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Abstract

We present an algorithm to solve BSDEs based on Wiener Chaos Expansion and Picard’s

iterations. We get a forward scheme where the conditional expectations are easily computed

thanks to chaos decomposition formulas. We use the Malliavin derivative to compute Z.

Concerning the error, we derive explicit bounds with respect to the number of chaos and the

discretization time step. We also present numerical experiments. We obtain very encouraging

results in terms of speed and accuracy.

1 Introduction

In this paper, we are interested in the numerical approximation of solutions (Y, Z) to backward
stochastic differential equations (BSDEs for short in the sequel). BSDEs have been introduced by
J.-M. Bismut in [Bis73] in the linear case, whereas the nonlinear case has been considered later
by É. Pardoux and S. Peng in [PP90]. A BSDE is an equation of the following form

Yt = ξ +
∫ T

t

f(s, Ys, Zs) ds−
∫ T

t

Zs · dBs, 0 ≤ t ≤ T, (1)

where B is a d-dimensional standard Brownian motion, the terminal condition ξ is a real-valued
FT –measurable random variable where {Ft}0≤t≤T stands for the augmented filtration of the Brow-
nian motion B and the generator f is a map from [0, T ]×R×R

d into R. A solution to this equation
is a pair of processes {(Yt, Zt)}0≤t≤T which is required to be adapted to the filtration {Ft}0≤t≤T .
We will assume the conditions of Pardoux and Peng to ensure existence and uniqueness of solu-
tions.

Our main objective in this study is the numerical approximation of the solution (Y, Z) to
BSDE (1) (even though there exists a large literature on this subject). The first two contributions
to this topic are due to D. Chevance [Che97], who considered generators independent of Z, and
V. Bally [Bal97], who used a random time mesh. J. Ma and J. Yong [MY99] proposed numerical
schemes based on the link between Markovian BSDEs and semilinear partial differential equations
(PDEs). Another approach, based on Donsker’s theorem and close to [Che97], was proposed by
F. Coquet, V. Mackevicius and J. Mémin [CMM99] in the case of a generator f independent of
Z; the general case was treated by Ph. Briand, B. Delyon and J. Mémin in [BDM01], who later
extended it to a more general framework [BDM02], including the case of a "stepwise constant
Brownian motion". This extension led to the formulas

Yt = E (Yt + h | Ft) + hf(t, Yt, Zt), Zt = h−1/2
E (Yt+h (Bt+h −Bt) | Ft)
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known as the dynamic programming algorithm. Even though the convergence was proved in the
case of path-dependent terminal condition ξ, the rate of convergence was left as an open question
in [BDM02]. This problem was solved by J. Zhang [Zha04] and B. Bouchard and N. Touzi [BT04]
in the case of Markovian BSDE, namely in the case of a terminal condition ξ = g(XT ) where X
is the solution to a stochastic differential equation. Their result was generalized by E. Gobet and
C. Labart [GL07] and also by E. Gobet and A. Makhlouf [GM10].

From a numerical point of view, the main difficulty in solving BSDEs is to efficiently compute
conditional expectations. Several approaches have been proposed using various tools: the Malliavin
calculus [BT04], regression methods [GLW05, GLW06] and quantization technics [BP03].

Finally, let us mention that there exists some works dealing with the discretization of solutions
to BSDEs in a more general framework: forward-backward SDEs [DM06] and quadratic BSDEs
[Ric11].

Let us now describe briefly the main points of our approach in the case of a real-valued Brownian
motion. As already used in several quoted papers, see also [BD07, GL10, BSar], our starting point
is the use of Picard’s iterations: (Y 0, Z0) = (0, 0) and for q ∈ N,

Y q+1
t = ξ +

∫ T

t

f (s, Y q
s , Z

q
s ) ds−

∫ T

t

Zq+1
s · dBs, 0 ≤ t ≤ T.

It is well-known that the sequence (Y q, Zq) converges exponentially fast towards the solution
(Y, Z) to BSDE (1). We write this Picard scheme in a forward way

Y q+1
t = E

(
ξ +

∫ T

0

f (s, Y q
s , Z

q
s ) ds

∣∣∣ Ft

)
−
∫ t

0

f (s, Y q
s , Z

q
s ) ds,

Zq+1
t = DtY

q+1
t = DtE

(
ξ +

∫ T

0

f (s, Y q
s , Z

q
s ) ds

∣∣∣ Ft

)
,

where DtX stands for the Malliavin derivative of the random variable X .
In order to compute the previous conditional expectation, we use a Wiener chaos expansion of

the random variable

F q = ξ +
∫ T

0

f (s, Y q
s , Z

q
s ) ds.

More precisely, we use the following orthogonal decomposition of the random variable F q

F q = E [F q] +
∑

k≥1

∑
|n|=k

dn
k

∏
i≥1

Kni

(∫ T

0

gi(s)dBs

)
,

where Kl denotes the Hermite polynomial of degree l, (gi)i≥1 is an orthonormal basis of L2(0, T )
and, if n = (ni)i≥1 is a sequence of integers, |n| =

∑
i≥1 ni. (dn

k )k≥1,|n|=k is the sequence of
coefficients ensuing from the decomposition of F q. Of course, from a practical point of view, we
only keep a finite number of terms in this expansion:

• we work with a finite number of chaos, p;

• we choose a finite number of functions g1, . . . , gN .

This leads to the following approximation with n = (n1, . . . , nN )

F q ≃ E [F q] +
∑

1≤k≤p

∑
|n|=k

dn
k

∏
1≤i≤N

Kni

(∫ T

0

gi(s)dBs

)
.

One of the key point in using such a decomposition is that, for choices of simple functions g1, . . . ,
gN , there exist explicit formulas for both

E
(
F q
∣∣ Ft

)
and Zq+1

t = DtE
(
F q
∣∣ Ft

)
; (2)
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this plays a crucial role in our algorithm. Using these formulas and starting from M trajectories
of the underlying Brownian motion we are able to construct M trajectories of the solution (Y, Z)
to the BSDE.

In the following, the functions gi are chosen as step functions:

gi = 1]ti−1,ti](t)/
√
h, i = 1, . . . , N, where h =

T

N

and the previous formulas are really simple (see (10)-(11) and Proposition 5). Eventually, the
main advantage of this method is that only one decomposition has to be computed per Picard
iteration: the decomposition of F q. Therein lies the main difference between our approach and
the approach based on regression technics developed by C. Bender and R. Denk in [BD07]. In
their paper, for a given Picard iteration q and for each time ti of the mesh grid, two projections
have to be computed, one for Y q

ti
and one for Zq

ti
. The second difference comes from the way of

computing Zq. In our method, once the decomposition of F q is computed, Zq is given explicitly
as the Malliavin derivative of Y q. Let us also point out that our algorithm can handle fully path
dependent terminal conditions.

The rest of the paper is organized as follows. Section 2 contains the notations and the prelim-
inary results, Section 3 describes precisely the algorithm, Section 4 is devoted to the study of the
convergence of the algorithm and finally Section 5 contains some numerical experiments. Some
technical proofs are post-done to the appendix.

2 Preliminaries

2.1 Definitions and Notations

Given a probability space (Ω,F ,P) and an R
d-valued Brownian motion B, we consider

• {(Ft); t ∈ [0, T ]}, the filtration generated by the Brownian motion B and augmented

• Et(X) denotes E(X |Ft) for any X in L1(Ω,FT ,P).

• L2(FT ) := L2(Ω,FT ,P) the space of all FT -measurable random variables (r.v. in the follow-
ing) X : Ω 7−→ R

d satisfying ‖X‖2 = E(|X |2) < ∞.

• S2
T (Rd) the space of all càdlàg predictable processes φ : Ω × [0, T ] 7−→ R

d such that ‖φ‖2
S2 =

E(supt∈[0,T ] |φt|2) < ∞.

• H2
T (Rd) the space of all predictable processes φ : Ω × [0, T ] 7−→ R

d such that ‖φ‖2
H2

T

=

E
∫ T

0
|φt|2dt < ∞.

• Ck,l
b the set of continuously differentiable functions φ : (t, x) ∈ [0, T ] × R

d with continuous
and uniformly bounded derivatives w.r.t. t (resp. w.r.t. x) up to order k (resp. up to order
l). The function φ is also bounded.

• ‖∂j
spf‖2

∞ the norm of the derivatives of f : (t, x) ∈ [0, T ] × R
d w.r.t. all the space variables

which sum equals j : ‖∂j
spf‖2

∞ :=
∑

|k|=j ‖∂k1
x1

· · · ∂kd
xd
f‖2

∞, where |k| = k1 + · · · + kd.

• C∞
p the set of smooth functions f : Rn 7−→ R with partial derivatives of polynomial growth.

• ‖(·, ·)‖2
L2 the norm on the space S2

T (R) × H2
T (Rd) defined by

‖(Y, Z)‖2
L2 = E

(
sup

t∈[0,T ]

(|Yt|2) +
∫ T

0

|Zt|2dt
)
. (3)
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We also recall some useful definitions related to Malliavin calculus. We use the notations of
[Nua98].

• S denotes the class of random variables of the form F = f(W (h1), · · · ,W (hn)), where
f ∈ C∞

p (Rn,R), (h1, · · · , hn) ∈ L2([0, T ];Rn) and W (hi) =
∫ T

0
hi(t)dWt.

• ‖F‖2
r,2 denotes the following norm on S

‖F‖2
r,2 := E|F |2 +

r∑

q=1

∑

|α|=q

E

(∫ T

0

· · ·
∫ T

0

∣∣∣Dα
(t1,··· ,tq)F

∣∣∣
2

dt1 · · · dtq
)

where Dα represents the multi-index Malliavin derivative operator.

• D
r,2 denotes the closure of S w.r.t. ‖ · ‖r,2 and D

∞,2 = ∩∞
r=1D

r,2.

2.2 Wiener Chaos Expansion

2.2.1 Notations and useful results

We refer to [Nua98] for more details on this section. Let us briefly recall the Wiener chaos expansion
in the simple case of a real-valued Brownian motion. It is well known that every random variable
F ∈ L2(FT ) as an expansion of the following form:

F =E[F ] +
∫ T

0

u1(s1)dBs1 (4)

+
∫ T

0

∫ s2

0

u2(s2, s1)dBs1dBs2 + . . .+
∫ T

0

∫ sn

0

· · ·
∫ s2

0

un(sn, . . . , s1)dBs1 . . . dBsn
+ . . .

where the functions (un, n ≥ 1) are deterministic functions. There is an ambiguity for the definition
of these functions un. We adopt in this paper the following point of view: the function un is defined
on the simplex

Sn(T ) := {(s1, · · · , sn) ∈ [0, T ]n : 0 < s1 < . . . < sn < T }
We define the iterated integral for a deterministic function f ∈ L2(Sn(T )) as

Jn(f) :=
∫ T

0

∫ sn

0

· · ·
∫ s2

0

f(sn, · · · , s1)dBs1 · · · dBsn
.

Due to the Itô isometry, ‖Jn(f)‖2 = ‖f‖2
L2(Sn(T )) and E[Jn(f)Jm(g)] = δnm < f, g >L2(Sn(T )).

Then, ‖F‖2 =
∑

n≥0 ‖un‖2
L2(Sn(T )).

Definition. Let F be a random variable in L2(FT ) whose chaos expansion is given by (4). We
introduce

• Pn(F ) := Jn(un) the Wiener chaos of order n of F .

• Cp(F ) :=
∑

n≤p Pn(F ) the chaos decomposition of F up to order p, i.e.

Cp(F ) = E[F ] +
∫ T

0

u1(s1)dBs1 +
∫ T

0

∫ s2

0

u2(s2, s1)dBs1dBs2

+ . . .+
∫ T

0

∫ sp

0

· · ·
∫ s2

0

up(sp, . . . , s1)dBs1 . . . dBsp
. (5)

We state two Lemmas useful for the sequel.
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Lemma 1 (Nualart). F ∈ D
m,2 if and only if

∑
n≥0(n+m− 1) × · · · × n× E[|Pn(F )|2] < ∞. In

this case, we have ∑

n≥0

(n+m− 1) × · · · × n× E[|Pn(F )|2] ≤ ‖F‖2
Dm,2 .

From Lemma 1, we deduce

Lemma 2. Let F ∈ D
m,2. We have

E[|F − Cp(F )|2] ≤ ‖F‖2
Dm,2

(p+m) · · · (p+ 1)
.

Proof.

E[|F − Cp(F )|2] =
∑

k≥p+1

E[Pk(F )2] =
∑

k≥p+1

(k +m− 1) · · ·k × 1
(k +m− 1) · · · k × E[|Pk(F )|2]

≤ 1
(p+m) · · · (p+ 1)

∑

k≥p+1

(k +m− 1) · · ·kE[|Pk(F )|2].

The following Lemma gives some useful properties of the chaos decomposition.

Lemma 3. Let F be a r.v. in L2(FT ) and H be in H2
T (R). Then

• ∀p ≥ 1, E(|Cp(F )|2) ≤ E(|F |2),

• Cp

(∫ T

0
Hsds

)
=
∫ T

0
Cp(Hs)ds.

• For all t ≤ r DtEr[Cp(F )] = Er [Cp−1(DtF )].

2.2.2 Wiener chaos expansion and Hermite polynomials

Another approach to Wiener chaos expansion uses Hermite polynomials. This approach can be
easily generalized when considering d-dimensional Brownian motions, this is then the one we
consider in the following. We present it for d = 1. Let {gi}i≥1 be an orthonormal basis of
L2(0, T ). The Wiener chaos of order n, Pn(F ), is the L2-closure of the vector field spanned by




∏

i≥1

√
ni!Kni

(∫ T

0

gi(s)dBs

)
: |(ni)i≥1| :=

∑
ni = n





where Kn is the Hermite polynomial of order n defined by the expansion:

ext−t2/2 =
∑

n≥0

Kn(x) tn.

with the convention K−1 ≡ 0. With this normalization, we have K ′
n(x) = Kn−1(x) for any integer

n. It is well-known that (Kn)n≥0 is a sequence of orthogonal polynomials in L2(R, µ), where µ
denotes the reduced centered Gaussian measure. Moreover, we have

∫

R

K2
n(x)µ(dx) =

1
n!
.

Every square integrable random variable F , measurable with respect to FT , admits the follow-
ing orthogonal decomposition

F = d0 +
∑

k≥1

∑
|n|=k

dn
k

∏
i≥1

Kni

(∫ T

0

gi(s)dBs

)
, (6)
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where n = (ni)i≥1 is a sequence of positive integers and where |n| stands for
∑

i≥1 ni. Taking into
account the normalization of the Hermite polynomials we use, we get

d0 = E [F ] , dn
k = n!E

[
F ×

∏
i≥1

Kni

(∫ T

0

gi(s)dBs

)]
,

where n! =
∏

i≥1 ni!. Before describing the chaos decomposition formulas we use in the algorithm,
we give a Lemma useful in the sequel.

Lemma 4. Let g ∈ L2(0, T ) and let Ut =
∫ t

0 g
2(s)ds. For n ∈ N, let us define

Mn
t = U

n/2
t Kn

(
B(g)t/

√
Ut

)
, B(g)t =

∫ t

0

g(s)dBs.

Then {Mn
t }0≤t≤T is a martingale and

dMn
t = g(t)Mn−1

t dBt.

2.3 Chaos decomposition formulas

These formulas are based on the decomposition (6). To get tractable formulas, we consider a
finite number of chaos and a finite number of functions (g1, · · · , gN). The (gi)1≤i≤N functions
are chosen such that we can quickly compute E(F |FT ) and DtE(F |FT ) (as required in (2)). We
develop in this Section the case d = 1, we refer to Section B.2 when d > 1.

The first step consists in considering a finite number of chaos. In order to approximate the
random variable F , we consider its projection Cp(F ) onto the first p chaos, namely

Cp(F ) = d0 +
∑

1≤k≤p

∑
|n|=k

dn
k

∏
i≥1

Kni

(∫ T

0

gi(s)dBs

)
. (7)

Of course, we still have an infinite number of terms in the previous sum and the second step
consists in working with only the first N functions g1,. . . , gN of an orthonormal basis of L2(0, T ).

Let us consider a regular mesh grid of N time steps T = {ti = i T
N , i = 0, · · · , N} and the N

step functions

gi = 1]ti−1,ti](t)/
√
h, i = 1, . . . , N, where h :=

T

N
. (8)

We complete these N functions g1,. . . , gN into an orthonormal basis of L2(0, T ), (gi)i≥1. For
instance, one can consider the Haar basis on each interval (ti−1, ti), i = 1,. . . , N . We implicitly
assume that N ≥ p. This leads to the following approximation

CN
p (F ) = d0 +

∑
1≤k≤p

∑
|n|=k

dn
k

∏
1≤i≤N

Kni

(∫ T

0

gi(s)dBs

)
, (9)

where n = (n1, . . . , nN) and |n| = n1 + . . . + nN . Due to the simplicity of the functions gi,
i = 1, · · · , N , we can compute explicitly

∫ T

0

gi(s)dBs = Gi, where Gi =
Bti

−Bti−1√
h

.

Roughly speaking this means that Pk, the kth chaos, is generated by

{Kn1(G1) . . .KnN
(GN ) : n1 + . . .+ nN = k} .
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Thus, the approximation we will use for the random variable F is

CN
p (F ) = d0 +

p∑

k=1

∑

|n|=k

dn
kKn1(G1) . . .KnN

(GN ) = d0 +
p∑

k=1

∑

|n|=k

dn
k

∏

1≤i≤N

Kni
(Gi), (10)

where the coefficients d0 and dn
k are given by

d0 = E[F ], dn
k = n!E [FKn1(G1) . . .KnN

(GN )] . (11)

From (10), we deduce the expressions of Et(CN
p F ) and DtEt

(
CN

p (F )
)
, useful for the approxi-

mation of (Y, Z) by the chaos decomposition (see (2)).

Proposition 5. Let F be a real random variable in L2(FT ) and let r be an integer in {1, · · · , N}.
For all tr−1 < t ≤ tr, we have

Et

(
CN

p F
)

= d0 +
p∑

k=1

∑

|n(r)|=k

dn
k

∏
i<r

Kni
(Gi) ×

(
t− tr−1

h

)nr
2

Knr

(
Bt −Btr−1√
t− tr−1

)
,

DtEt

(
CN

p (F )
)

= h−1/2

p∑

k=1

∑

|n(r)|=k
nr>0

dn
k

∏
i<r

Kni
(Gi) ×

(
t− tr−1

h

)nr−1
2

Knr−1

(
Bt −Btr−1√
t− tr−1

)
,

where, if r ≤ N and n = (n1, . . . , nN ), n(r) stands for (n1, . . . , nr).

The proof of Proposition 5 is postponed to Section B.1.

Remark 6. For t = tr, Proposition 5 leads to

Etr

(
CN

p F
)

= d0 +
p∑

k=1

∑

|n(r)|=k

dn
k

∏
i≤r

Kni
(Gi)

Dtr
Etr

(
CN

p F
)

= h−1/2

p∑

k=1

∑

|n(r)|=k
nr>0

dn
k

∏
i<r

Kni
(Gi) ×Knr−1 (Gr) .

Let us end this subsection by some examples.

Example 7 (Case p = 2). From (10)-(11), we have

CN
2 (F ) = d0 +

N∑

j=1

d
ej

1 K1(Gj) +
N∑

j=1

j−1∑

i=1

d
eij

2 K1(Gi)K1(Gj) +
N∑

j=1

d
2ej

2 K2(Gj),

where ej denotes the unit vector whose jth component is one, and eij = ei + ej. For j = 1, · · · , N
and i = 1, · · · , j − 1, it holds

d
ej

1 = E(FK1(Gj)), deij

2 = E(FK1(Gi)K1(Gj)), d2ej

2 = 2E(FK2(Gj)).

Remark 6 leads to

Etr

(
CN

2 F
)

= d0 +
r∑

j=1

d
ej

1 K1(Gj) +
r∑

j=1

j−1∑

i=1

d
eij

2 K1(Gi)K1(Gj) +
r∑

j=1

d
2ej

2 K2(Gj),

Dtr
Etr

(
CN

2 F
)

= h−1/2

(
der

1 + d2er

2 K1(Gr) +
r−1∑

i=1

deir

2 K1(Gi)

)
.
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3 Description of the algorithm

The algorithm is based on three types of approximations : Picard’s iterations, a Wiener chaos
expansion up to a finite order and the truncation of a L2([0, T ]) basis in order to apply formulas
of Proposition 5. We present the different steps of the approximation procedure in Section 3.1.
The practical implementation is presented in Section 3.2.

3.1 Approximation procedure

3.1.1 Picard’s iterations

The first step consists in approximating (Y, Z) — solution to (1) — by Picard’s sequence
(Y q, Zq)q, built as follows : (Y 0 = 0, Z0 = 0) and for all q ≥ 1

Y q+1
t = ξ +

∫ T

t

f (s, Y q
s , Z

q
s ) ds−

∫ T

t

Zq+1
s · dBs, 0 ≤ t ≤ T. (12)

From (12), under the assumptions that ξ ∈ D
1,2 and f ∈ C0,1,1

b , we express (Y q+1, Zq+1) as a
function of the processes (Y q, Zq):

Y q+1
t = Et

(
ξ +

∫ T

t

f (s, Y q
s , Z

q
s ) ds

)
, Zq+1

t = DtY
q+1

t , (13)

which can also be written

Y q+1
t = Et

(
ξ +

∫ T

0

f (s, Y q
s , Z

q
s ) ds

)
−
∫ t

0

f (s, Y q
s , Z

q
s ) ds, Zq+1

t = DtY
q+1

t . (14)

As recalled in the introduction, the computation of the conditional expectation is the corner-
stone in the numerical resolution of BSDEs. Chaos decomposition formulas enable to circumvent
this problem.

3.1.2 Wiener Chaos Expansion

Computing the chaos decomposition of the r.v. F = ξ +
∫ T

t
f (s, Y q

s , Z
q
s ) ds (appearing in (13))

in order to compute Y q+1
t is not judicious. F depends on t, and then the computation of Y q+1

on the grid T = {ti = i T
N , i = 0, · · · , N} would require N + 1 calls to the chaos decomposition

function. To build a efficient algorithm, we need to call the chaos decomposition function as less
as possible, since each call is computationally demanding and brings an approximation error due
to the truncation and to the Monte-Carlo approximation (see next Sections). Then, we look for
a r.v. F q independent of t such that Y q+1

t and Zq+1
t can be expressed as functions of Et(F q),

DtEt(F q) and of Y q and Zq. Equation (14) gives a more tractable expression of Y q+1. Let F q be
defined by F q := ξ +

∫ T

0
f(s, Y q

s , Z
q
s )ds. Then

Y q+1
t = Et(F q) −

∫ t

0

f (s, Y q
s , Z

q
s ) ds, Zq+1

t = DtEt(F q). (15)

The second type of approximation consists in computing the chaos decomposition of F q up to
order p. Since F q does not depend on t, the chaos decomposition function Cp is called only once
per Picard’s iteration.

Let (Y q,p, Zq,p) denote the approximation of (Y q, Zq) built at step q using a chaos decompo-
sition with order p: (Y 0,p, Z0,p) = (0, 0) and

Y q+1,p
t = Et [Cp (F q,p)] −

∫ t

0

f (s, Y q,p
s , Zq,p

s ) ds, Zq+1,p
t = DtEt [Cp (F q,p)] , (16)

where F q,p = ξ +
∫ T

0
f (s, Y q,p

s , Zq,p
s ) ds. In the sequel, we also use the following equality

Zq+1,p
t = Et[DtCp(F q,p)]. (17)
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3.1.3 Truncation of the basis

The third type of approximation comes from the truncation of the orthonormal L2([0, T ]) ba-
sis used in the definition of Cp (7). Instead of considering a basis of L2([0, T ]), we only keep
the first N functions (g1, · · · , gN) defined by (8) to build the chaos decomposition function CN

p

(9). Proposition 5 gives us explicit formulas for Et(CN
p F ) and DtEt(CN

p F ). From (16), we build
((Y q,p,N , Zq,p,N )q in the following way : ((Y 0,p,N , Z0,p,N ) = (0, 0) and

Y q+1,p,N
t = Et(CN

p (F q,p,N )) −
∫ t

0

f
(
s, Y q,p,N

s , Zq,p,N
s

)
ds, Zq+1,p,N

t = Dt(Et(CN
p (F q,p,N ))), (18)

where F q,p,N := ξ +
∫ T

0 f(s, Y q,p,N
s , Zq,p,N

s )ds.
Equation (18) is tractable as soon as we know closed formulas for the coefficients dn

k of the
chaos decomposition of Et(CN

p (F q,p,N )) and Dt(Et(CN
p (F q,p,N ))) (see Proposition 5). When it is

not the case, we need to use a Monte-Carlo method to approximate these coefficients. The next
Section is devoted to the practical implementation. In particular, we give the pseudo-code of the
algorithm.

3.2 Implementation

In this Section, we first explain how to practically compute the chaos decomposition CN
p (F ) of a

r.v. F . Then, we give the pseudo-code of the algorithm.

3.2.1 Monte-Carlo simulations of the chaos decomposition

Let F denote a r.v. of L2(FT ). Practically, when we are not able to compute exactly d0 and/or
the coefficients dn

k of the chaos decomposition (10)-(11) of F , we use Monte-Carlo simulations to
approximate them. Let (Fm)1≤m≤M be a M i.i.d. sample of F and (Gm

1 , · · · , Gm
N )1≤m≤M be a

M i.i.d. sample of (G1, · · · , GN ). We recall d0 and the coefficients (dn
k )1≤k≤p,|n|=k are given by

d0 = E[F ] and dn
k = n!E [FKn1(G1) . . .KnN

(GN )] (see (11)). Then, they are solutions of

arg min
c=(c0,(cn

k
)1≤k≤p,|n|=k)

E[|F − ψ(c,G)|2], (19)

where ψ : (c, G) 7−→ c0 +
∑p

k=1

∑
|n|=k c

n
k

∏
1≤i≤N Kni

(Gi). We propose two methods to approx-
imate d := (d0, (dn

k )1≤k≤p,|n|=k)

• the first one consists in approximating the expectations of (11) by empirical means d̂M :=
(d̂0, d̂n

k 1≤k≤p,|n|=k) where

d̂0 :=
1
M

M∑

m=1

Fm, d̂n
k :=

n!
M

M∑

m=1

FmKn1(Gm
1 ) · · ·KnN

(Gm
N ),

• the second one is based on a sample average approximation

dM := (d0, dn
k 1≤k≤p,|n|=k) = arg min

c0,(cn
k

)1≤k≤p,|n|=k

1
M

M∑

m=1

|Fm − ψ(c, Gm)|2

Remark 8. In terms of computation time, the first method is much faster than the second one.

• The first method requires O(M × p) computations per coefficient. Since we are looking for
O(Np) coefficients, its computational cost is O(M × p×Np).
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• The second method requires O(M × p × Np) computations to evaluate 1
M

∑M
m=1 |Fm −

ψ(c,Gm)|2 (in fact, it requires the same number of computations as the first method, since
the function ψ contains as much as additions as coefficients, and each addition contains as
much as products as the associated coefficient). We still have to compute the argmin, which
computational cost depends on the method we use.

From a theoretical point of view, the second method gives better convergence results than
the first one. For the first method, we only know that d̂M converges to d a.s.. Concerning the
second method, we know that dM converges to d a.s. and under regularity assumptions on ψ, the
uniform strong law of large numbers gives the a.s. convergence of 1

M

∑M
m=1 |Fm − ψ(dM, Gm)|2

to E[|F − ψ(d, G)|2].

In the following, CN,M
p (F ) denotes the approximation of the chaos decomposition of order p of

F when using the first method to approximate the coefficients dn
k :

CN,M
p (F ) = d̂0 +

p∑

k=1

∑

|n|=k

d̂n
k

∏

1≤i≤N

Kni
(Gi).

Et(CN,M
p (F )) and Dt(Et(CN,M

p (F ))) denote the conditional expectations obtained in Proposition

5 when (d0, d
n
k )1≤k≤p,|n|=k) are replaced by (d̂0, d̂n

k )1≤k≤p,|n|=k) :

Et

(
CN,M

p F
)

:= d̂0 +
p∑

k=1

∑

|n(r)|=k

d̂n
k

∏
i<r

Kni
(Gi) ×

(
t− tr−1

h

)nr
2

Knr

(
Bt −Btr−1√
t− tr−1

)
,

DtEt

(
CN

p (F )
)

:= h−1/2

p∑

k=1

∑

|n(r)|=k
nr>0

d̂n
k

∏
i<r

Kni
(Gi) ×

(
t− tr−1

h

)nr−1
2

Knr−1

(
Bt −Btr−1√
t− tr−1

)
,

Remark 9. When M samples of CN,M
p (F ) are needed, we can either use the same samples as the

ones used to compute d̂0 and d̂n
k : (ĈN

p (F ))m = d̂0 +
∑p

k=1

∑
|n|=k d̂

n
k

∏
1≤i≤N Kni

(Gm
i ), or use

new ones. In the first case, we only require M samples of F and (G1, · · · , GN ). The coefficients
d̂n

k and d̂0 are not independent of
∏

1≤i≤N Kni
(Gm

i ). The notation Et(CN,M
p (F )) introduced above

cannot be linked to E
(
CN,M

p F |Ft

)
. In the second case, the coefficients d̂n

k and d̂0 are independent
of
∏

1≤i≤N Kni
(Gm

i ) and we have Et

(
CN,M

p F
)

= E
(
CN,M

p F |Ft

)
. This second approach requires

2M samples of F and (G1, · · · , GN ) and its variance increases with N . Practically, we use the
first technique.

3.2.2 Pseudo-code of the Algorithm

In this Section, we describe in details the algorithm. We aim at computing M trajectories of an
approximation of (Y, Z) on the grid T = {ti = i T

N , i = 0, · · · , N}. Starting from (Y 0,p,N , Z0,p,N) =
(0, 0), (18) enables to get (Y q,p,N , Zq,p,N ) for each Picard’s iteration q on T . However, if we
only know the values of (Y q,p,N , Zq,p,N) on a grid and if we use a Monte Carlo procedure to
compute the coefficients dn

k , we are note able to compute (Y q+1,p,N , Zq+1,p,N ) on T exactly. Then,
to take into account the different approximations presented before, we introduce F q,p,N,M :=
ξ + h

∑N−1
i=0 f(ti, Y

q,p,N,M
ti

, Zq,p,N,M
ti

) and

Y q+1,p,N,M
ti

= Eti
(CN,M

p (F q,p,N,M )) − h

i−1∑

j=0

f
(
tj , Y

q,p,N,M
tj

, Zq,p,N,M
tj

)
,

Zq+1,p,N,M
ti

= Dti
(Eti

(CN,M
p (F q,p,N,M ))). (20)

Here are the notations we use in the algorithm.
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• d: dimension of the Brownian motion

• q: index of Picard’s iteration

• Kit: number of Picard’s iterations

• M : number of Monte–Carlo samples

• N : number of time steps used for the discretization of Y and Z

• p: order of the chaos decomposition

• Y
q ∈ MN+1,M (R) represents M paths of Y q,p,N,M computed on the grid T .

• For all l ∈ {1, · · · , d}, (Zq)l ∈ MN+1,M (R) represents M paths of (Zq,p,N,M )l computed on
the grid T .

Since ξ ∈ L2(FT ), ξ can be written as a measurable function of the Brownian path. Then, one

gets one sample of ξ from one sample of (G1, · · · , GN ) (where Gi represents
Bti

−Bti−1√
h

).
For the sake of clearness, we detail the algorithm for d = 1.

Algorithm 1 Iterative algorithm
1: Pick at random N ×M values of standard Gaussian r.v. stored in G.
2: Using G, compute (ξm)1≤m≤M .
3: Y

0 ≡ 0, Z0 ≡ 0.
4: for q = 0 : Kit − 1 do

5: for m = 1 : M do

6: Compute (F q)m = ξm + h
∑N

i=1 f(ti, (Y q)i,m, (Zq)i,m)
7: end for

8: Compute the vector d = (d̂0, (d̂n
k )1≤k≤p,|n|=k) of the chaos decomposition of F q

9: d̂0 := 1
M

∑M
m=1(F q)m, d̂n

k = n!
M

∑M
m=1(F q)mKn1(Gm

1 ) · · ·KnN
(Gm

N )
10: for j = 0 : N − 1 do

11: for m = 1 : M do

12: Compute (Etj
(CN,M

p F q))m, (Dtj
(Etj

(CN,M
p F q)))m

13: (Y q+1)j,m = (Etj
(CN,M

p F q))m +
∑j

i=1 f(ti, (Y q)i,m, (Zq)i,m)
14: (Zq+1)j,m = (Dtj

(Etj
(CN,M

p F q)))m

15: end for

16: end for

17: end for

Let us now deal with the complexity of the algorithm :
For each q:

• the computation of the vector F q (loop line 5) requires O(M ×N) computations,

• the computation of the vector d (line 8) requires O(M × p × (N × d)p) computations, (in
dimension d we have O((N×d)p) coefficients, and the computation of each coefficient requires
O(M × p) computations (see Remark 8)),

• for each N and M (lines 10-11)

– the computation of (Etj
(CN,M

p F q))m and of (Dl
tj

(Etj
(CN,M

p F q)))m
1≤l≤d (line 12) requires

O(d × p× (N × d)p) computations

– the computation of (Y q+1)j,m (loop line 13) requires O(N) computations and the com-
putation of ((Zq+1)l

j,m)1≤l≤d requires O(d) computations.

The complexity of the algorithm is then O(Kit ×M × p× (N × d)p+1).
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4 Convergence results

We aim at bounding the error between (Y, Z) — the solution of (1) — and (Y q,p,N , Zq,p,N )
defined by (20). Before stating the main result of the paper, we introduce some hypotheses.

Hypothesis 10. Let F denote a r.v. in D
m,2 such that for all integer r ≤ m the function

(sr, · · · , s1) 7−→ E(D(r)
s1,··· ,sr

F )

is Hölder of order αF , i.e. ∃kF
r s.t. |E(D(r)

s1,··· ,sr
F ) − E(D(r)

t1,··· ,tr
F )| ≤ kF

r (|s1 − t1|αF + · · · + |sr −
tr|αF ). In the following, KF

m denotes supr≤m kF
r .

The following Hypothesis is the generalization of Hypothesis 10 to the case m = ∞.

Hypothesis 11. Let F denote a r.v. in D
∞,2 such that for all integer r the function

(sr, · · · , s1) 7−→ E(D(r)
s1,··· ,sr

F )

is Hölder of order αF , i.e. ∃kF
r s.t. |E(D(r)

s1,··· ,sr
F ) − E(D(r)

t1,··· ,tr
F )| ≤ kF

r (|s1 − t1|αF + · · · + |sr −
tr|αF ).

Theorem 12. Let k be an integer s.t. k ≤ p. Assume that f ∈ C0,p,p
b and ξ satisfies Hypothesis

10 when m = p. We have

‖(Y − Y q,p,N , Z − Zq,p,N)‖2
L2 ≤ A0

2q
+
A1(q, k)
(p+ 1)k

+A2(q, p)
(
T

N

)2αξ∧1

,

where A0 is given in Section 4.1, A1 is given in Proposition 16, and A2 is given in Proposition
20.
If f ∈ C0,∞,∞

b and ξ satisfies Hypothesis 11, we get

lim
q→∞

lim
p→∞

lim
N→∞

‖(Y − Y q,p,N , Z − Zq,p,N)‖2
L2 = 0.

Proof. We split the error in 3 terms :

1. Picard’s iterations : Eq = ‖(Y − Y q, Z − Zq)‖2
L2 , where (Y q, Zq) is defined by (12),

2. the truncation of the chaos decomposition : Eq,p = ‖(Y q − Y q,p, Zq − Zq,p)‖2
L2 , where

(Y q,p, Zq,p) is defined by (16),

3. the truncation of the L2([0, T ]) basis : Eq,p,N = ‖(Y q,p − Y q,p,N , Zq,p − Zq,p,N)‖2
L2 , where

(Y q,p,N , Zq,p,N) is defined by (18).

We have

‖(Y − Y q,p,N , Z − Zq,p,N )‖2
L2 ≤ 3(Eq + Eq,p + Eq,p,N ).

It remains to combine (21), Proposition 16 and Proposition 20 to get the first result.

4.1 Picard’s iterations

The first type of error has already been studied in [PP92] and [EPQ97], we only recall the main
result.

Hypothesis 13. We assume

• the generator f : R×R
d −→ R is Lipschitz continuous: there exists a constant Lf such that

for all t ∈ R
+, y, z ∈ R and p, q ∈ R

d

|f(t, y, z) − f(t, p, q)| ≤ Lf (|y − p| + |z − q|) ,

12



• E[|ξ|2 +
∫ T

0
|f(s, 0, 0)|2ds] < ∞.

From [EPQ97, Corollary 2.1], we know that under Hypothesis 13, the sequence (Y q, Zq)q

defined by (12) converges to (Y, Z) dP × dt a.s. and in S2
T (R) × H2

T (Rd). Moreover, we have

Eq := ‖(Y − Y q, Z − Zq)‖2
L2 ≤ A0

2q
, (21)

where A0 depends on T , ‖ξ‖2 and on ‖f(·, 0, 0)‖2
L2

[0,T ]

.

For the following, we also need

Lemma 14. ([EPQ97, Proof of Proposition 5.3]) Let m ∈ N
⋆. Assume that f ∈ C0,m,m

b and
ξ ∈ D

m,2. For all q ∈ N, (Y q, Zq) belongs to L2([0, T ],Dm,2 × (Dm,2)d).

In [EPQ97], the proof of Lemma 14 is done for m = 1, but it can be easily generalized for any
integer m ≥ 1.

4.2 Error due to the truncation of the chaos decomposition

We assume that the integrals are computed exactly, as well as expectations. The error is only due
to the truncation of the chaos decomposition Cp introduced in (5).

Lemma 15. Assume that f ∈ C0,m,m
b and ξ ∈ D

m,2. For all q ∈ N, (Y q,p, Zq,p) belongs to
L2([0, T ],Dm,2 × (Dm,2)d).

Proof of Lemma 15. Assume that (Y q,p, Zq,p) belongs to L2([0, T ];Dm,2 × (Dm,2)d). and let us
show that (Y q+1,p, Zq+1,p) belongs to L2([0, T ];Dm,2 × (Dm,2)d). Since F q,p ∈ L2(FT ), Cp(F q,p) ∈
D

m,2 (in fact, we have Cp(F q,p) ∈ D
∞,2). Then, Et[Cp(F q,p)] ∈ D

m,2. We deduce from (16) that
Y q+1,p ∈ L2([0, T ];Dm,2). It remains to prove that Zq+1,p ∈ L2([0, T ]; (Dm,2)d). From (17) and
the Clark-Ocone formula, we get

∫ t

0 Z
q+1,p
s dBs = Et[Cp(F q,p)] − E[Cp(F q,p)]. The r.h.s. belongs

to D
m,2. We get the result by using [PP92, Lemma 2.3], which proves that if an Itô integral is

differentiable in the Malliavin sense, its integrand is so.

Proposition 16. Let m ∈ N
⋆. Assume that f ∈ C0,m,m

b and ξ ∈ D
m,2. We recall Eq,p =

‖(Y q − Y q,p, Zq − Zq,p)‖2
L2 . We get

Eq+1,p ≤ C1T (T + 1)L2
f Eq,p +

K1(m)
(p+ 1) · · · (p+m)

(22)

where K1(m) depends on supk≤m(‖∂k
spf‖∞), ‖ξ‖Dm,2 , T and on supq∈N

‖(Y q, Zq)‖2
L2([0,T ];Dm,2×(Dm,2)d)

and C1 is a scalar.

Since E0,p = 0, we deduce from (22) that Eq,p ≤ A1(q,m)
(p+1)m where A1(q,m) := K1(m)

(C1T (T +1)L2
f )q−1

C1T (T +1)L2
f

−1
.

Then, (Y p,q, Zp,q) converges to (Y q, Zq) when p tends to ∞ in ‖(·, ·)‖L2 (see (3) for the Definition
of the norm).

Remark 17. We deduce from Proposition 16 that for all T and Lf , we have limq→∞limp→∞Eq,p =
0. When C1T (T + 1)L2

f < 1, i.e. for T small enough, we also get limp→∞limq→∞Eq,p = 0.

Proof of Proposition 16. For the sake of clearness, we assume d = 1 and m = 1. In the following,
one notes ∆Y q,p

t := Y q,p
t − Y q

t , ∆Zq,p
t := Zq,p

t − Zq
t and ∆f q,p

t := f(t, Y q,p
t , Zq,p

t ) − f(t, Y q
t , Z

q
t ).

Firstly, we deal with E[sup0≤t≤T |∆Y q+1,p
t |2]. From (15) and (16) we get

∆Y q+1,p
t =Et[Cp(F q,p) − F q] −

∫ t

0

∆f q,p
s ds,

=Et[Cp(ξ) − ξ] + Et

[
Cp

(∫ T

0

f(s, Y q,p
s , Zq,p

s )ds

)
−
∫ T

0

f(s, Y q
s , Z

q
s )ds

]
−
∫ t

0

∆f q,p
s ds.
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We introduce ±Cp

(∫ T

0 f(s, Y q
s , Z

q
s )ds

)
in the second conditional expectation. This leads to

∆Y q+1,p
t =Et[Cp(ξ) − ξ] + Et

[
Cp

(∫ T

0

∆f q,p
s ds

)]
+ Et

[∫ T

0

Cp(f(s, Y q
s , Z

q
s )) − f(s, Y q

s , Z
q
s )ds

]

−
∫ t

0

∆f q,p
s ds,

where we have used the second property of Lemma 3 to rewrite the third term.
From the previous equation, we bound E[sup0≤t≤T |∆Y q+1,p

t |2] by using Doob’s inequality and
the Lipschitz property of f

E[ sup
0≤t≤T

|∆Y q+1,p
t |2] ≤ 16E[|Cp(ξ) − ξ|2] + 16E



∣∣∣∣∣Cp

(∫ T

0

∆f q,p
s ds

)∣∣∣∣∣

2



+ 16T
∫ T

0

E

[
|Cp(f(s, Y q

s , Z
q
s )) − f(s, Y q

s , Z
q
s )|2

]
ds+ 8TL2

f

∫ T

0

E[|∆Y q,p
s |2 + |∆Zq,p

s |2]ds.

To bound the second expectation of the previous inequality, we use the first property of Lemma 3
and the Lispchitz property of f . Then, we bring together this term with the last one to get

E[ sup
0≤t≤T

|∆Y q+1,p
t |2] ≤16E[|Cp(ξ) − ξ|2] + 16T

∫ T

0

E

[
|Cp(f(s, Y q

s , Z
q
s )) − f(s, Y q

s , Z
q
s )|2

]
ds

+ 24TL2
f

∫ T

0

E[|∆Y q,p
s |2 + |∆Zq,p

s |2]ds. (23)

Let us now upper bound E[
∫ T

0
|∆Zq+1,p

s |2ds]. To do so, we use the Itô isometry E[
∫ T

0
|∆Zq+1,p

s |2ds] =

E[(
∫ T

0
∆Zq+1,p

s dBs)2]. Using the Definitions (15)-(17) of Zq+1
t and Zq+1,p

t and the Clark-Ocone
Theorem leads to
∫ T

0

∆Zq+1,p
s dBs = F q − E(F q) − (Cp(F q,p) − E(Cp(F q,p))),

= Y q+1
T +

∫ T

0

f(s, Y q
s , Z

q
s )ds− Y q+1

0 −
(
Y q+1,p

T +
∫ T

0

f(s, Y q,p
s , Zq,p

s )ds− Y q+1,p
0

)

Rearranging this summation makes appear ∆Y q+1,p
T and (∆Y q+1,p

0 ). Young’s inequality gives

E

[∫ T

0

|∆Zq+1,p
s |2ds

]
≤ 1

2
E[ sup

0≤t≤T
|∆Y q+1,p

t |2] + 32TL2
f

∫ T

0

E[|∆Y q,p
s |2 + |∆Zq,p

s |2]ds. (24)

Since
∫ T

0 E[|∆Y q,p
s |2 + |∆Zq,p

s |2]ds ≤ (T + 1)Eq,p, by combining (23) and (24) we obtain

1
2

Eq+1,p ≤ 16E[|Cp(ξ) − ξ|2] + 16T
∫ T

0

E

[
|Cp(f(s, Y q

s , Z
q
s )) − f(s, Y q

s , Z
q
s )|2

]
ds+ 56T (T + 1)L2

fEq,p.

Since ξ ∈ D
1,2, f ∈ C0,1,1

b and (Y q, Zq) ∈ L2([0, T ],D1,2 × D
1,2) (see Lemma 14), Lemma 2 gives

Eq+1,p ≤ 32
p+ 1

‖Dξ‖2
L2(Ω×[0,T ]) +

32T ‖∂spf‖2
∞

p+ 1

(∫ T

0

‖DtY
q‖2

L2(Ω×[0,T ]) + ‖DtZ
q‖2

L2(Ω×[0,T ])dt

)

+ 112T (T + 1)L2
f Eq,p.

Since (DtY
q, DtZ

q) converges to (DtY,DtZ) in L2([0, T ]; H2
T (R) × H2

T (R)) (see [EPQ97, Proof of
Proposition 5.3]), (22) follows.
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4.3 Error due to the truncation of the basis

We are now interested in bounding the error between (Y q,p, Zq,p) defined by (16) and (Y q,p,N , Zq,p,N)
defined by (18).

Before giving an upper bound for the error, we measure the error between Cp and CN
p for a r.v.

in D
m,2, when m ≥ p.

Remark 18. Let m ∈ N
⋆, ξ satisfies Hypothesis 10 and f ∈ C0,m,m

b . Then, for all integers p and
q, Iq,p :=

∫ T

0
f(s, Y q,p

s , Zq,p
s )ds satisfies Hypothesis 10 where αIq,p

= 1
2 ∧ αξ and KIq,p

m depends on
Kξ

m, supk≤m(‖∂k
spf‖∞), T and on supq′≤q ‖(Y q′,p, Zq′,p)‖L2([0,T ];Dm,2×(Dm,2)d).

We refer to Section A.1 for the proof of Remark 18.

Lemma 19. Let F denote a r.v. in L2(FT ) satisfying Hypothesis 10 for any integer m ≥ p. We
have

E(|(CN
p − Cp)(F )|2) ≤ (KF

p )2

(
T

N

)2αF p∑

i=1

i2
T i

i!
≤ (KF

p )2

(
T

N

)2αF

T (1 + T )eT ,

where KF
p is defined in Hypothesis 10.

We refer to Section A.2 for the proof of the Lemma.

Proposition 20. Let m be an integer s.t. m ≥ p. Assume that f ∈ C0,m,m
b and ξ satisfies

Hypothesis 10. We recall Eq,p,N := ‖(Y q,p − Y q,p,N , Zq,p − Zq,p,N)‖2
L2 . We get

Eq+1,p,N ≤ C2T (T + 1)L2
fEq,p,N +K2(q, p)

(
T

N

)2αξ∧1

(25)

where C2 is a scalar and K2(q, p) depends on Kξ
p , supk≤p(‖∂k

spf‖2
∞), T and on

supq′≤q ‖(Y q′,p, Zq′,p)‖2
L2([0,T ],Dp,2×(Dp,2)d).

Since E0,p,N = 0, we deduce from (25) that Eq,p,N ≤ A2(q, p)
(

T
N

)2αξ∧1
, where A2(q, p) :=

K2(q, p)T (T + 1)eT (C2T (T +1)L2
f )q−1

C2T (T +1)L2
f

−1
. Then, (Y p,q,N , Zp,q,N) converges to (Y q,p, Zq,p) when N

tends to ∞ in ‖(·, ·)‖L2 (see (3) for the Definition of the norm).

Proof of Proposition 20. For the sake of clearness, we assume d = 1. In the following, one notes
∆Y q,p,N

t := Y q,p,N
t − Y q,p

t , ∆Zq,p,N
t := Zq,p,N

t − Zq,p
t and ∆f q,p,N

t := f(t, Y q,p,N
t , Zq,p,N

t ) −
f(t, Y q,p

t , Zq,p
t ). Firstly, we deal with E[sup0≤t≤T |∆Y q+1,p,N

t |2]. From (16) and (18) we get

∆Y q+1,p,N
t = Et[CN

p (F q,p,N ) − Cp(F q,p)] +
∫ t

0

∆f q,p,N
s ds.

Following the same steps as in the proof of Proposition 16, one gets

E[ sup
0≤t≤T

|∆Y q+1,p,N
t |2] ≤16E[|CN

p (ξ) − Cp(ξ)|2] + 16E



∣∣∣∣∣(C

N
p − Cp)

(∫ T

0

f(s, Y q,p
s , Zq,p

s )ds

)∣∣∣∣∣

2



+ 24TL2
f

∫ T

0

E[|∆Y q,p,N
s |2 + |∆Zq,p,N

s |2]ds. (26)

Let us now upper bound E[
∫ T

0
|∆Zq+1,p,N

s |2ds]. Following the same steps as in the proof of
Proposition 16, one gets

E

[∫ T

0

|∆Zq+1,p,N
s |2ds

]
≤1

2
E[ sup

0≤t≤T
|∆Y q+1,p,N

t |2] + 32TL2
f

∫ T

0

E[|∆Y q,p,N
s |2 + |∆Zq,p,N

s |2]ds.

(27)
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Combining (26) and (27) we obtain

1
2

Eq+1,p,N ≤16E[|(CN
p − Cp)(ξ)|2] + 16E



∣∣∣∣∣(C

N
p − Cp)

(∫ T

0

f(s, Y q,p
s , Zq,p

s )ds

)∣∣∣∣∣

2



+ 56T (T + 1)L2
fEq,p,N .

Since ξ and Iq,p :=
∫ T

0 f(s, Y q,p
s , Zq,p

s )ds satisfy Hypothesis 10 (see Remark 18), Lemma 19 gives

Eq+1,p,N ≤ 16
(
T

N

)2αξ∧1

T (T + 1)eT
(
(Kξ

p)2 + (KIq,p
p )2

)
+ 112T (T + 1)L2

fEq,p,N ,

and (25) follows.

5 Numerical Examples

The computations have been done on a PC INTEL Core 2 Duo P9600 2.53 GHz with 4Gb of
RAM.

5.1 Non linear driver and path-dependent terminal condition

We consider the case d = 1, f(t, y, z) = cos(y) and ξ = sup0≤t≤T Bt.

• Convergence in p. Table 1 represents the evolution of Y q,p,N,M
0 and Zq,p,N,M

0 w.r.t q
(Picard’s iteration index), when p = 2 and p = 3. We fix M = 105 and N = 20. The seed
of the generator is also fixed.

iterations 1 2 3 4 5 6 CPU time
p = 2 1.656357 1.017117 1.237135 1.186691 1.195462 1.194256 14.06
p = 3 1.656357 1.012091 1.234398 1.183544 1.192367 1.191173 174.09

Table 1: Evolution of Y q,p,N,M
0 w.r.t. Picard’s iterations, M = 105, N = 20 and CPU time

iterations 1 2 3 4 5 6 CPU time
p = 2 0.969128 0.249148 0.525273 0.459326 0.470069 0.469117 14.06
p = 3 0.969128 0.242977 0.523846 0.455827 0.466903 0.465939 174.09

Table 2: Evolution of Zq,p,N,M
0 w.r.t. Picard’s iterations, M = 105, N = 20 and CPU time

One notes that the difference between the values of Y q,2,N,M
0 and Y q,3,N,M

0 (resp. Zq,2,N,M
0

and Zq,3,N,M
0 ) doesn’t exceed 0.2% (resp. 0.6%). This is due to the fast convergence of the

algorithm in p. The CPU time is 12 times higher when p = 3 than when p = 2. Then, the
use of order 3 in the chaos decomposition is not necessary. In the following, we take p = 2.

• Convergence in M . Figure 1 illustrates the evolution of Y q,p,N,M
0 and Zq,p,N,M

0 w.r.t. q
when p = 2 andN = 20 for different values ofM . The seed of the generator is random. When
M equals 104 and 105 the algorithm stabilizes after very few iterations. When M = 103,
there is no convergence.

• Convergence in N . Figure 2 illustrates the evolution of Y q,p,N,M
0 and Zq,p,N,M

0 w.r.t. q
when p = 2 and M = 105 for different values of N . The seed of the generator is random.
The algorithm converges even when N = 5, but Y 6,p,5,M

0 is quite below Y 6,p,40,M
0 .
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Figure 1: Evolution of Y q,p,N,M
0 and Zq,p,N,M

0 w.r.t. q and M when N = 20, p = 2 - ξ =
sup0≤t≤T Bt, f(t, y, z) = cos(y).
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Figure 2: Evolution of Y q,p,N,M
0 and Zq,p,N,M

0 w.r.t. N when M = 105, p = 2 - ξ = sup0≤t≤T Bt,
f(t, y, z) = cos(y)
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5.2 Linear Driver - Financial Benchmark

We consider the case of pricing and hedging a Discrete Down and Out Barrier Call option, i.e.
f(t, y, z) = −ry and ξ := (ST −K)+1∀n∈[0,N ]Stn≥L, where S represents the Black-Scholes diffusion

St = S0e
(r− 1

2 σ2)t+σWt , ∀t ∈ [0, T ].

The option parameters are r = 0.01, σ = 0.2, T = 1, K = 0.9, L = 0.85, S0 = 1 and N = 20
(N is also the number of time discretizations of the chaos decomposition).
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Figure 3: Evolution of Y q,p,N,M
0 and δ0 := Zq,p,N,M

0

σS0
w.r.t. log(M) when N = 20, p = 2, q = 5

-Discrete Down and Out Barrier Call option

We can get a benchmark for Y0 and Z0 by using a variance reduction Monte Carlo method.
For this set of parameters, the reference values are Y0 = 0.134267 with a confidence interval

7.9468e−05 and δ0 = Z0

σS0
= 0.8327. We compare them with Y q,p,N,M

0 and Zq,p,N,M

0

σS0
when N = 20,

p = 2, q = 5 (we choose the first value of q from which the algorithm has converged) for different
values of M . Figure 3 represents the evolution of Y 5,p,N,M

0 and δ5,p,N,M
0 w.r.t. log(M). One

notices that for M = 106 the computed values are very close to the reference ones.

5.3 Non linear driver in dimension 5 - Financial Benchmark

We consider the pricing and hedging of a Put Basket option in dimension 5, i.e. ξ = (K −
1
5

∑5
i=1 S

i
T )+, where

∀i = 1, · · · , 5 Si
t = Si

0e
(µi− (σi)2

2 )t+σBi
t .

µi (resp. σi) represents the trend (resp. the volatility) of the ith asset. B = (B1, · · · , B5) is a 5-
dimensional Brownian motion such that 〈Bi, Bj〉t = ρt1i6=j + t1i=j . We suppose that ρ ∈ (− 1

4 , 1),
which ensures that the matrix C = (ρ1i6=j + 1i=j)1≤i,j≤5 is positive definite. We also assume
that the borrowing rate R is higher than the bond one r. In such a case, pricing and hedging
the Put Basket option is equivalent to solving a BSDE with terminal condition ξ and with driver
f defined by f(t, y, z) = −ry − θ · z + (R − r)(y − ∑5

i=1(Σ−1z)i)−, where θ := Σ−1(µ − r1)
(1 is the vector whose every component is one) and Σ is the matrix defined by Σij = σiLij (L
denote the lower triangular matrix involved in the Cholesky decomposition C = LL∗). We refer
to [EPQ97][Example 1.1] for more details. Figure 4 represents the evolution of Y 5,p,N,M

0 , the

approximated price at time 0, and the relative error on δ1
0 := (Σ−1Z5,p,N,M

0 )1

S1
0

— the quantity of

asset 1 to possess at time 0 — w.r.t. log(M). We compare our results with the ones obtained

18



7 8 9 10 11 12 13

1.7

1.8

1.9

2.0

2.1
ref

y_app

7 8 9 10 11 12 13

1.7

1.8

1.9

2.0

2.1
×

×

×

×

×

ref

y_app
×

Evolution of Y_0

log(M)

7 8 9 10 11 12 13
0

0.1

0.2

0.3

0.4

7 8 9 10 11 12 13
0

0.1

0.2

0.3

0.4

Evolution of the relative error on delta_0(1)

log(M)

Figure 4: Evolution of Y q,p,N,M
0 and δ0(1) w.r.t. log(M) when N = 20, p = 2, q = 5, d = 5 -

Basket Put option with different interest and borrowing rates

using the Algorithm proposed in [GL10] (cited here as reference values). The CPU time needed to
compute price and delta when M = 50000 and N = 20 is 161s. One notices that the convergence
is very fast and quite accurate for M = 50000.

A Technical results of Section 4.3

A.1 Proof of Remark 18

We prove the result for m = 1, i.e. we show that if ξ satisfies Kypothesis 10 for m = 1 and
f ∈ C0,1,1

b , then Φ : t 7−→ E[Dt

∫ T

0 f(s, Y q,p
s , Zq,p

s )ds] is Hölder of order α := 1
2 ∧ αξ with a

constant K depending on Kξ
1 , ‖∂spf‖∞, T and on supq′≤q ‖(Y q′,p, Zq′,p)‖L2([0,T ];D1,2×(D1,2)d). Let

us first prove the following Lemma.

Lemma 21. Assume that ξ satisfies Hypothesis 10 for m = 1 and f ∈ C0,1,1
b . For all s, t such

that 0 ≤ s ≤ t and |t− s| ≤ 1, we have

∆q,p
t,s := E[ sup

t≤r≤T
(DtY

q,p
r −DsY

q,p
r )2] +

∫ T

t

E[(DtZ
q,p
r −DsZ

q,p
r )2]dr ≤ C1(q, p)(t− s)1∧2αξ .

where C1(q, p) depends on Kξ
1 , T , ‖∂spf‖∞ and on supq′≤q ‖(Y q′,p, Zq′,p)‖2

L2([0,T ],D1,2×(D1,2)d).

Proof of Lemma 21. Let s, t, r be such that 0 ≤ s ≤ t ≤ r and |t− s| ≤ 1. Let us introduce some
notations: ∆tsY

q,p
r := DtY

q,p
r −DsY

q,p
r , ∆tsZ

q,p
r := DtZ

q,p
r −DsZ

q,p
r and f(θq

r) := f(r, Y q,p
r , Zq,p

r ).
From (16) and Lemma 3, we get DtY

q,p
r = Er[Cp−1(DtF

q,p)] −
∫ r

t
Dtf(θq−1

u )du. Then,

∆tsY
q,p

r = Er[Cp−1(DtF
q,p −DsF

q,p)] −
∫ r

t

Dtf(θq−1
u ) −Dsf(θq−1

u )du +
∫ t

s

Dsf(θq−1
u )du.

By using Doob’s inequality, Lemma 3 and the previous equation, we bound E[supt≤r≤T (∆tsY
q,p

r )2]:

E[ sup
t≤r≤T

(∆tsY
q,p

r )2] ≤12E[|DtF
q,p −DsF

q,p|2]

+ 3T
∫ T

t

E[|Dtf(θq−1
u ) −Dsf(θq−1

u )|2]du + 3(t− s)
∫ t

s

E[|Dsf(θq−1
u )|2]du.
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Using the definition of F q,p (see (16)), we get DtF
q,p − DsF

q,p = Dtξ − Dsξ +
∫ T

t
Dtf(θq−1

u ) −
Dsf(θq−1

u )du−
∫ t

s
Dsf(θq−1

u )du. Plugging this result in the previous inequality yields

E[ sup
t≤r≤T

(∆tsY
q,p

r )2] ≤36E[|Dtξ −Dsξ|2]

+ 39T
∫ T

t

E[|Dtf(θq−1
u ) −Dsf(θq−1

u )|2]du+ 39(t− s)
∫ t

s

E[|Dsf(θq−1
u )|2]du.

Since Dtf(θq−1
u ) = ∂yf(θq−1

u )DtY
q−1,p

u + ∂zf(θq−1
u )DtZ

q−1,p
u and ∂yf and ∂zf are bounded, we

obtain

E[ sup
t≤r≤T

(∆tsY
q,p

r )2] ≤36E[|Dtξ −Dsξ|2] + 78T ‖∂yf‖2
∞

∫ T

t

E[|∆tsY
q−1,p

u |2]du

+ 78T ‖∂zf‖2
∞

∫ T

t

E[|∆tsZ
q−1,p
u |2]du+ 78C2(q, p)(t− s), (28)

where C2(q, p) := ‖∂yf‖2
∞ sup0≤s≤T ‖DsY

q,p‖2
H2

T

+ ‖∂zf‖2
∞ sup0≤s≤T ‖DsZ

q,p‖2
H2

T

. Let us now

upper bound
∫ T

t
E[|∆tsZ

q,p
r |2]dr. Using (17) and the Clark-Ocone formula gives

∫ T

0
Zq,p

r dBr =

Cp(F q−1,p) −E(Cp(F q−1,p)). Hence, we have
∫ T

t
Zq,p

r dBr = Cp(F q−1,p) − Et(Cp(F q−1,p)) = Y q,p
T +∫ T

t
f(θq−1

u )du − Y q,p
t . Then, since s ≤ t ≤ r, we get

∫ T

t

∆tsZ
q,p
r dBr = ∆tsY

q,p
T − ∆tsY

q,p
t +

∫ T

t

(Dtf(θq−1
u ) −Dsf(θq−1

u ))du.

Young’s inequality gives
∫ T

t

E[|∆tsZ
q,p
r |2]dr ≤ 1

2
E[ sup

t≤r≤T
|∆tsY

q,p
r |2] + 32T

∫ T

t

E[|Dtf(θq−1
u ) −Dsf(θq−1

u )|]2du.

As above, we develop the Malliavin derivatives of f(θq−1
u ) and we use that ∂yf and ∂zf are

bounded. We obtain
∫ T

t

E[|∆tsZ
q,p
r |2]dr ≤1

2
E[ sup

t≤r≤T
|∆tsY

q,p
r |2] + 64T ‖∂yf‖2

∞

∫ T

t

E[|∆tsY
q−1,p

u |2]du (29)

+ 64T ‖∂zf‖2
∞

∫ T

t

E[|∆tsZ
q−1,p
u |2]du

Combining (28) and (29) and using the Hypothesis 10 satisfied by ξ yields

1
2

∆q,p
t,s ≤ (78C2(q, p) + 36(Kξ

1)2)(t− s)1∧2αξ + 284T ‖∂spf‖2
∞∆q−1,p

t,s .

Since ∆0,p
t,s = 0, we get Lemma 21 by induction.

We are now able to prove that Φ is Hölder. Let s, t be such that 0 ≤ s ≤ t and |t− s| ≤ 1, we
have

Φ(t) − Φ(s) =
∫ T

t

E[Dtf(θq
r) −Dsf(θq

r)]dr −
∫ t

s

E[Dsf(θq
r)]dr.

As above, we develop the Malliavin derivatives of f(θq
r)

Φ(t) − Φ(s) =
∫ T

t

E[∂yf(θq
r)∆tsY

q,p
r ]dr +

∫ T

t

E[∂zf(θq
r)∆tsZ

q,p
r ]dr

−
∫ t

s

E[∂yf(θq
r)DsY

q,p
r + ∂zf(θq

r)DsZ
q,p
r ]dr.
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Cauchy-Schwarz inequality gives E[∂yf(θq
r)∆tsY

q,p
r ] ≤ ‖∂yf‖∞

√
E[(∆tsY

q,p
r )2]. Using the same

argument to bound E[∂zf(θq
r)∆tsZ

q,p
r ] leads to

|Φ(t) − Φ(s)|2 ≤ 6T ‖∂spf‖2
∞∆q,p

t,s + 6C2(q, p)(t− s), (30)

where ∆q,p
t,s (resp. C2(q, p)) has been introduced in Lemma 21 (resp. in the proof of Lemma 21).

Combining (30) and Lemma 21 ends the proof.

A.2 Proof of Lemma 19

We prove the result by induction. Lemma 19 is true for p = 0, since CN
0 (F ) = C0(F ). Assume

that E(|(CN
p−1 − Cp−1)(F )|2) ≤ (KF

p−1)2
(

T
N

)2αF ∑p−1
i=1 i

2 T i

i! . Since we have

(CN
p − Cp)(F ) = (CN

p−1 − Cp−1)(F ) + (PN
p − Pp)(F ),

it remains to show that E(|(PN
p − Pp)(F )|2) ≤ (kF

p )2
(

T
N

)2αF
p2 T p

p! . We recall

Pp(F ) =
∫ T

0

∫ sp

0

· · ·
∫ s2

0

up(sp, · · · , s1)dBs1 · · · dBsp
, where up : sp, · · · , s1 7−→ E(D(p)

s1···Dsp
F ),

(31)

PN
p (F ) =

∑

|n|=p

dn
p

∏

1≤i≤N

Kni
(Gi), where dn

p = n!E


F

∏

1≤i≤N

Kni
(Gi)


 . (32)

Let us rewrite PN
p (F ) as a sum of stochastic integrals. Let r ∈ N. Applying Lemma 4 to

g : t 7−→ 1]ti−1,ti](t) yields M r
t := hr/2Kr

(
Bt−Bti−1√

h

)
is a martingale and M r

t =
∫ t

ti−1
M r−1

s dBs.

Then, M r
t =

∫ t

ti−1

∫ sr

ti−1
· · ·
∫ s2

ti−1
M0

s1
dBs1 · · · dBsr

. For r = ni and t = ti, we get

Kni
(Gi) =

1

h
ni
2

∫ ti

ti−1

∫ sni

ti−1

· · ·
∫ s2

ti−1

dBs1 · · · dBsni
.

For |n| := n1 + · · · + nN = p, we obtain

∏

1≤i≤N

Kni
(Gi) =

1

h
p

2

∫ T

tN−1

· · ·
∫ s|n(N−1)|+2

tN−1︸ ︷︷ ︸
nN integrals

· · ·
∫ t2

t1

· · ·
∫ s|n(1)|+2

t1︸ ︷︷ ︸
n2 integrals

∫ t1

0

· · ·
∫ s2

0︸ ︷︷ ︸
n1 integrals

dBs1 · · ·dBsp
, (33)

dn
p = n!

1

h
p

2

∫ T

tN−1

· · ·
∫ l|n(N−1)|+2

tN−1︸ ︷︷ ︸
nN integrals

· · ·
∫ t2

t1

· · ·
∫ l|n(1)|+2

t1︸ ︷︷ ︸
n2 integrals

∫ t1

0

· · ·
∫ l2

0︸ ︷︷ ︸
n1 integrals

up(lp, · · · , l1)dl1 · · ·dlp. (34)

To compare Pp(F ) and PN
p (F ), we split the integrals in (31)

Pp(F ) =
∑

|n|=p

∫ T

tN−1

· · ·
∫ s|n(N−1)|+2

tN−1︸ ︷︷ ︸
nN integrals

· · ·
∫ t2

t1

· · ·
∫ s|n(1)|+2

t1︸ ︷︷ ︸
n2 integrals

∫ t1

0

· · ·
∫ s2

0︸ ︷︷ ︸
n1 integrals

up(sp, · · · , s1)dBs1 · · ·dBsp
.

(35)

Combining (32)-(33)-(34) and (35) yields E(|(PN
p − Pp)(F )|2) =

∑

|n|=p

∫ T

tN−1

· · ·
∫ s|n(N−1)|+2

tN−1︸ ︷︷ ︸
nN integrals

· · ·
∫ t2

t1

· · ·
∫ s|n(1)|+2

t1︸ ︷︷ ︸
n2 integrals

∫ t1

0

· · ·
∫ s2

0︸ ︷︷ ︸
n1 integrals

∣∣∣∣
dn

p

h
p

2

− up(sp, · · · , s1)
∣∣∣∣
2

ds1 · · · dsp,

(36)

21



Moreover,
dn

p

h
p
2

− up(sp, · · · , s1) =

n!
hp

∫ T

tN−1

· · ·
∫ lN−1+1

tN−1︸ ︷︷ ︸
nN integrals

· · ·
∫ t2

t1

· · ·
∫ ln1 +1

t1︸ ︷︷ ︸
n2 integrals

∫ t1

0

· · ·
∫ l2

0︸ ︷︷ ︸
n1 integrals

(up(lp, · · · , l1) − up(sp, · · · , s1))dl1 · · · dlp.

Since up satisfies Hypothesis 10, we get |up(lp, · · · , l1) − up(sp, · · · , s1)| ≤ kF
p (|lp − sp|αF + · · · +

|l1 − s1|αF ) ≤ pkF
p h

αF . Then
∣∣∣ dn

p

h
p
2

− up(sp, · · · , s1)
∣∣∣ ≤ pkF

p h
αF . Plugging this result in (36) ends

the proof.

B Wiener chaos expansion formulas

B.1 Proof of Proposition 5

Firstly, we compute Et(CN
p (F )) for t ∈]tr−1, tr]. From (10), we get

Et(CN
p F ) = d0 +

p∑

k=1

∑

|n|=k

dn
k

∏
i<r

Kni
(Gi) × Et

(∏
i≥r

Kni
(Gi)

)
.

Since Brownian increments are independent, we get Etr
(
∏

i≥r Kni
(Gi)) = Knr

(Gr)
∏

i>r E[Kni
(Gi)],

which is null as soon as nr+1 + · · · + nN > 0. Then, nested conditional expectations give

Et(CN
p F ) = d0 +

p∑

k=1

∑

|n(r)|=k

dn
k

∏
i<r

Kni
(Gi) × Et (Knr

(Gr)) .

By applying Lemma 4 when g : t 7−→ 1]tr−1,tr ](t), we get Et (Knr
(Gr)) =

(
t−tr−1

h

)nr/2

Knr

(
Bt−Btr−1√

t−tr−1

)
,

which yields the first result. Since K ′
n(x) = Kn−1(x), the second result follows.

B.2 Wiener chaos expansion formulas in R
d

We want to approximate F ∈ L2(FT ) using its chaos decomposition up to order p. We assume
N ≥ dp. We consider the following truncated basis of L2

(
[0, T ];Rd

)

1]ti−1,ti](t)√
h

ej , i = 1, . . . , N, j = 1, . . . , d, where h =
T

N

where {ti := ih, i = 0, · · · , N} is a regular mesh grid and (ej)1≤j≤d represents the canonical basis
of Rd. Pk, the kth chaos, is generated by





d∏

j=1

N∏

i=1

Knj

i

(
Gj

i

)
:

d∑

j=1

N∑

i=1

nj
i = k



 , Gj

i =
∆j

i√
h
, ∆j

i = Bj
ti

−Bj
ti−1

.

For j = 1, . . . , d, nj = (nj
1, . . . , n

j
N ), one notes |nj | = nj

1 + . . . + nj
N , nj ! = nj

1! . . . nj
N ! and for

r ≤ N , nj(r) = (nj
1, . . . , n

j
r). n = (n1, . . . , nd)∗, |n| = |n1| + · · · + |nd|, n! = n1! . . . nd! and

n(r) = (n1(r), . . . , nd(r))∗. Since the r.v.
(∏

1≤j≤d

∏
1≤i≤N Knj

i

(
Gj

i

))
n

are orthogonal ones, the

projection of F is given by

CN
p (F ) = d0 +

p∑

k=1

∑

|n|=k

dn
k

∏
1≤j≤d

∏
1≤i≤N

Knj

i

(
Gj

i

)
,

22



where the coefficients dn
k are given by

dn
k = n!E

[
F
∏

1≤j≤d

∏
1≤i≤N

Knj

i

(
Gj

i

)]
.

Proposition 22. For tr−1 < t ≤ tr, we have

Et(CN
p F ) = d0 +

p∑

k=1

∑

|n(r)|=k

dn
k

∏

i<r

∏

1≤j≤d

Knj

i

(
Gj

i

)
×
∏

1≤j≤d

(
t− tr−1

h

)n
j
r

2

Knj
r

(
Bj

t −Bj
tr−1√

t− tr−1

)
.

and for l = 1, . . . , d,

Dl
t(Et(CN

p F )) =
p∑

k=1

∑

|n(r)|=k

nl
r>0

dn
kh

−1/2
∏

i<r

∏
1≤j≤d

Knj

i

(
Gj

i

)
×

(
t− tr−1

h

)nl
r−1

2

Knl
r−1

(
Bl

t −Bl
tr−1√

t− tr−1

)∏
j 6=l

(
t− tr−1

h

)n
j
r

2

Knj
r

(
Bj

t −Bj
tr−1√

t− tr−1

)
.

Remark 23. In particular, for t = tr and l = 1, . . . , d,

Etr
(CN

p F ) = d0 +
p∑

k=1

∑

|n(r)|=k

dn
k

∏
i≤r

∏
1≤j≤d

Knj

i

(
Gj

i

)

Dtr
(El

tr
(CN

p F )) =
p∑

k=1

∑

|n(r)|=k

nl
r>0

dn
kh

−1/2
∏

i<r

∏
1≤j≤d

Knj

i

(
Gj

i

)
×Knl

r−1

(
Gl

r

)∏
j 6=l

Knj
r

(
Gj

r

)
.

Proof of Proposition 22. We first compute Et(CN
p F ) for t ∈]tr−1, tr]. We have

Et(CN
p F ) = d0 +

p∑

k=1

∑

|n|=k

dn
k

∏
i<r

∏
1≤j≤d

Knj

i

(
Gj

i

)
× Et

(∏
i≥r

∏
1≤j≤d

Gnj

i

(
W j

i

))

Since Brownian motions and their increments are independents, we get

Etr

(∏
i≥r

∏
1≤j≤d

Knj

i

(
Gj

i

))
=
∏

1≤j≤d
Knj

r

(
Gj

r

)∏
i>r

∏
1≤j≤d

E

[
Knj

i

(
Gj

i

)]
;

which is null as soon as n1
r+1 + · · · + n1

N + · · · + nd
r+1 + · · · + nd

N > 0. Then, nested conditional
expectations give

Et(F ) = d0 +
p∑

k=1

∑

|n(r)|=k

dn
k

∏
i<r

∏
1≤j≤d

Knj

i

(
Gj

i

)
× Et

(∏
1≤j≤d

Knj
r

(
Gj

r

))
.

From Lemma 4, for j = 1, . . . , d M
nj

r

t := (t− tr−1)nj
r/2

Knj
r

(
Bj

t
−Bj

tr−1√
t−tr−1

)
is a martingale and

dM
nj

r

t = M
nj

r−1
t 1]tr−1,tr](t) dB

j
t . Then,

∏
1≤j≤d (t− tr−1)nj

r/2
Knj

r

(
Bj

t
−Bj

tr−1√
t−tr−1

)
is also a martin-

gale and the first result follows. Since K ′
nl

r
(x) = Knl

r−1(x), we get the second result.

Conclusion. In this paper, we use Wiener chaos expansions together with the Picard pro-
cedure to compute the solution to (1). Once computed the chaos decomposition of F q, we get
explicit formulas for both conditional expectations and the Malliavin derivative of conditional
expectations. This enable to easily compute (Y q, Zq). Numerically, we obtain fast and accurate
results, which encourage us to extend these results to other type of BSDEs, like 2-BSDEs. It is
also possible to couple these Wiener chaos expansions together with the dynamic programming
approach. This will be the subject of a forthcoming publication.
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