path-
dependent case as well). Their result was generalized by E. Gobet and C. Labart [GLO7] and also

by E. Gobet and A. Makhlouf [GM10].
From a numerical point of view, the main difficulty in solving BSDEs is to efficiently compute
conditional expectations. Several approaches have been proposed using various tools: the Malliavin

calculus [BT04], regression methods [GLWO05], [GLW06] and quantization technics [BP03].

Finally, let us mention that there exists some works dealing with the discretization of solutions
to BSDEs in a more general framework: forward-backward SDEs [DM06G] and quadratic BSDEs

[RicId].
Let us now describe briefly the main points of our approach in the case of a real-valued Brownian

motion. As already used in several quoted papers, see also [BDOT, [GL10, [BSar], our starting point
is the use of Picard’s iterations: (Y°,Z%) = (0,0) and for ¢ € N,

T T
Ytq+1:£+/ f(S,qu,Zg)ds—/ Z4t .dB,, 0<t<T.
t t

It is well-known that the sequence (Y7, Z9) converges exponentially fast towards the solution
(Y, Z) to BSDE (LT)). We write this Picard scheme in a forward way

T t
Yot —E <g+ | rveamas| ﬂ) - [ sz as
0 0

T
Zt = Dyt = DR (5 +/0 f(s, Y3, Z2%) ds ‘ ft> ,

where D; X stands for the Malliavin derivative of the random variable X.
In order to compute the previous conditional expectation, we use a Wiener chaos expansion of
the random variable

T
F1 :g—f—/ f(s, Y3 Z)ds.
0

More precisely, we use the following orthogonal decomposition of the random variable F'¢

FE=E[F]+ Zkzl Zm\:k di Hz’Zl Ko, (/o gi(s)dBS) ’

where K; denotes the Hermite polynomial of degree [, (g;)i>1 is an orthonormal basis of L?(0,T')
and, if n = (n;)i>1 is a sequence of integers, [n| = > ;o ni. (d})r>1,n|=k is the sequence of
coefficients ensuing from the decomposition of F'9. Of course, from a practical point of view, we
only keep a finite number of terms in this expansion:

e we work with a finite number of chaos, p;
e we choose a finite number of functions g1, ..., gn.

This leads to the following approximation with n = (nq,...,ny)

T
9 ~ q n .
Pt~ B[]+ Z1gk§p Z\m:k i HlSiSN Ko, (/O g’(s)st> '

One of the key points in using such a decomposition is that, for choices of simple functions g1,
.., gn, there exist explicit formulas for both

E(F!|F) and Z/™' =DE(F!|F) ; (1.2)



this plays a crucial role in our algorithm. Using these formulas and starting from M trajectories
of the underlying Brownian motion we are able to construct M trajectories of the solution (Y, Z)
to the BSDE.
In the following, the functions g; are chosen as step functions:
, - , T

gi = l]zi—lii](t)/\/ﬁ7 t=1,...,N, where t; :=th, h = N
and the previous formulas are really simple (see (Z3)-(Z3) and Proposition 27). Eventually, the
main advantage of this method is that only one decomposition has to be computed per Picard
iteration: the decomposition of F'?. Therein lies the main difference between our approach and
the approach based on regression technics developed by C. Bender and R. Denk in [BD0O7]. In
their paper, for a given Picard iteration ¢ and for each time ¢; of the mesh grid, two projections
have to be computed, one for ¥, and one for Z{. The second difference comes from the way of
computing Z?. In our method, once the decomposition of F'¢ is computed, Z? is given explicitly
as the Malliavin derivative of Y?. Let us also point out that our algorithm can handle fully path
dependent terminal conditions.

The rest of the paper is organized as follows. Section [2] contains the notations and the prelim-
inary results, Section [B] describes precisely the algorithm, Section His devoted to the study of the
convergence of the algorithm and finally Section [ contains some numerical experiments. Some
technical proofs are post-done to the appendix.

2 Preliminaries

2.1 Definitions and Notations

Given a probability space (©, F,P) and an R%valued Brownian motion B, we consider
o {(Fi);t €[0,T]}, the filtration generated by the Brownian motion B and augmented

o LP(Fp) = LP(Q, Fr,P), p € N*, the space of all Fpr-measurable random variables (r.v. in
the following) X : Q — R? satisfying || X% := E(|X|P) < oc.

e E,(X) denotes E(X|F;) for any X in L!(Fr).

e SL(RY), p € N,p > 2, the space of all cadlag predictable processes ¢ : Q x [0, T] — R? such
that [|[lg, = E(supsefo,r [6¢/P) < 0.

e H.(RY), p € ;\T,p > 2, the space of all predictable processes ¢ : Q x [0, T] — R? such that
ol = E Ji [6upd < oo.
e L2(0,T), the space of all square integrable functions on [0, T].

e CF! the set of continuously differentiable functions ¢ : (¢,z) € [0, 7] x R? with continuous
derivatives w.r.t. t (resp. w.r.t. ) up to order k (resp. up to order I).

o Cf ! the set of continuously differentiable functions ¢ : (t,z) € [0,7T] x R* with continuous
and uniformly bounded derivatives w.r.t. ¢ (resp. w.r.t. ) up to order k (resp. up to order
1). The function ¢ is also bounded.

e |07, f]1%,, the norm of the derivatives of f([0,7] x R, R) w.r.t. all the space variables x
which sum equals j : [0, f[|2; := 205 =, 052 - - 954 1%, where [k = k1 + -+ + ka.

e (7, the set of smooth functions f : R" —— R with partial derivatives of polynomial growth.



e ||(-,)]I7», p € N,p > 2, the norm on the space S5.(R) x H%.(R?) defined by
T
10 2018, =B s (vile) + [ Bz (21)
t€[0,T] 0

We also recall some useful definitions related to Malliavin calculus. We use the notations of
[Nua06].

e S denotes the class of random variables of the form F = f(W(hy ,--- ,W(hy,)), where

f e CrR™R), for all j < n h; = (hj,---,h$) € L*([0,T];R?) and for all i < d

W hz fo hl (t)dW}.
e D2 denotes the closure of S w.r.t. the following norm on S
r T T 9
e i 3 5 ([ [ [0t
a=1|ali=q

where « is a multi-index (o, -+, aq) € {1,--- ,d}? |a]y := Y], a; = ¢ and D* represents
the multi-index Malliavin derivative operator. We recall D>»? = N9, D"2,

2
Remark 2.1. When d =1, [|[F|3,, :== E[F|* + 3! _| E (fOT . -fOT ’D(q) tq)F‘ dty - 'dtq) =

(t1,
E[F? +>0 -, ||D(Q)F||i2(9x[o,T]q)~
Let m € N* and 5 € N, 5 > 2. We also introduce the following notations

e D™ denotes the space of all Fp-measurable r.v. such that

H] = Z Z sup E[Df _ , FJ] <o

1<I<m |a|, =1 1SSt

where suptlgmgtl means sup(tl,m )it <o <ty

e S™J denotes the space of all couple of processes (Y, Z) belonging to S%(R) X HJT (RY) and

such that

||(Y’Z)H£n,j: Z Z Sup tl’___MY,D?U“JZZ)H{].<oo

1<i<m |af,=1 1S <tl

We recall

. . T .

1020, = 35 S0 sw SB[ swp DG Yol]+ [ EIDG 2Py .
1<1< t1<---<tg tl<7‘§T t
m ol =l

We also denote 8™ := ;>,8™7.

2.2 Wiener Chaos Expansion
2.2.1 Notations and useful results

We refer to [Nua06] for more details on this section. Let us briefly recall the Wiener chaos expansion
in the simple case of a real-valued Brownian motion. It is well known that every random variable
F € L?(Fr) has an expansion of the following form:

F ZE[F] + /T ’U,l(Sl)stl (22)

T rso T rsn s2
+// u2(52,51)stldBS2+...+/ / / Un(Sny.-.,81)dBs, ...dBs, + ...
0 Jo o Jo 0



where the functions (u,,n > 1) are deterministic functions. There is an ambiguity for the definition
of these functions u,,. We adopt in this paper the following point of view: the function u,, is defined
on the simplex

Sn(T):={(s1,+,80) €[0,T]":0< 51 <...<s, <T}.

We define the iterated integral for a deterministic function f € L2(S,(T)) as

Jn(f) = /OT/OSH.../OSZ‘]“(S”,... ,Sl)stl"'stn-

Due to the 140 isometry, | Ja(HI* = [f1[Ez(s, ry) and EUa(f)In(9)] = dum < f.9 >12(s. (1))
Then, ||[F||* = ano ||Un|‘%2(sn(T))-

Definition. Let F be a random variable in L?(Fr) whose chaos expansion is given by (Z2)). We
introduce

e P, (F) := J,(uy,) the Wiener chaos of order n of F.

o Cp(F) =", o, Pu(F) the chaos decomposition of I up to order p, i.e.

T T pso
C,(F) = E[F] + / wi(s1)dBsy + / / ws(s9, $1)dBs, dB,,
0 0J0

T Sp So
+...+/ / / Up(Sp,-..,51)dBs, ...dBs,. (2.3)
0 0 0

We state two Lemmas useful for the sequel.
Lemma 2.2 (Nualart). I € D™ if and only if |[D™ F|[2 (oo 7ym) = 2pzo(n +m —1) x - X
n X E[|P,(F)[?] < co. In this case, we have
D (ntm—1)x - xnxE[|Py(F)*] < | F|Fm.e.
n>0
From Lemma 2.2 we deduce

Lemma 2.3. Let F € D™2. We have

D™ 12 0,17
E[|F — Cy(F)] < <1

Proof.
EIF -G = 3 ER(F)? = 3 <k+m71>---kx—(,€+mi1)mkxEnPk(FW]
k>p+1 k>p+1
1 2
S+m - +D kgl(k+m*1)"'kE[IPk(F)l ]

The following Lemma gives some useful properties of the chaos decomposition.
Lemma 2.4.
e Let F be ar.w. in‘LQ(]:T). Vp > 1, we have E(|Cp(F)|2) < E(|F|?). If F belongs to L/ (Fr),
Vj>2, B(IC,(F)P) < (14 p(j — D2)E(F).
o Let H be in H2(R). We have C, (fOT Hsds) = fOT Cp(Hy)ds.

e For all F € DY? and for all t <r, D;E,[C,(F)] = E.[Cp1(DF)].

The first result ensues from the fact that for j > 2 ||P,(F)||; < (j — 1)2||F||; (see [Nua06l
page 63]).



2.2.2 Wiener chaos expansion and Hermite polynomials

Another approach to Wiener chaos expansion uses Hermite polynomials. This approach can be
easily generalized when considering d-dimensional Brownian motions, this is then the one we
consider in the following. We present it for d = 1. Let {g;};>1 be an orthonormal basis of
L2(0,7T). The Wiener chaos of order n, P,(F), is the L2-closure of the vector field spanned by

H n;! K, (/ -(s)st> d(ni)is1] = an =n

1>1

where K, is the Hermite polynomial of order n defined by the expansion:
Got—t2/2 _ Z Kol
n>0

with the convention K_; = 0. With this normalization, we have K| (z) = K,,_1(x) for any integer
n. It is well-known that (K, ),>0 is a sequence of orthogonal polynomials in L*(R, 1), where u
denotes the reduced centered Gaussian measure. Moreover, we have

K2 —1
n'

Every square integrable random variable F'; measurable with respect to Fr, admits the follow-
ing orthogonal decomposition

T
F=do+ Zk21 Z\m:k di Hi21 K, (/0 gi(s)dBS) ’ (2.4)

where n = (n;);>1 is a sequence of positive integers and where |n| stands for ) .., n;. Taking into
account the normalization of the Hermite polynomials we use, we get B

T
FxIIQrK“<A %@mBJ

where n! =[], >1 n;!. Before describing the chaos decomposition formulas we use in the algorithm,
we give a Lemma useful in the sequel.

do =E[F], n = nlE

Lemma 2.5. Let g € L2(0,T) and let U; = fot g?(s)ds. Forn € N, let us define

My = UK, (Bla/VTT) . Bla) = [ 'g(s)dB..

Then {M]}o<i<T s a martingale and

dM]" = g(t) M 'dB;.

2.3 Chaos decomposition formulas

These formulas are based on the decomposition [24). To get tractable formulas, we consider a
finite number of chaos and a finite number of functions (g1,---,gn). The (gi)1<i<n functions
are chosen such that we can quickly compute E(F|F;) and D;E(F|F;) (as required in (L2Z)). We
develop in this Section the case d = 1, we refer to Section [B.2] when d > 1.

The first step consists in considering a finite number of chaos. In order to approximate the
random variable F', we consider its projection Cp,(F') onto the first p chaos, namely

SRTES SV SIS | WU F APTETZN B Y



Of course, we still have an infinite number of terms in the previous sum and the second step
consists in working with only the first N functions g1,..., gy of an orthonormal basis of L2(0, 7).

Let us consider a regular mesh grid of N time steps 7 = {f; = i%,i = 0,---, N} and the N
step functions

T
9i =15 .7 ()/\/_ i=1,...,N, whereh::N. (2.6)
We complete these N functions gi,..., gy into an orthonormal basis of L(0,T), (gi);>1. For
instance, one can consider the Haar basis on each interval (¢;_1,%;), i = 1,..., N. We implicitly

assume that N > p. This leads to the following approximation

T
N _ mn .
CN(F) =do + Zlgkgp Zw:k dy nggw Ky, (/O gl(s)st> , (2.7)

where n = (ny,...,ny) and |n| = ny + ... + ny. Due to the simplicity of the functions g;,
i=1,---,N, we can compute explicitly

T B .
/ gi(s)dBs = Gi, where G; = —————L.
0

Roughly speaking this means that Py, the k*" chaos, is generated by
Thus, the approximation we will use for the random variable F' is
P P
CYF)=dy+ Y Y drE,, (G1) ... Kny(Gy)=do+ > > di J] Kn(Gi), (28
k=1 |n|=k k=1|n|=k 1<i<N
where the coefficients dy and d} are given by
do =E[F], di =n!E[FK,,(G1)...K,,(GnN)]. (2.9)
The following Lemma, similar to Lemma 24 gives some useful properties of the operator CIJ)V
Lemma 2.6. Let F be a r.v. in L>(Fr) and H be in HA(R). Then
o V(p,N) € (N*)2, E(|C)Y(F)*) < E(IC,(F)|*) < E(IFI?),

T T
o CY (fo Hsds) = [, CN(H,)ds.
o Forallt <r, DiE[CN(F)] =E.[C) | (DF)].

From (Z8), we deduce the expressions of E¢(CY F) and DE; (C)Y(F)), useful for the approxi-
mation of (Y, Z) by the chaos decomposition (see (L2])).

Proposition 2.7. Let F' be a real random variable in L2(Fr) and let r be an integer in {1,--- , N}.
For allt,_; <t <t,, we have

L t—F\ T B, —B; |
B (CYF)=do+> > dZHKTKm(Gi)x( - 1> K,, (%ﬁ)
— lr—-1

k=1 |n(r)|=k
t— z7"71 nT{l Bt - B? —1
I L= R L =)
k=1 |n(r)|=k h t—tr1
n,->0
where, if r <N and n = (ny,...,nn), n(r) stands for (ny,...,n,).



The proof of Proposition [Z7is postponed to Section [B.11
Remark 2.8. Fort=1*%,. and r > 1, Proposition[Z7 leads to

p
B, (CF)=dot+y . > a]]_ Ku (G

k=1 |n(r)|=k

p
Dy Br (CF)=ht2% 0 >0 dp ][ K (Gi) x K1 (Gy).
e

When r =0, we get B (C}],VF) = do and we define Dy By (C}],VF) = ﬁd‘fl (which is the limit of
D,E, (CéVF) when t tends to 0).

Let us end this subsection by some examples.

Example 2.9 (Case p = 2). From (Z8)-(2Z3)), we have

N N j—1 N
CY(F) =do+ Y dYKi(Gy) + Y > d5" Ki(Gi)Ki(Gy) + Y dy Ka(Gy),
j=1 j=1 i=1 j=1
where e; denotes the unit vector whose jth component is one, and ¢;; = e; +¢;. For j=1,--- /N

and ¢ =1,---,5 — 1, it holds
dy = E(FK1(Gy)), dy? = E(FK1(G)K1(Gy)), d” = 2E(FK»(Gy)).

Remark leads to

r r j—1 r
By (CYF) =do+ > dyKi(Gy)+ Y. ds” Ki(Gi)K1(Gy) + Y dy Ks(Gy),
j=1 j=1i=1 j=1

r—1
D; E; (CYF)=n""? (d? +d3 K1 (Gy) + ng"Kl(Gi)> .
i=1

3 Description of the algorithm

The algorithm is based on four types of approximations : Picard’s iterations, a Wiener chaos
expansion up to a finite order, the truncation of an L2(0,7") basis in order to apply formulas of
Proposition Z7] and a Monte Carlo method to approximate the coefficients dy and d}} defined in
@3). We present the first three steps of the approximation procedure in Section Bl The Monte
Carlo method and the practical implementation are presented in Section

3.1 Approximation procedure
3.1.1 Picard’s iterations

The first step consists in approximating (Y, Z) — solution to (LI) — by Picard’s sequence
(Y4,29),, built as follows : (Y° =0,2°=0) and for all ¢ > 1

T T
v :€+/ f(s,qu,Zg)ds—/ Z4t .dB,, 0<t<T. (3.1)
t t

From (Z1)), under the assumptions that £ € DV2? and f € Cbo’l’l, we express (Y9t Z9H1) as a
function of the processes (Y'?, Z9):

T
Y =E, <§+ / f(s,nq,Z;?)dS), Zi* = Dy, (32)
t



which can also be written
T t
VI =R, &+ / f(s, Y, Z8)ds | — / f(s, Y8 28 ds, Z7™ =Dy ™ (3.3)
0 0

As recalled in the introduction, the computation of the conditional expectation is the corner-
stone in the numerical resolution of BSDEs. Chaos decomposition formulas enable to circumvent
this problem.

3.1.2 Wiener Chaos Expansion

Computing the chaos decomposition of the r.v. F' =& + ftT f(s, Y2, Z) ds (appearing in (3.2)))
in order to compute Y;*"" is not judicious. F depends on t, and then the computation of Y1
on the grid T = {¢; = i%,i =0,---,N} would require N + 1 calls to the chaos decomposition
function. To build an efficient algorithm, we need to call the chaos decomposition function as less
as possible, since each call is computationally demanding and brings an approximation error due
to the truncation and to the Monte-Carlo approximation (see next Sections). Then, we look for
a r.v. F? independent of ¢ such that ¥;7™' and Z™' can be expressed as functions of E;(F?),
DE(F7) and of Y and Z9. Equation (B3] gives a more tractable expression of Y91, Let F4

be defined by F?:= ¢ + [ f(s,Y3, Z8)ds. Then
t
VIt = B, (F9) —/ f(s,Y2, 2% ds, ZI = D,E,(F7). (3.4)
0

The second type of approximation consists in computing the chaos decomposition of F'¢ up to
order p. Since F'¢ does not depend on ¢, the chaos decomposition function C, is called only once
per Picard’s iteration.

Let (Y%P, Z%P) denote the approximation of (Y%, Z7) built at step ¢ using a chaos decompo-
sition with order p: (Y%P Z%P) = (0,0) and

t
Y;fq—i_Lp = Et [Cp (qup)] - / f (Sa sz%pa ng) d87 Zf“’p = DtEt [Cp (Fqﬂp)] ’ (35)
0

where 9P = ¢ + fOT f(s,Y2P Z7P)ds. In the sequel, we also use the following equality
ZITP = By [DyC, (FTP)). (3.6)

3.1.3 Truncation of the basis

The third type of approximation comes from the truncation of the orthonormal L?(0,T") basis
used in the definition of C, (Z1). Instead of considering a basis of L?(0,7"), we only keep the first
N functions (g1, ,gn) defined by (28) to build the chaos decomposition function Cév @1).
Proposition 27 gives us explicit formulas for E,(C)Y F) and D/E,(CYF). From [@BI), we build
(YerN zapN) in the following way : (Y0P, Z0PN) = (0,0) and

t
Yoy S BCY (e ) < [ (s Yar N 21m ) ds, 280N = Dy(Ee (FUN))
0
(3.7)

where F9PN .= ¢ + fOT f(s, YaPN 740Ny,

Equation (87 is tractable as soon as we know closed formulas for the coefficients d! of the
chaos decomposition of E(C) (FPN)) and Dy (E.(C) (F%PN))) (see Proposition 7). When it is
not the case, we need to use a Monte-Carlo method to approximate these coefficients. The next
Section is devoted to this method and to the practical implementation. In particular, we give the
pseudo-code of the algorithm.



3.2 Implementation

In this Section, we first explain how to practically compute the chaos decomposition CIJ)V (F)ofa
r.v. F. Then, we give the pseudo-code of the algorithm.

3.2.1 Monte-Carlo simulations of the chaos decomposition

Let F denote a r.v. of L?(Fr). Practically, when we are not able to compute exactly dy and/or
the coefficients d} of the chaos decomposition ([2.8)-(Z3)) of F', we use Monte-Carlo simulations to
approximate them. Let (F™)i<m<a be a M iid. sample of F' and (G, -+ ,G%)1<m<m be a
M ii.d. sample of (Gy,---,Gn). We recall that dy and the coefficients (d}})1<x<p,|n|=k are given
by dy = E[F] and d} = n!E[FK,,(G1)...K,,(Gn)] (see (ZI)). Then, they are solutions of

arg min E[|F —¢(c,G)|?], (3.8)

c=(co,(c})1<k<p,|n|=k)

where ¢ : (¢,G) — co+ Y 14 > inj=k % [li<i<n Kn,(Gi). We propose two methods to approx-
imate d = (do, (d;:)lgkgp,\'rﬂ:k)

e the first one consists in approximating the expectations of ([29) by empirical means d/l\z =

~

7 n
(do, dj 1§k§p,\n|:k) where

M M
do ::MZF , dy ::MZF Kn (GT) - Ky (G, (3.9)
m=1 m=1

e the second one is based on a sample average approximation

M
dy = (d07d21§kﬁp7|n\:k) = arg min M ™ = (e, G )|2
m=1

cos(CP)1<k<p,in|=k

Remark 3.1. In terms of computation time, the first method is much faster than the second one.

e The first method requires O(M x p) computations per coefficient. Since we are looking for
O(NP) coefficients, its computational cost is O(M X p x NP).

e The second method requires O(M x p x NP) computations to evaluate ﬁ2§;1 |F™ —
(e, G™)|? (in fact, it requires the same number of computations as the first method, since
the function v contains as much as additions as coefficients, and each addition contains as
much as products as the associated coefficient). We still have to compute the argmin, which
computational cost depends on the method we use.

From a theoretical point of view, the second method gives better convergence results than the
first one. For the first method, we only know that dyn converges to d a.s.. Concerning the
second method, we know that dng converges to d a.s. and under regularity assumptions on 1, the
uniform strong law of large numbers gives the a.s. convergence of % 2%21 |F™ — o(dn, G™)|?
to E[|F —v(d, G)[?].

In the following, CIJ,V M(F) denotes the approximation of the chaos decomposition of order p of
F when using the first method to approximate the coefficients d}:

P

CYM(F)=do+Y " > dp [ Kn(G). (3.10)

k=1|n|=k 1<i<N

10



E(C)"M(F)) and Dy(E(C}-"(F))) denote the conditional expectations obtained in Proposition
EZ when (do, d})1<k<p,|n|=k) are replaced by (do,d J1<k<p,|n|=k) :

t—1 1 E) By A’E% _
cVMF) =d d K, (G; - K, | —=t
i (C) beY Y BT Keie < (S (===

k=1 |n(r)|=k r—1

np—1
t—f 1\ B, —B;
SICEIETED W it | TR Gy Iy O

k=1|n(r)|=k —tr—1
n,. >0

Remark 3.2. When M samples of CN M( ) are needed, we can either use the same samples as
the ones used to compute dy and d” : (Cév( N™ = do +3 0, > inj=k 3}:’ [Li<icn Kn,(G]"), or use
new ones. In the first case, we only require M samples of F and (G1,--- ,Gn). The coefficients
i and dy are not independent of [1,<,<y Kn,(G}"). The notation E(C)"M(F)) introduced above
cannot be linked to E (C}],V’MFLB). In the second case, the coefficients E}z and CZE) are independent
of Tlh<i<n Kn.(GJ") and we have B, (C)-MF) = E (C)MF|F;). This second approach requires
2M samples of F and (G1,--- ,Gx) and its variance increases with N. Practically, we use the
first technique.

We introduce the processes (Y 4+1:pNM7a+1p.N.M) “yigeful in the following. It corresponds
to the approximation of (Y ¢+L:»N, Z‘”‘l’p’N) when we use CN M instead of CN, i.e. when we use
a Monte Carlo procedure to compute the coefficients dj.

t
Y e = gy ()M (Fan M) — /0 (02PN ds, Zg TP = DBy (C )M (RPN,
(3.11)

where F##N-M i ¢ 4 [T (627 N-M)ds and 37N M = (s, Y0 MM Zan.NM),

3.2.2 Pseudo-code of the Algorithm

In this Section, we describe in details the algorithm. We aim at computing M trajectories of an ap-
proximation of (Y, Z) on the grid 7 = {; = i%,i = 0,--- , N}. Starting from (YOP-N-M Z0.p.N.M) —
(0,0), (3II) enables to get (Y @P-N-M 7a:p.N.M) for each Picard’s iteration ¢ on 7. Practically, we
discretize the integral fot f (OgvvavM) ds which leads to approximated values of (Y 4:P:N:M  74.p. N, M)
computed on a grid.

Let us introduce (Yg:rl’p’N’M ZgJr1 M
forall ¢ >0

)i<i<n, defined by (Y yor NM,7OP . M) (0,0) and

i

yartpNM_ E;, (CéV,M(anPaN,M)) B hz F (t Yf_z,p,N M7 Z?Jﬁp’N’M) 7

qp N,M

= Dy, (B, ("M (F )); (3.12)

—=a:p, N, M q,p,N,M

=+ h SN f@, Y

—q,p,N,M

where F Z -

algorithm.

). Here are the notations we use in the

e d: dimension of the Brownian motion
e ¢: index of Picard’s iteration

e [K;;: number of Picard’s iterations

11



e M: number of Monte—Carlo samples

e N: number of time steps used for the discretization of Y and Z

p: order of the chaos decomposition

o Y7 e Mpyy1, m(R) represents M paths of yor M computed on the grid 7.

q,p,N,M

Foralll e {1,---.,d}, (Z7); € My41,m(R) represents M paths of (Z
the grid 7.

)1 computed on

Since & € L2(Fr), € can be written as a measurable function of the Brownian path. Then, one

gets one sample of £ from one sample of (Gy,---,Gy) (where G; represents T’l)
For the sake of clearness, we detail the algorithm for d = 1.
Algorithm 1 Iterative algorithm
1: Pick at random N x M values of standard Gaussian r.v. stored in G.
2: Using G, compute (§™)o<m<m—1-
3: Y0=0, Z° =0.
4: for q=0: K;; — 1 do
5: form=0: M —1do
6: Compute (F'9)™ =™+ h Ef;l F(i, (YY), (Z)1m)
7 end for
8: Compute the vector d = (do, (d )1<k<p in|=k) of the chaos decomposition of F'¢
9: = L SN (FO™, dy = S (PO K, (G Koy (GR)
10: for j=1:Ndo
11: form=0: M —1do
12: Compute (Egj (CéV’MFq)) (D— (E— (CN Mpayy)m
13: (YY) jm = (B, (CYMPO)™ = h 2] [ (YD) ims (Z2)im)
" (Z71)j.m = (Dy, (B, (VM Fo))m
15: end for
16: end for
17: end for
18: Return (YXit)o. = dy and (ZKit),, = ﬁcﬁl

Let us now deal with the complexity of the algorithm :
For each ¢:

e the computation of the vector F'? (loop line [l) requires O(M x N) computations,

e the computation of the vector d (line B)) requires O(M x p x (N x d)P) computations, (in
dimension d we have O((N xd)?) coefficients, and the computation of each coefficient requires
O(M X p) computations (see Remark B.1])),

e for each N and M (lines [[OHIT)

— the computation of (E; (CN M pay)m and of (Di (K, (A F9)))7% <4 (line[[2) requires
O(d x p x (N x d)?) computations

— the computation of (Y'471), ., (loop line [3) requires O(N) computations and the com-
putation of ((Z9t1)} | )1<i<4 requires O(d) computations.

The complexity of the algorithm is then O(K;; x M x p x (N x d)PT1).

12



4 Convergence results

We aim at bounding the error between (Y, Z) — the solution of (LI) — and (Y ¢P-N.M  za.p.N.M)
defined by (BII]). Before stating the main result of the paper, we introduce some hypotheses.
In the following, (t1,- - ,t,) and (s1,- -, $,) denote two vectors such that

0<t; < <t, <T,0<s;<--<s, <Tand Vi, 5; <1,.

Hypothesis 4.1 (Hypothesis H,,). Let m € N*. We say that F satisfies Hypothesis H,, if F
satisfies the two following hypotheses

o Hl, :Vj=2FeD™ je ||F|) ; <oc
o H2 :Vj>2 Vie{l,--- ,m},Vip<i—1,Vly <m—i, VI €{l,---,d} and for all multi-

indices oy and o such that |ag| = lo and |aq| = 11 + 1, there exist two positive constants B
and le such that

sup sup E[|D}°..., (D F— D F)) < kF () (ti — s4)757,

t1<e <t sip1 <o Ssig, bt FT b S ey T
where | = lg + 11 + 1. In the following, we denote KF (j) = SUP; <, K (5).
Remark 4.2. If F satisfies H2,, for all multi-index o such that |a| =1 we have
[E(D§ .. o, F) —E(Dg, .. o ) < K (1= 52)°F 4+ (8 — 1)), (4.1)
where K" is a constant.

Hypothesis 4.3 (Hypothesis 7-[13771\,). Let (p, N) € N2. We say that a r.v. F satisfies Hg,N if

Von(F) :=V(F) + zp: > v (FH K,, (Gi)> < oo.

k=1|n|=k

Remark 4.4. If F is bounded by K, we get V, y(F) < K*Y % _, (JZ) Then, every bounded r.v.
satisfies ’H;N.

This Remark ensues from E (Hfil Kﬁi(Gi)) =1

1
n!

Remark 4.5. Let X be the R™-valued process solution of

t t
X, =z —|—/ b(s, Xs)ds —|—/ o(s, Xs)dBs,
0 0

where B is a d-dimensional Brownian motion and b : [0, T} x R™ — R" and o : [0,T] x R® — R"*4
are two CO™ functions uniformly lipschitz w.r.t. x and Hélder continuous of parameter % w.r.t.
t, with linear growth in x and with bounded derivatives. Then, every random variable & of type

g(X7) or g(fOT Xsds) with g : R" — R in C5° satisfies H,, and Hz,N, for all p and N.
We refer to Section [AT] for the proof of Remark

Theorem 4.6. Let k be an integer s.t. k < p. Assume that £ satisfies Hpyq and ’H;N and
fe Cg’p+q_1’p+q_1. We have
Ao | Ai(a.k) 2N Ag(q,p,N)
Yy _yerNM 7 gepNMy2 20 ’ A — 5

H( ) )HL2 = 9q + (erl)k + Q(Qap) N + M )
where Ag is given in Section[{.1], A1 is given in Proposition[{.11], As is given in Proposition [{.13]
and As is given in Proposition [[.17}
If f € CY°°™° and € satisfies Hoo and H3 we get

00,007

lim lim lim lim |(Y = Y¢PNM 7 zapNMy2, —
q—00 p—00 N—o00 M —00
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Remark 4.7. If f is a path-dependent generator, theorem[{.0 still holds true under the following
hypotheses : VI < p, Vj > 2, for all multi-index o in {1---,d+ 1} (d is the dimension of the
Brownian motion) s.t. a(i) = d + 1 means that the Malliavin derivative w.r.t. t; concerns the
path-dependent component, we assume

T
/O 1D o (5, Y, Z0) ooy ds < 00,

T T
[ BUDE - F Y2, 200 )ds < oo, [ BIDE, ., £(s. Y27, 207)ds < oo, and
0 0

« « Iqup
[E(D3,. ... 1, qp) — E(D L)l S Ko7 (b — s1)aw o4 (8 — 5p) o),

81,00 ,81
where Iq , = fOT F0%P)dr, and KZI‘”’ and By, , are two positive constants.

Remark 4.8. Given the complexity Cy of the algorithm (and a given value of d), we can choose the

parameters p,q, N and M such that they minimize the error % + 1(4171-5-(]17? +As(q,p) (%)GJFW,

where a := 2P¢ N 1. This boilds down to solving the following constrained minimization problem

min
¢,p,N,M 8.t. gqpMNP+1=C\,

2 prlr N M

( 1 c1 c1 Cqu)

P
a

2
The Karush-Kuhn-Tucker theorem gives M ~ %p(p + 1Pt N ~ (p+1)
and p such that (p+ 1)2P0+)p3 In(p + 1) ~ alog(2C)Co.

yq 1n(+c)171n(17+ 1)

Proof of Theorem [{.6] We split the error in 4 terms :
1. Picard’s iterations : €9 = ||(Y — Y%, Z — Z%)||{., where (Y%, Z%) is defined by BI)),

2. the truncation of the chaos decomposition : £%P = (Y9 — Y%P, Z9 — Z9P)||2,, where
(Yor Z%P) is defined by (3.5,

3. the truncation of the L2(0,7) basis : 9PN = |(Y9P — YPN Zep — ZaPN)||12, " where
(YaorN | 7ap:N) is defined by (B1).

4. the Monte-Carlo approximation to compute the expectations : £4PNM — | (yerN —
yerNM zap N _ zap.NMY (2, where (Y P NM 740 N.M) g defined by B1T).

We have

(Y — yorNM 7 Zq’p’N’M)Hiz <4(ETHETP 4 gL N 4 Eq’p’N’M).
It remains to combine [2), Proposition 11, Proposition .15 and Proposition ELTT to get the
first result. u

4.1 Picard’s iterations

The first type of error has already been studied in [PP92] and [EPQ97], we only recall the main
result.

Hypothesis 4.9. We assume

e the generator f : RT x R x RY — R s Lipschitz continuous: there exists a constant Ly
such that for all t € RT, y1, 92 € R and 2z, 23 € R4

|f(t,y1,z1) — f(t,y2, 22)| < Ly (Jy1 — yo| + |21 — 22|),

o E[l¢| + [ [£(5,0,0)[2ds] < oc.
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From [EPQ97, Corollary 2.1], we know that under Hypothesis [L3] the sequence (Y'9,Z29),
defined by (B converges to (Y, Z) dP x dt a.s. and in S2.(R) x HZ(RY). Moreover, we have

A
9= |(Y =Y, Z— 79|32 < 2—5 (4.2)

where Ay depends on T, [|£]|? and on ||f(-,0, 0>Hi?0 .

4.2 Error due to the truncation of the chaos decomposition

We assume that the integrals are computed exactly, as well as expectations. The error is only due
to the truncation of the chaos decomposition C, introduced in (Z2.3).
For the sequel, we also need the following Lemma. We postpone its proof to the Appendix

A2

Lemma 4.10. Assume that & satisfies H,, ., and f € Cg’erq*l’erq*l. Then Vq' < ¢, Vp € N,

(Y9, Z7) and (Y9P, Z9°P) belong to S™>. Moreover

Y9, Z) 0,5+ 122, Z99), 5 < CUIEN,,, 4 nranit;, (108, Flloc)k<m+q-1),

m!

m+q,

where C' is a constant depending on ||€]|

m+q,%;‘ and on (Hafproo)kngrqfl.

Proposition 4.11. Let m € N*. Assume that £ satisfies H},,, and [ € Cg’m+q_1’m+q_1. We
recall EVP = ||(Y1 —Y9P, Z9 — Z9P)||2,. We get

Kl(qvm)
(p+1)---(p+m)

ETTIP < O\T(T + 1) L3ETY + (4.3)

where Cy is a scalar and K1(q, m) depends on'T, m, |‘§Hm4rq72(7+i)l.)! and on (Hafpf”()o)lgkgmﬁ»qfl.

Since E9P = 0, we deduce from @3) that ETP < 1?1914(&)7@ where
Ai(g,m) = %Iﬁ(q,m). Then, (YP4, ZP:9) converges to (Y9,Z%) when p tends
! s

to oo in ||(+,-)|lLz (see @) for the Definition of the norm).

Remark 4.12. We deduce from Proposition[{.11| that for all T and Ly, we have limp_,ocE9P = 0.
When C1T(T + I)L?c <1, i.e. forT small enough, we also get limp_oolimg—ocEYP = 0.

Proof of Proposition [{-11]. For the sake of clearness, we assume d = 1. In the following, one notes
AYPP =Y IP — VI AZPY = ZPP — Z1 and AfEPY = f(t, VPP, Z0P) — f(t, Y1, Z]). Firstly, we
deal with E[supg<,<p |[AY;Y TP [?]. From @) and @) we get

t
AYtqH,p :Et[Cp(Fq’p) _Fq] _/ AfTPds,
0
T T t
Cp </ f(s,YfﬂZ?”)ds) —/ f(s, Y2, Z3)ds —/ AfIPds.
0 0 0

We introduce £C, ( fOT f(s, Y4, Zg)ds) in the second conditional expectation. This leads to

T
q,p
c, ( /0 Af ds>

—E/[C,(€) - £ + E,

AYtq—H’p =E4[Cp(§) — €] + B¢

t
- [ agas
0

T
VB | [ Gt i, 20) - 1G5,V 2D)ds
0
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where we have used the second property of Lemma [Z4] to rewrite the third term.
From the previous equation, we bound E[supg<;<z |AY2T1P12] by using Doob’s inequality and

the Lipschitz property of f
T
Cp / AfIPds
0

T T
+ 167 / E[Icy(f(s, Y21, 28) = f(s, Y3, Z0)| ds + 8TL3 / E[JAYZ?[? + |AZ2P2)ds.

2

E[ sup |AYH1P|?) < 16E[|C,(€) — &[*] + 16E
0<t<T

To bound the second expectation of the previous inequality, we use the first property of Lemma
24 and the Lispchitz property of f. Then, we bring together this term with the last one to get

T
Bl sup |AYH) SI6B(C,(€) ~ €]+ 16T | B [iey(r(s. v, 20) — 5, v2, Z0) ] ds
0<t<T 0

T
+40TL§/ E[|AY 2?2 + |AZ2P*]ds. (4.4)
0

Let us now upper bound E[fOT |AZ3+1P|12ds]. To do so, we use the Itd isometry E[fOT |AZa+LP|12ds] =

IE[(fOT AZ1t12dB,)?]. Using the Definitions B2)-@8) of Z¢ ™' and ZIT"* and the Clark-Ocone
Theorem leads to

/ " AZIFRAB, = O B(FY) — (C,(FP) — E(C, (7)),
0

T T
=Y+ / fls, Y4, Z8ds — YT — (Yﬁ“’p + / Fls, YP, Z2P)ds — Y&“*”)
0 0
Rearranging this summation makes appear AYZ™P — (AYZTHP). We get

T T
E / |AZI1P|2ds| < 6E[ sup |AYtq+1’p|2]+6TL}/ E[[AY2P)? + |AZ2P|*ds.  (4.5)
0 0

0<t<T

Since fOTEHAYSq’pP +|AZ2P2lds < (T + 1)E%P, by computing 7x ([E4)+ (@3] we obtain
T
£ <112E(|Cy(€) — €] + 1127 / E[IC,(f(s, Y21, 20)) = f(s, Y2, ZD)I| ds+ 286T(T + 1) L3 €.
0

Since & and f(s, Y7, ZZ) belong to D2 (£ satisfies 1}, ., f € Cg’m+q_1’m+q_1 and (Y4,79) €
S (see Lemma [L10)), Lemma 23] gives
112
(p+1)---(p+m
1127
p+1)---(p+m

qurLP <

] D™ 2% 0,77m)

T
) (/0 |Dmf(saYtsqaZg)”iZ(Qx[O,T]m)dS) +286T(T + 1) LFEM.

. T m . m
Slnce fo ||D f(S, an Z?)H%P(QX[QT]M)dS 1S bounded by C(Tvmv (HafprOO)kva H(Yqv Zq)”gn,Qm)a
Lemma [4.10) gives the result.

|

4.3 Error due to the truncation of the basis

We are now interested in bounding the error between (Y 97, Z49P) (defined by ([3.35)) and (Y 4P, 4P V)

(defined by B1)).

Before giving an upper bound for the error, we measure the error between C, and Cév for ar.v.
satisfying (1) when r = p.
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Remark 4.13. Let r € N*, € satisfies Hyiq and f € CS’T+q_1’T+q_1. Then, for all integers p and
q, Iyp = fOT f(s,Y2P Z8P)ds satisfies (D), i.e. for all multi-index o such that || = r we have

E(DY, ... . o) = B(DS, o o Tgp)| < Koo (81— 1) 00 oo (b — 1) taw),

1.t 50

where B, , = 3 A B¢ and Kl*? depends on K, ||§||T+q12<r(ﬁ—;)1!);, T and on (||0%, flloc)1<k<riq—1-
We refer to Section [A3] for the proof of Remark

Lemma 4.14. Let F denote a r.v. in L2(Fr) satisfying @) for r = p. We have

sy e <o (5) 23 <ucty (%) o

where Kf and B are defined in Hypothesis [{1}
We refer to Section [A4] for the proof of the Lemma.

Proposition 4.15. Assume that & satisfies Hpyq and f € Cg’pﬂ_l’pﬂ_l. We recall £9PN =
[(Yor —yerN zep — zapNY |12, We get

1/\2ﬁ§
EITLPN < CyT(T + 1) LFEMPN + Ky (g, p) (N) (4.6)

where Cs is a scalar and K»(q,p) depends on K§, T, ||£||p+q72<p(25)1!)! and on (||0F, flloc)1<k<ptq—1-

Since E9PN = 0, we deduce from @) that ETPN < Ay(q,p) (%)Mm&
(CoT(T+1)L3)9—1

Ks(q,p)T(T + 1)eTC22T(T+—1)L%_1. Then, (YP@N ZpaN) converges to (Y4P, Z9P) when N

tends to oo in ||(+,)||Lz-

, where As(q,p) :=

Proof of Proposition | For the sake of clearness, we assume d = 1. In the following, one
notes AY,PPN .= YIPN _y o AzgPN = zaP N Z0P and AfEPN = ft, PN, 20PN -
f, Y7, ZFP). Firstly, we deal with E[sup<;<p |AY PN 2] From (BF) and B7) we get

t
A}/;q-l-l,p,N =F, [Cév(Fq’p’N) _ Cp(qu)] 4 / Afg’p’Nds.
0
Following the same steps as in the proof of Proposition LTT] one gets

2

E[ sup |AY,FHPN2] <16E[ICY (€) — Co(€)[?] + 16E
0<t<T

T
(CZJ)V - CP) </0 f(sv }/sq,p7 Zgﬁp)d5>

T
+40TL§/ E[|AY 2PN 2 + |AZ2PN 2]ds. (4.7)
0

Let us now upper bound E[fOT |AZa+1PN|2ds]. Following the same steps as in the proof of
Proposition [ TT], one gets

E
0<t<T

T T
/ |AZ§+1’p’N|2ds] <6E[ sup |AYtq+1’p’N|2]+6TL§/ E[|JAY 2PN |2 + |AZIPN|2)ds.
0 0

(4.8)
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Adding 7x (&) and ([&8) gives
2
ErHLEN C119B((CY - C)(€)] + 112E

(Cév B CP) </OT f(S’qu’p’Zg’p)dS>

+2867(T + 1) L3EPN.
Since & and I, satisfy (1) (see Remarks L4 and EET3)), Lemma 14 gives

20(5/\1
gatlrN <112 (N) T(T + 1)e” (K§5)? + (K }o»)?) + 286T(T + 1) L3 VPN,

and (44) follows. O

4.4 Error due to the Monte-Carlo approximation

We are now interested in bounding the error between (Y47 74PN defined by @.7) and (Y ¢ N-M Za:p.N.M)
defined by BII). ¢ is defined by BJ) and BI0). In this Section, we assume that the coeffi-
cients dAZ are independent of the vector (Gy,---,Gn), which corresponds to the second approach
proposed in Remark
Before giving an upper bound for the error, we measure the error between CIJ,V and Cév M for a
r.v. satisfying ’Hg, ~ (see Hypothesis [43]).

Lemma 4.16. Let F be a r.v. satisfying Hypothesis ’H;N. We have

E((C) — CIM)(F)P) = 2-Vp (F).

Moreover, we have E(|CY-M(F)[?) <E(|F|?) + 37 Vo.n (F).
We refer to Section for the proof of the Lemma.

Proposition 4.17. Let & satisfy Hypothesis ’H;N and f be a bounded function. Let £9PN-M .=
|(yerN —yarNM zapN _ Zzap.NMY 2, We get

K N
gatle,N.M < CsT(T + 1)L§gq,p,N,M + 3(‘1];41% )’

where C3 is a scalar and Ks3(q,p, N) := 168 (VP,N(«f) + T2 f112 >0 (]IX))

Since E9PNM = 0, we deduce from the previous inequality that £1PNM < W

. 2vq _
As(q,p,N) := Ks(q,p, N)—(%Bg(éill);’;ll L Then, (YP4-NM - 70.0.N.MY conyerges to (Y 4PN | ZaPN)
¥

when M tends to oo in ||(-,-)||Lz2.

, where

Proof of Proposition[{-17 For the sake of clearness, we assume d = 1. In the following, one
notes AY,IPNM Ty @ NM _yanN A gapNM o gapNM - gap N g A par M
Ft, YN g e Ny g y e N Zep ) Rirstly, we deal with E[supgc,<q [AY,ZTHPNAM 2],

From B1) and (I1) we get

t
N R G P PN

By introducing iCéV(Fq’p’N’M) and by using Lemma [2.6] we obtain

E[ sup |Aytq+17p7N7M|2] §12E[|(C}],V’M —Cév)(Fq’p’N’M)F] +12FE (|Fq,p,N,M _ Fq,p,N|2)
0<t<T

T
- 6TL§/ E[JAY2PNM 2 Az N M 2] g
0
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From Lemma TG, we get E[|(CN-M —C ) (For-N-M)|2] < 2 (vp,N(g) + VN ( Ir f(03=p=N=”f)ds)).
Then
24 "IN
E[ sup |AYITHPNM21 <22 [y + 72| f||? ( )
o 1AV NN < (@) - TSI Y ()

k=0

T
+ 30TL§/ E[|AY 2P NM 2 | A Z2PNM 21 g (4.9)
0

Let us now upper bound E[fOT |AZa+LpNM244) - Following the same steps as in the proof of
Proposition [T1], one gets

T T
E / |AZgHPNM 2451 <GE[ sup [AYHHPNM2] 46713 / E[|AY &P N M2 4| A Z3P MM 2],
0 0<t<T 0
(4.10)
Adding 7x ([£9) and [@I0) gives the result. O

5 Numerical Examples

The computations have been done on a PC INTEL Core 2 Duo P9600 2.53 GHz with 4Gb of
RAM.

5.1 Non linear driver and path-dependent terminal condition

We consider the case d = 1, f(t,y,2) = cos(y) and § = supg<,<; Bi-

. . —a4,p,N,M —q,p,N,M
e Convergence in p. Table [l represents the evolution of ng and ng w.r.t q

(Picard’s iteration index), when p = 2 and p = 3. We also give the CPU time needed to

get Yg’p’N’M and Eg’p’N’M. We fix M = 10° and N = 20. The seed of the generator is also
fixed.

| iterations | 1 | 2 | 3 | 4 | 5 | 6 || CPU time |
p=2 1.656357 | 1.017117 | 1.237135 | 1.186691 | 1.195462 | 1.194256 14.06
p=3 1.656357 | 1.012091 | 1.234398 | 1.183544 | 1.192367 | 1.191173 174.09

Table 1: Evolution of ?g’p’N’M w.r.t. Picard’s iterations, M = 10%, N = 20 and CPU time

| iterations | 1 | 2 | 3 | 4 | 5 | 6 || CPU time |
p=2 0.969128 | 0.249148 | 0.525273 | 0.459326 | 0.470069 | 0.469117 14.06
p=3 0.969128 | 0.242977 | 0.523846 | 0.455827 | 0.466903 | 0.465939 174.09
Table 2: Evolution of 7g’p’N’M w.r.t. Picard’s iterations, M = 10%, N = 20 and CPU time
One notes that the difference between the values of 78’2’N’M and Yg’s’N’M (resp. 78’2’N’M
and Eg’B’N’M) doesn’t exceed 0.2% (resp. 0.6%). This is due to the fast convergence of the

algorithm in p. The CPU time is 12 times higher when p = 3 than when p = 2. Then, the
use of order 3 in the chaos decomposition is not necessary. In the following, we take p = 2.

e Convergence in M. Figure [1 illustrates the evolution of Yg’p’N’M and 7g’p"N"M w.r.t. q
when p = 2 and N = 20 for different values of M. The seed of the generator is random. When
M equals 10* and 10° the algorithm stabilizes after very few iterations. When M = 103,
there is no convergence.
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Evolution of Y~q_O Evolution of Z~q_0O

—+ M=10"3 —+ M=10"3
1.6 —= M=10"4
—HI M=10"5

1.5—

1.4—

1.3

2ol

o.9 I n n 1 " 1 1 " A i " " "

—q,p,N,M —q,p,N,M
Figure 1: Evolution of Yg’p’ “ and Zg’p’ " wat. gand M when N = 20, p = 2- ¢ =
SupOStSl Bta f(tvya Z) = COS(’y).
. . . . 0, N, M 40, N,M
e Convergence in N. Figure [2 illustrates the evolution of ng and ng w.r.t. ¢
when p = 2 and M = 10° for different values of N. The seed of the generator is random.

0,10, M ,p,40, M

The algorithm converges even when N = 10, but ?3 is quite below 73

Evolution of Y~q_O Evolution of Z~q_0O

vap,N,M 4P, N, M
Figure 2: Evolution of ng and ng w.r.t. N when M =10°, p=2-¢ = Supg<i<1 B,

f(t,y,2) = cos(y)

5.2 Linear Driver - Financial Benchmark

We consider the case of pricing and hedging a Discrete Down and Out Barrier Call option, i.e.

f(t,y,z) = —ry and £ := (S7— K) 4 lyne(o,N]s,, >, Where S represents the Black-Scholes diffusion
Sy = Soe(T_%"2)t+"Wt, vt € [0,T].

The option parameters are r = 0.01, 0 =02, T =1, K =0.9, L = 0.85, Sy =1 and N = 20
(N is also the number of time discretizations of the chaos decomposition).

We can get a benchmark for Yy and Zj by using a variance reduction Monte Carlo method.
For this set of parameters, the reference values are Yy = 0.134267 with a confidence interval
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Evolution of Y_O Evolution of delta_O

134e—3

133e—3

132e—3

131le—3

— ref L — ref
—~y_app — delta__app

0.60 L

L L L L L Il
7 8 o 10 i1 iz i3 14 7 8 o 10 i1 iz i3 14

log(M) log(M)
. . 4.0, N,M Zor M
Figure 3: Evolution of Y and Jg = 5 Wt log(M) when N =20, p=2,¢=5
-Discrete Down and Out Barrier Call option
Z 1 779P N, M Zor M
7.9468¢ — 05 and dg = 75, = 0.8327. We compare them with Y and 5 when N = 20,

p=2,q=75 (we choose the first value of ¢ from which the algorithm has converged) for different

. . 5.0, N,M
values of M. Figure B represents the evolution of Y" and 657N M wrt. log(M). One
notices that for M = 10° the computed values are very close to the reference ones.

5.3 Non linear driver in dimension 5 - Financial Benchmark
We consider the pricing and hedging of a Put Basket option in dimension 5, ie. & = (K —

5 .
% >_i—157)+, where

(a*

Vi=1,---,5 S} = Sée(“i_ ;)2)t+aiB§_

u? (vesp. o) represents the trend (resp. the volatility) of the i asset. B = (B',---,B®%)is a 5-
dimensional Brownian motion such that (B’, B7); = pt1,z; +t1,—;. We suppose that p € (—1, 1),
which ensures that the matrix C' = (pli~; + 1i=j)1<i j<5 is positive definite. We also assume
that the borrowing rate R is higher than the bond one r. In such a case, pricing and hedging
the Put Basket option is equivalent to solving a BSDE with terminal condition £ and with driver
f defined by f(t,y,z) = —ry —0-z+4+ (R —1r)(y — 2?21(2_1z)i)_, where 0 := XY — rl)
(1 is the vector whose every component is one) and ¥ is the matrix defined by ¥;; = ¢'L;; (L
denote the lower triangular matrix involved in the Cholesky decomposition C' = LL*). We refer
to [EPQ97] [Example 1.1] for more details.

The option parameters are r = 0.02, R=0.1,T =1, K =95, p=0.1, and for all i = 1,--- |5,

S¢ = 100, pf = 0.05 and o = 0.2. Figurerepresents the evolution of Yg’p’N’M, the approximated

1 (E,lis,p,N,M)l

price at time 0, and the relative error on dj := “=—=%4—— — the quantity of asset 1 to possess
0

at time 0 — w.r.t. log(M). We compare our results with the ones obtained using the Algorithm

proposed in [GL10] (cited here as reference values). The CPU time needed to compute price and
delta when M = 50000 and N = 20 is 161s. One notices that the convergence is very fast and
quite accurate for M = 50000.

Conclusion. In this paper, we use Wiener chaos expansions together with the Picard pro-
cedure to compute the solution to (II)). Once computed the chaos decomposition of F'7, we get
explicit formulas for both conditional expectations and the Malliavin derivative of conditional
expectations. This enables to easily compute (Y9, Z7). Numerically, we obtain fast and accurate
results, which encourage us to extend these results to other type of BSDEs, like 2-BSDEs. It is
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Evolution of Y_O Evolution of the relative error on delta_0(1)

0.4

+ + + + t n n
7 8 k= 10 i1 iz i3 7 8 o 10 11 iz i3

log(M) log(M)
Figure 4: Evolution of ?g’p’N’M and dp(1) w.r.t. log(M) when N =20, p=2,g=5,d=>5-

Basket Put option with different interest and borrowing rates

also possible to couple these Wiener chaos expansions together with the dynamic programming
approach. This will be the subject of a forthcoming publication.

A Technical results of Section (4

In the following, for any regular r.v. F' € Fr, DglO)AiDgll)F denotes Dg?) g (Dgf:ﬂ, P
141
D‘E; ,?SH»Ll F)

A.1 Proof of Remark
Before proving Remark [£.5], we prove the following Lemma.

Lemma A.1. Let X be the R™-valued process solution of

t t
Xi==x Jr/ b(s, Xs)ds Jr/ o(s, Xs)dBs,
0 0

where B is a d-dimensional Brownian motion and b : [0, T] x R™ — R" and o : [0,T] x R® — R"*4
are two C%™ functions uniformly lipschitz w.r.t. x and Hélder continuous of parameter % w.T.t.
t, with linear growth in x (of constant K ) and with bounded derivatives. Then

o VI < m,Vj>2 we have

M := sup E( sup |D§i),---,thr|j)<007 (A1)
t1<-<ti  ret,T)

the upper bound depends on (|[b%)||o)r <, (l6©)|oo)r<i, 2 and K,
o Vj>2 Vie{l,--- ,m},Vip<i—1,Vl <m —i, we have

sup sup E( sup |D£l“)AiDgl1)XT|j) <KXt — si)%, (A.2)

t1 <<ty si41<<Sit1y  TE€[si41,,T]

v

where | := lop+11+1 and k¥ depends on'T, (M) <1 jr<ij, (169 | s)rr<t, and on (||o@)||oo)rr<i-
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Proof of Lemmal[Adl The first point is proved in [Nua06, Theorem 2.2.2]. For the sake of clear-
ness, we prove the second result for d = 1. We also assume that the vectors (t1,---,¢,) and
($1,+ ,8n) are such that 0 < s1 <3 <s9 <+ <5, <t, <T. We do it by induction on /g and
l1. We detail the case b and o only depending on x and do the proof for [ =1y = 0 and [y = 0,
Iy = 1. We recall that under these hypotheses on b and o, we have VI < m

S EIDL Xy = X P) < Oltaa = si4),

-/

where C' depends on T, §, (M, )ir<i jr<ij and on (||bY)]|o)j1<;, and on (o)) jr<;-
Case [p =11 = 0. We have

D, X, = / V(X)) Dy, Xudu + (X)) + / o' (X,)Dy, X.dBu.
tn t

n

Then

T tn
ApX, =Dy X, — Dy X, = / V(X)) AnXodu — / b(X,)Ds, (Xu)du
tn s

r tn
+o(X,) —0(Xs,) —|—/ o' (Xu)An XydBu — / o' (Xy)Ds, (X, )dBu.
tn Sn
In the following, C' denotes a generic constant depending only on 7" and j and L, denotes the
Lipschitz contant of o.
j)

71120 X, [7]. Doob’s inequality and Burkhélder-Davis-Gundy

” tn 3
8,50 <€ (W1 [ 1860 dut (= s W1 [ 1., (X
tn Sn
_ ) J
+L‘(77'|th - Xsn|] +

tn
+ / o' (Xy)Ds, (X, )dBu

n

/ o' (Xu)An Xy dBu
t

n

We introduce W97(T) := E[sup, .,
inequality lead to

tn,

T )
v(T) < C <(||b’||?;o + IIU’Hf;o)/ U (w)du + |5 M7 (tn — s0)? + (LY, + [lo” |12, M7 [tn — 3n|%>

tn

Gronwall’s lemma yields the result.

Case lp =0,l; = 1. We consider A,,_1D¢, X; =Dy, 4, X, — D t, Xr. We have

Sn—1,

Dy, 4, Xr :/ b (Xu) D,y XuDi, X + ' (Xu) D,y 1, Xudu + o' (X4, ) Dy, Xt
t

+ / O-/I(Xu)Dtnlethn,Xu + U/(Xu)Dtn,htnXudBu-
t

n

Then,

An—lDtn,Xr :/ b”(Xu)An—lXthnXu + b/(Xu)An_lDtnXudu + U/(th)An—lth
ln

—|—/ o (Xu)Ap—1XyDy, X + 0" (Xy)Ap_1 Dy, X dBu.
t

n

Doob’s inequality and Burkhélder-Davis-Gundy inequality lead to

T
E[ sup |An_1Dy, X, [] <C (/ 16" 2Bl An—1 Xul?| D, Xu’] + [0 [ 2 E[| An—1 Dy, X |du

r€(tn,T]

tn

T
+H0'HéoE[|An71thlj]+/ IU”IéoE[IAn1Xu|J|DtnXuIJ]+IU'IIéoE[IAn1DtnXu|J]dU>-
tn
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We introduce W27 (T) := sup,, <7 E[sup,.cp, 77 [An—1Dt, X,’]. Cauchy-Schwarz inequality
yields

T
v,2,(T) <C ((Ib’lléo + Ho’l\éo)/ U2y (w)du + (7 + o |140) (M) 2 (W25 (1) 2

0,
o' [0 (T))

Since WO (T) < K(ty_1 — sp_1)?, and U7 (T) < K(t,_; — $n_1)%, Gronwall’s Lemma ends
the proof. 0

Proof of Remark[].5. We prove the result for d = 1. We first prove that g(X7) belongs to D™
for all j > 2, ie. [|g(XT)I1%, ;= Yicp Sor, o BIDL. ., g(X0)l] < 00. DiY. ; g(Xr) contains
a sum of terms of type ¢(¥)(X7r) Hle Dt(Ji)XT, where k varies in {1,--- 1}, |j]1 = and a(j) = k
(a(j) denotes the number of non zero components of j). Since g € Cp° and X satisfies (A.T]), we
get the result.

Let us now prove that g(Xr) satisfies H2,. DglO)AtiysiDgll)g(XT) contains a sum of terms of type
g (X)) [ (DY) X0) DA, . DY X7, where k varies in {1,--- 1}, [jli = 1—1—1) — 1],
a(j) =k —1,15 <lp and I} <ly. Then, since g € C;°, X satisfies (AI) and (A.2)), we get g(X7)
satisfies H2,, with B,(x,) = % and klg(XT) depends on (||g%)]|0 )i <1, on (Mﬂ/)l/§l7j,§lj and on
It remains to prove that g(Xr) satisfies 3 . V(g(Xr)) is bounded by E((g(X7))?). Since
g € Cp° and X satisfies E(|X7]/) < oo for all j, we get that V(g(Xr)) is bounded. We prove that

\% (g(XT) Y, Kni(Gi)) is bounded by the same way. O

A.2 Proof of Lemma

We do the proof for d = 1. We prove by induction that V¢’ < g, (Yq/, qu) belongs to S™ > i.e.
Vi >2

T
7 / ; l 7/ - l YA
e, 20, = > sup {E[ sup |Df). VP + / E(|D{)... , 2 |ﬂ]dr}<oo.
t

| Siem 1SSt t<r<T

Using (4] gives

l
DY,

17

Yrql:IET[DERMMF’/*]—/ DY L F(07 7N du, where 091 = (u, Y'Y, 24 7).

t
Using the Definition of F 7' ~1 and applying Doob’s inequality leads to
E[ sup |D VIV <C(BIDY ., ¢f]+E |D<” F6L 1) du
t<r<T t1,, 017 — t1,-,t; -t u )

where C' is a generic constant depending on 7" and j.
Dg) 1, f(69~1) contains a sum of terms of type 909 f(6% 1) [T, DIva =TT, Dk zd -1,
where [j|1 + |k]1 =, a(j) = lo, a(k) =11 and |y + 13 < [. Then, Holder’s inequality gives

( / DY L F(67 -1>|Jdu> <OZ||6 FIEN (Y=Y, Z9 =117, (A.3)

k=1

and

m l
sup E[ sup Dy VTP <O (e, + SO0k Iy =tz =15, ) .
1§l§mt1< <t t <r<T =1 k—1
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’

From (34), we get Dg)t zZ4 =E,.|D tﬁrl)th &+ f Hl) £(64~1)du]. Then

1 sty

T
[ etz <o [ Eipl, g [ e
1 1

Using (A.3)) yields

T m l
l g — — I+1)5
S swp / E[|D;)... . 28 |J]drgc<|s|mm SO ok IRy 27 1>||El11§7<l+1)j>.
l

1<i<m 1SSt =1 k=1

J

Hl) F07 " Ndu| | dr

tl’l“

Combining this equation with (AZ) gives

3

! ’ y /7 ,— ll
I, 21, < CUlEN . + ZH ) Syt ze |,

Tterating this inequality yields the result. We prove that V¢’ < g, (quvp A q/vp) belongs to S™>°
in the same way. In this case, the generic constant C' depends on T', j and p, since we need to use
the first part of Lemma B to upper bound E(|C,_; (D" Fa=1p))[3),

A.3 Proof of Remark

For the sake of clearness, we assume that Vi < r, t;_1 <s; <t; and d = 1. Then, we show that if
¢ satisfies H, 14 and f € Cp" 9717 hen 1, = fOT f(s,Y2P ZTP)ds satisfies

[E(DE)... 1, Top) = E(DS o, Top)| < KJow (81 = s1)%0n 4 4 (1 — s,)Pan).

Since Iy, = 0, we deal with the case ¢ > 1. Since we have Dg) o dgp — Dg:) silgp =

S D(z YADI 1, it is enough to prove that E(D{ YA, D!~ Z)Iq p) < Ki(t; — 8;)Ptaw
(we refer to the beginning of Section [& for the definition of D{'" YA, D"V F).

We introduce 027 = (u, Y, 2P, Z2P) two vectors j and m, and four integers ko, k1, lp and [; such
that lo <i—1,13 <r—i, [jli+|mh =r—1—lo—l and ko+ky <r. Ifi <7, D""VADI VT, ,
contains a sum of terms of type

T kofl kl
/ oot fogr) [T phvier [T Div 2 (D DI Y,?)du
Sr i=1 i=1

where a(j) = ko — 1 (a(j) denotes the number of non zero components of j) and a(m) = k1 and
of type

T kO k171
| oo sown T piver TT Dz zen (0 a0 247 au,
sr i i=1

where a(j) = ko, a(m) = k1—1. By using Cauchy-Schwarz inequality, we get that E[Dgi_l)AiDgT_i)Iqﬁp]
is bounded by

T ko—1 T
195 +%1 fll oo B ( / 11 D”Y”QH Dy Z47) du / (D,El“’AiDgMvapfdu)

v =1 =1

=

(and the same type of term in D! AiDgll)Zg’p ) which leads to

r—1

i—1
i— r—i l s l
E[D}' "V A:DI 01, 5] < CT, (105, flloo)ksrs 1Y, 297) o o156-1) D D ¢ (D arrp) |
l():Oh:O

(A.5)
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where (D{"' AP D{); = Elsup, ,<p |D{" A DI YIP)] + E(fsT|D§l°)AiD§ll)Z3’p|2du)§'

Ifi =r, Dgril)AJq,p contains the same type of integrals between s, and T plus an inte-
gral between s, and t., which is bounded by C(T, (|0, flloc)k<r, I(Y 92, Z9P)|lp20 ) (tr — sp).
Then, since (Y?P, Z9P) € 8" and [ € CS’T+q_1’T+q_1, it remains to take the supremum over
t1, sty Sit1, 5 8ieq, in (AR) and to apply Lemma to end the proof. K; depends on

||§||T+q72(r(ti)1!)z , (195, fllso)1<k<riq—1, T and KPP := sup,,. k'’ (where k" is defined in Lemma

Lemma A.2. Assume ¢ satisfies Hfﬂ and f € Cg’T+q_1’T+q_1. Then¥i € {1,--- ,r}, Vip <i—1,
Vi, <r—iandVj>2

sup sup  E[(D{AIPDI) ] < kP (t; — ;) (370

1< <ty si+1< <S8ty
where | = 1o+ 11 + 1 and k" depends on klg, T’||§||l+q—17”(+13])2.)!j and on (Hafpfﬂoo)lgkgurqu .

Proof of Lemmal4. 3 We do the proof by induction on q. We distinguish cases I; > 0 and I; = 0.
We first consider I3 > 0. Let u be in [s,, T] and | < p (if I > p, the first term of the right hand
side of the following equality vanishes). From (B3 and Lemma 241 we get Dgl“)AiDgll)ngP =
E.[Cp_r (D A, D) pa-1p)] — I DA, D £(69-1)dv. Using the definition of FI~17 (see

Sitlq

1)), Doob’s inequality and Lemma 24 yields

T
E[ s[upT]<D£’°>AiD§h>Y5»P>J‘1 <C (EHDE“’Aing&P] +E| / |D§l°)AiDill)f(%_l’p)ldv]j)-
uE|sr, Si+tiy

(A.6)
where C' denotes a generic constant depending on 7', j and p.
Let us now upper bound E (fST |D§l°)AiD§ll)Z37p|2du) * . Using (3:6) and the Clark-Ocone for-

mula gives fOT Z4PdB,, = Cy(F1~1P)—E(C,(F4~17)). Hence, for v € [s,,T], we have [ ZIPdB, =
Ey(Cp(FI71P)) — By (Cp(FT71P)) = V2P + [T f(0971P)du — Y2P. Then, we get

/ Dglo)AiDgll)ngdBu _ DEIU)AiDgll)YUqJ) _ D§l°)AiD§l1)1’s‘i’p + / D,Elo)AiDgh)f(@Z_l’p)du-

The left hand side of the Burkholder-Davis-Gundy inequality gives

T 2
IE(/ |D§l°)AiD§ll)Z57p|2du> <’ <E[ sup |DVA; DM YEP|]
S w€[s,,T]

r

T
+E[ / |D£’°’AiD§ll>f<9z1vp>|du1f'> ,

where C’ denotes a generic constant depending on T’ and j. Adding (C”+1)x (&) to the previous
equation leads to

T
(D" AT D), < C (EHDEZ“AZDSIMP] +E / |D£’°>AiD§h>f<ez-1’P>|du]j> LA
Sitiy
We introduce two vectors j and m, and four integers ko, k1, I, and I} such that Ij < lo, I} <,

il +|ml =1-1=1{—1] and ko + k1 <. Dglo)AiDgll)f(Gg_l’p) contains a sum of terms of type

ko—1 k1
kool or-tey T piivet» [ D za~»(D{ a; DIy, -1 )
i=1 i=1
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where a(j) = ko — 1 and a(m) = k; and of type

ki—1
akoaklf 9!1 1p HDJzyq 1,p H Dmizq 1p(D(lo)A D(l )Zq 1p)
1=1 =1

where a(j) = ko, a(m) = k1 — 1.
By using Cauchy-Schwarz inequality, we get that E[f |D(l°)A DM £(69-17)|du)? is bounded
by

ko 1 T ’ ’ i
[k ks 12 E( [T ivite) QH (D Z4~17)2 du) # ( / (DS“AZ-DSM1vp>2du>%>
Sty+i

Sitly =1

(and the same type of term in Dg’ AiDglll)Zg_l’p) which leads to

T
B[ 1D{) DI f(6770) du
Si+1q

l() l1
_ _ 1A — 4
< C(UN0E oD, VT2, 299 |y ) DD ¢ (D artepi)

1,=01/=0

It remains to plug this result in (AT), to take the supremum in ¢y, &, Si11,"* ,Sity, and to
apply the induction hypothesis to obtain

sup sup  E[(DIASPDIVY ] < kE(t; — ;)7 (A.8)

11 < <tig Sip1 < SSigiy

+ C (1105, Flloo)1her, (Y THP, ZT71P) |y oy, kP (ks — ;)7 (39
(A.9)

and the result follows. If [; = 0, we get

u ti
DAY =B, Gy, (D A8 [ DI ADI 67 vt [ DI 8D f(07 o
When bounding E[supue[ 7] |D(l°)A Y2P|7], we deal with the first two terms as we did before,
we bound the term E[f f(0971P) | dv]? by

C105 Flloo) 1<zt (Y12, Z975P) [14) (8 — s3)7,
which ends the proof. O

A.4 Proof of Lemma [4.14]

We prove the result by induction. Lemma 14 is true for p = 0, since C¥ (F) = Co(F). Assume

that E(|(CY_; — Cpor)(F)[2) < (KF )% (£)** 3277220, Since we have
(€ = Cp)(F) = (Cply = Cpm1)(F) + (P — Pp)(F),

it remains to show that E(|(P)Y — P,)(F)[*) < (k})? (%)QO‘F QTP . We recall

T
F)= / / - -/0 Up(Sp, -+ ,81)dBs, ---dBs,, where uy : sp,--- , 51 — E(Dg’l’?..spF),

(A.10)

NFE)=Ydy T[] Knl(Gi), wheredy =nlE [F ] Ka.(Gi)]. (A.11)

In|l=p 1<i<N 1<i<N
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Let us rewrite Pév (F) as a sum of stochastic integrals. Let » € N. Applying Lemma to

Vh

Then, M} = ffti,l Zsiil . fi: MSOIdBS1 -++dBs, . For r = n; and t = t;, we get

B,—B:
gt 1 7,(t) yields M} := h/2K, <711> is a martingale and M = fft;l Mr=1dB,.

1 El S”i S2
Ko (i) = _/ / / 0B, - dB., .
h= ti—1 Jti—a ti—1
For |n|:=ny 4+ -+ +ny = p, we obtain
1 T S|n(N=1)|+2 12 Stz [ s2
T o= [ [ i,
1<i<N h2 Jiy tN-1 T 7 0 0
ny integrals n, integrals  n: integrals
(A.12)
1 T Unv—1)|+2 to Uny+2 b lo
gt [ [ L e e a1
h= tN—1 tN—1 t1 t1 0 0
ny integrals n, integrals n. integrals

To compare P,(F) and P (F), we split the integrals in (AT0)

T S|n(N—1)|+2 to Sin()|4+2 [t s2
ner= s [ [ o an,
In|=p tN—1 tN_1 t t 0 0

ny integrals n, integrals  n. integrals
(A.14)
Combining (ATI)-(AT2)-(AT3) and (ATE) yields IE(|(PI£V — P,)(F)|?) =
T S|n(N—1)|+2 o Sin(1)+2  ft1 52| 2
S [ [ ] e[,
In|=p N1 N1 1 t 0 0 hz
ny integrals ny integrals  n: integrals
(A.15)
Moreover, Z—‘é — Up(Sp, -+ ,81) =
n! T IN—1+1 o ln,+1 1 l2
L R O AR S
tn—1 tN-—1 t1 t1 0 0
ny integrals n, integrals n. integrals
Since u, satisfies Hypothesis L1l we get |up(lp, -+, 1) — up(Sp, -+ ,51)] < k£(|lp — 5p|ﬁF RS
I —s1|%7) < pkFhPr. Then d—g —up(sy, -+ ,51)| < pkFhPr. Plugging this result in ends
P p\5p D ggmg

the proof.

A.5 Proof of Lemma [4.16
Using the definitions and leads to

p N
(Y —CNMYF) =do —do+ > Y (d — dp) [] K. (Ga).-

k=1 |n|=k i=1
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Since dJ! is independent of (G;);

P
1 0
E((C, = M) (F)?) = E(ldo — dof*) +) Z —E(|dy — dif?)
k=1 |n|=k
The definition of the coefficients dy and d}} given in (Z9) leads to
~ p ~
(1€ =M (E)P) = V(do) + ) Y —=V(dy),
k=1 |n|=k

and the first result follows. To get the second result, we write C)"M (F) = (CN-M —CN)(F)+CY (F).
Since E ((C)M — CV)(F)C) (F)) =0, we get

E(|c;" M (F)?) = E((C,"" = CN(F)?) + E(C) (F)I?).-

Lemma ends the proof.

B Wiener chaos expansion formulas

B.1 Proof of Proposition 2.7
Firstly, we compute E(C}Y (F)) for ¢ €]t,_1,%,]. From ZJ), we get

«wFf%+§:Z)WH xE(i?KMQD.

k=1 |n|=k

Since Brownian increments are independent, we get B ([[;~, Kn,(Gi)) = Ky, (Gr) [[;s, B[, (G,
which is null as soon as 7,41 + - -+ + nxy > 0. Then, nested conditional expectations give

}qu:%+i > HKmh ) x By (K, (Gr)).

k=1 |n(r)|=k

7 ny/2 B,—B-
t—ty— tr—1
By applying LemmaRElwhen g : t — 157 | 7 \(t), we get K¢ (K, (Gr)) = (Tl) K,, (ﬁ),
which yields the first result. Since K/ (z) = K,,—1(z), the second result follows.
B.2 Wiener chaos expansion formulas in R?

We want to approximate F' € L?(Fr) using its chaos decomposition up to order p. We assume
N > dp. We consider the following truncated basis of L? ([0, T]; R?)

1, 7@
Vh

where {t; := ih,i=0,---, N} is a regular mesh grid and (e;)1<;<q4 represents the canonical basis
of R, P, the k*" chaos, is generated by

d N 4N A |
HHKnJ(Gf)ZZn{:k , ng\/%, Al = B! BZH

T
i, +=1,...,N, j=1,...,d, where h = —
e]a ? ’ ) ) J ) , @, where N

j=1i=1 j=1i=1
For j = 1,...,d, n/ = (n],...,n)), one notes [n?| = n) 4+ ... +nd, n?! = ni!...n}! and for
r < N, n/(r) = (n],...,nd). n=(nb...;nY* |n| = nt|+ -+ [n?, n! = nl!,_, n? and
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n(r) = (n*(r),...,n%(r))*. Since the r.v. <H1<]<d [licien K (Gj)) are orthogonal ones, the
projection of F'is given by

C = do + Z Z H1<j<d H1<1<N n] (G{) ’

k=1|n|=k

where the coefficients d}} are given by

=ik [F ngjgd H1gi§N K"Z (Gz)} ’

Proposition B.1. Fort,_; <t <t,, we have

P . t_f 1 2 Bg —B%
B F) =do+Y S @[ T K. (¢1) < I1 ( i ) Ky | ==
‘ —lr—1

k=1|n(r)|=k i<r1<j<d 1<j<d

and forl=1,...,d,

Dl Et CNF zp: Z th—1/2 Hi<r H1<j<d K"”Z (Gi) x

k=1|n(r)|=k
Bl — B! o Bl — BJ
t — B3 t—t—1\ 2 t— Py
Knl . % _ 1 Knj 7_“*
- T H#l h r t—t1

ni,—l
t— Z7“71 2
h
Remark B.2. In particular, fort =%.,r>1andl=1,...,d,

p )
E?T(C;J)VF) = do + Z Z Znigr H1§j§d K"i (GZ)

k=1 |n(r)|=k

nl>0
trfl

P

DL e G =Y % G T T g Ko (61) % Ko (GO T, Ko (60).
=1 |n(r k
n>0

1 .
When r = 0, we get B (C)'F) = do and we define Di (B, (CYF)) = ﬁdil , where (e}) is a matriz

of size d x N whose component (i,7) equals 1 and the other ones are null.

Proof of Proposition Bl We first compute E,(C) F) for t €]t,_1,t,]. We have

BC ) = do + Z 2 di Hz<r H1<J<d n (Gf) x By (Hin H1§j§d Gl (Wij))

k=1|n|=k

Since Brownian motions and their increments are independents, we get

b (Hizr ngjgd K”Z (G{)) - H1§j<d "r H1>T H1<]<d { n (Gf)} :

which is null as soon as n} 4+ - +ny + -+ nf_H +---+n% > 0. Then, nested conditional
expectations give

P _ ‘
F) =do+ Z Z Z]:[i<r H1§jgd K"f (Gi) X By (H1§jgd Ky, (Gi)) '

k=1 |n(r)| =k
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; j B —BJ
. ni - omisz o (BB .
From Lemma 28 for j = 1,...,d M, = (t — tr_l) K, (ﬁ is a martingale and

B _RBI
t ?
r—1

thni = Mtni*1 1]571@] (t) dBf. Then, ngjgd (t — fr_l)nz‘/Q anl (ﬁ) is also a martin-

gale and the first result follows. Since K|, (v) = K1 _;(x), we get the second result.
' O
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