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Introduction

The problem of the recovery of a potential in the Schrödinger equation from boundary measurements, the Dirichlet-to-Neumann map, has been studied since the 1980s, namely in connection with Calderón's inverse conductivity problem. The aim of this paper is to give new insights about its stability issues.

It is well known that the problem is ill-posed: Alessandrini [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF] proved that a logarithmic stability holds and Mandache [START_REF] Mandache | Exponential instability in an inverse problem of the Schrödinger equation[END_REF] showed that it was optimal, in some sense. Nevertheless, Mandache's result provided also the information that stability could be increased in a way depending on the smoothness of potentials. Optimal stability estimates, with respect to smoothness of potentials, were indeed recently obtained in [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF] and [START_REF] Santacesaria | New global stability estimates for the Calderón problem in two dimensions[END_REF] in dimensions d ≥ 3 and d = 2, respectively (at zero energy). However, even for smooth potentials the problem remains ill-posed.

It was observed that one way to increase stability is to modify another factor in the equation: the energy. Indeed, at high energies the ill-posedness diminishes considerably: this motivated some rapidly converging approximation algorithms in two and three dimensions [START_REF] Novikov | Approximate solution of the inverse problem of quantum scattering theory with fixed energy in dimension 2[END_REF], [START_REF] Novikov | The ∂-approach to approximate inverse scattering at fixed energy in three dimensions[END_REF], [START_REF] Novikov | Monochromatic reconstruction algorithms for two-dimensional multi-channel inverse problems[END_REF] and stability estimates of Lipschitz-logarithmic type explicitly depending on the energy in three dimensions [START_REF] Isakov | Increasing stability for the Schrödinger potential from the Dirichlet-to-Neumann map[END_REF].

In this paper we continue the work started in [START_REF] Santacesaria | New global stability estimates for the Calderón problem in two dimensions[END_REF], at zero energy (the Calderón problem), and give new stability estimates depending on the smoothness of potentials and the energy. We restricted ourself to the negative energy case, for the simplicity of the proofs. Results for the positive energy case are indeed similar in many respects and will be published in a subsequent paper.

We consider the Schrödinger equation at fixed energy E,

(1.1) (-∆ + v)ψ = Eψ on D, E ∈ R,
where D is a open bounded domain in R 2 and v ∈ L ∞ (D) (we will refer to v as a potential). Under the assumption that (1.2) 0 is not a Dirichlet eigenvalue for the operator -

∆ + v -E in D,
we can define the Dirichlet-to-Neumann operator Φ(E) : H 1/2 (∂D) → H -1/2 (∂D), corresponing to the potential v, as follows:

(1.3) Φ(E)f = ∂u ∂ν ∂D ,
where f ∈ H 1/2 (∂D), ν is the outer normal of ∂D, and u is the H 1 (D)solution of the Dirichlet problem

(1.4) (-∆ + v)u = Eu on D, u| ∂D = f.
The following inverse problem arises from this construction. Problem 1. Given Φ(E) for a fixed E ∈ R, find v on D.

This problem can be considered as the Gel'fand inverse boundary value problem for the two-dimensional Schrödinger equation at fixed energy (see [START_REF] Gel'fand | Some aspects of functional analysis and algebra[END_REF], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt[END_REF]). At zero energy this problem can be seen also as a generalization of the Calderón problem of the electrical impedance tomography (see [START_REF] Calderón | On an inverse boundary problem[END_REF], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt[END_REF]). In addition, the history of inverse problems for the two-dimensional Schrödinger equation at fixed energy goes back to [START_REF] Dubrovin | The Schrödinger equation in a periodic field and Riemann surfaces[END_REF] (see also [START_REF] Novikov | The inverse scattering problem on a fixed energy level for the twodimensional Schrödinger operator[END_REF][START_REF] Grinevich | The scattering transform for the two-dimensional Schrödinger operator with a potential that decreases at infinity at fixed nonzero energy, (Russian)[END_REF] and reference therein). Problem 1 can also be considered as an example of illposed problem: see [START_REF] Lavrent'ev | Ill-posed problems of mathematical physics and analysis[END_REF], [START_REF] Beilina | Approximate global convergence and adaptivity for coefficient inverse problems[END_REF] for an introduction to this theory.

Note that this problem is not overdetermined, in the sense that we consider the reconstruction of a function v of two variables from inverse problem data dependent on two variables.

In this paper we study interior stability estimates, i.e. we want to prove that given two Dirichlet-to-Neumann operators Φ 1 (E) and Φ 2 (E), corresponding to potentials v 1 and v 2 on D, we have that

v 1 -v 2 L ∞ (D) ≤ ω Φ 1 (E) -Φ 2 (E) H 1/2 (∂D)→H -1/2 (∂D) ,
where the function ω(t) → 0 as fast as possible as t → 0 at any fixed E. The explicit dependence of ω on E is analysed as well.

There is a wide literature on the Gel'fand inverse problem at fixed energy (i.e. Problem 1 in multidimensions). In the case of complex-valued potentials the global injectivity of the map v → Φ was firstly proved in [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt[END_REF] for D ⊂ R d with d ≥ 3 and in [START_REF] Bukhgeim | Recovering a potential from Cauchy data in the two-dimensional case[END_REF] for d = 2 with v ∈ L p : in particular, these results were obtained by the use of global reconstructions developed in the same papers. A global stability estimate for Problem 1 for d ≥ 3 was first found by Alessandrini in [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF]; a principal improvement of this result was given recently in [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF]. In the two-dimensional case the first global stability estimate was given in [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderón inverse problem in two dimensions[END_REF]. Note that for the Calderón problem (of the electrical impedance tomography) in its initial formulation the global uniqueness was firstly proved in [START_REF] Sylvester | A global uniqueness theorem for an inverse boundary value problem[END_REF] for d ≥ 3 and in [START_REF] Nachman | Global uniqueness for a two-dimensional inverse boundary value problem[END_REF] for d = 2. In addition, for the case of piecewise constant or piecewise real analytic conductivity the first uniqueness results for the Calderón problem in dimension d ≥ 2 were given in [START_REF] Druskin | The unique solution of the inverse problem in electrical surveying and electrical well logging for piecewise-constant conductivity[END_REF] and [START_REF] Kohn | Determining conductivity by boundary measurements. II. Interior results[END_REF]. In the case of piecewise constant conductivities a Lipschitz stability estimate was proved in [START_REF] Alessandrini | Lipschitz stability for the inverse conductivity problem[END_REF] (see [START_REF] Rondi | Lipschitz stability for the inverse conductivity problem[END_REF] for additional studies in this direction).

Most stability results for the Calderón problem in two dimensions have been formulated with the goal of proving stability estimates using the least regular conductivities possible (see [START_REF] Liu | Stability Estimates for the Two-Dimensional Inverse Conductivity Problem[END_REF], [START_REF] Barceló | Stability of Calderón inverse conductivity problem in the plane[END_REF]). Instead, we have tried to address different questions: how the estimates vary with respect to the smoothness of the potentials and the energy.

The results, detailed below, constitute also a progress in the non-smooth case: they indicate stability dependence of the smooth part of a singular potential with respect to boundary value data.

We will assume for simplicity that

D is an open bounded domain in R 2 , ∂D ∈ C 2 , v ∈ W m,1 (R 2 ) for some m > 2, v = v, supp v ⊂ D, (1.5) 
where

W m,1 (R 2 ) = {v : ∂ J v ∈ L 1 (R 2 ), |J| ≤ m}, m ∈ N ∪ {0}, (1.6) J ∈ (N ∪ {0}) 2 , |J| = J 1 + J 2 , ∂ J v(x) = ∂ |J| v(x) ∂x J 1 1 ∂x J 2 2 . Let v m,1 = max |J|≤m ∂ J v L 1 (R 2 ) .
We will need the following regularity condition:

(1.7) |E| > E 1 ,
where

E 1 = E 1 ( v m,1 , D)
. This condition implies, in particular, that the Faddeev eigenfunctions are well-defined on the entire fixed-energy surface in the spectral parameter.

Theorem 1.1. Let the conditions (1.2), (1.5), (1.7) hold for the potentials v 1 , v 2 , where D is fixed, and let Φ 1 (E) , Φ 2 (E) be the corresponding Dirichletto-Neumann operators at fixed negative energy E < 0. Let v j m,1 ≤ N , j = 1, 2, for some N > 0. Then there exists a constant

c 1 = c 1 (E, D, N, m) such that (1.8) v 2 -v 1 L ∞ (D) ≤ c 1 (log(3 + Φ 2 (E) -Φ 1 (E) -1 * )) -α , where α = m -2 and Φ 2 -Φ 1 * = Φ 2 -Φ 1 H 1/2 (∂D)→H -1/2 (∂D) .
Moreover, there exists a constant c 2 = c 2 (D, N, m, p) such that for any 0 < κ < 1/(l + 2), where l = diam(D), we have

v 2 -v 1 L ∞ (D) ≤ c 2 |E| 1/2 + κ log(3 + δ -1 ) -(m-2)
(1.9)

+ δ(3 + δ -1 ) κ(l+2) e |E| 1/2 (l+3) , where δ = Φ 2 (E) -Φ 1 (E) * .
In addition, there exists a constant c 3 = c 3 (D, N, m, p) such that for E, δ which satisfy

(1.10) |E| 1/2 > log(3 + δ -1 ), |E| > 1,
we have

v 2 -v 1 L ∞ (D) ≤ c 3 |E| -(m-2)/2 log(3 + δ -1 ) -(m-2) + δe |E|(l+3) . (1.11)
The novelty of estimate (1.8), with respect to [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderón inverse problem in two dimensions[END_REF], is that, as m → +∞, we have α → +∞. Moreover, under the assumption of Theorem 1.1, according to instability estimates of Mandache [START_REF] Mandache | Exponential instability in an inverse problem of the Schrödinger equation[END_REF] and Isaev [START_REF] Isaev | Exponential instability in the Gel'fand inverse problem on the energy intervals[END_REF], our result is almost optimal. To be more precise, it was proved that stability estimate (1.8) cannot hold for α > 2m for real-valued potentials and α > m for complexvalued potentials. Indeed, our estimates are still valid for complex-valued potentials, if |E| is sufficiently large with respect to v C( D) .

In addition, estimate (1.8) extends the result obtained in [START_REF] Santacesaria | New global stability estimates for the Calderón problem in two dimensions[END_REF] for the same problem at zero energy. In dimension d ≥ 3 a global stability estimate similar to (1.8) was proved in [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF], at zero energy.

As regards (1.9) and (1.11), their main feature is the explicit dependence on the energy E. These estimates consist each one of two parts, the first logarithmic and the second Hölder or Lipschitz; when |E| increases, the logarithmic part decreases and the Hölder/Lipschitz part becomes dominant. These estimates, namely (1.11), are coherent with the approximate reconstruction algorithm developed in [START_REF] Novikov | Approximate solution of the inverse problem of quantum scattering theory with fixed energy in dimension 2[END_REF] and [START_REF] Novikov | Monochromatic reconstruction algorithms for two-dimensional multi-channel inverse problems[END_REF] at positive energy. In fact, inequalities like (1.8), (1.9) and (1.11) should be valid also for the Schrödinger equation at positive energy.

Note that, for Problem 1 in three dimensions, global energy-dependent stability estimates changing from logarithmic type to Lipschitz type for high energies were given recently in [START_REF] Isakov | Increasing stability for the Schrödinger potential from the Dirichlet-to-Neumann map[END_REF]. However these estimates are given in the L 2 (D) norm and without any dependence on the smoothness of the potentials.

The proof of Theorem 1.1 follows the scheme of [START_REF] Santacesaria | New global stability estimates for the Calderón problem in two dimensions[END_REF] and it is based on the same ∂ techniques. The map Φ(E) → v(x) is considered as the composition of Φ(E) → r(λ) and r(λ) → v(x), where r(λ) is a complex valued function, closely related to the so-called generalised scattering amplitude (see Section 2 for details).

The stability of Φ(E) → r(λ) -previously known only for E = 0 -relies on an identity of [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichletto-Neumann map with nonzero background potential[END_REF] (based in particular on [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF]), and estimates on r(λ) for λ near 0 and ∞. The estimate is of logarithmic type, with respect to Φ (at fixed E): it is proved in section 3. Note that the results of this section are valid also for positive energy.

The stability of r(λ) → v(x) is of Hölder type and follows the same arguments as in [START_REF] Santacesaria | New global stability estimates for the Calderón problem in two dimensions[END_REF]Section 4]. The composition of the two above-mentioned maps gives the result of Theorem 1.1, as showed in Section 4.

Remark 1.1. We point out another possible approach to obtain inequality (1.8). The approach is based on the following observation (which follows from [START_REF] Grinevich | Two-dimensional "inverse scattering problem" for negative energies and generalized-analytic functions. I. Energies below the ground state[END_REF]Basic Lemma]): for potentials v satisfying the assumptions of Theorem 1.1 we have that v -E is of conductivity type, i.e. there exists a positive real-valued function ψ 0 ∈ L ∞ (D) bounded from below such that (1.12)

v -E = ∆ψ 0 ψ 0 .

Thus Problem 1 at fixed negative energy is reduced to the the same problem at zero energy for the conductivity-type potential ∆ψ 0 ψ 0 . It is then possible to apply the result of [START_REF] Santacesaria | New global stability estimates for the Calderón problem in two dimensions[END_REF] and find the same stability estimate. Remark 1.2. In a similar way as in [START_REF] Isaev | Stability estimates for determination of potential from the impedance boundary map[END_REF], the stability estimates of Theorem 1.1 can be extended to the case when we do not assume that condition (1.2) is fulfilled and consider the Cauchy data set instead of the Dirichletto-Neumann map Φ(E).

This work was fulfilled in the framework of research carried out under the supervision of R.G. Novikov.

Preliminaries

We recall the definition of the Faddeev eigenfunctions ψ(x, k) of equation (1.1), for

x = (x 1 , x 2 ) ∈ R 2 , k = (k 1 , k 2 ) ∈ Σ E ⊂ C 2 , Σ E = {k ∈ C 2 : k 2 = k 2 1 + k 2 2 =
E} for E = 0 (see [START_REF] Faddeev | Growing solutions of the Schrödinger equation[END_REF], [START_REF] Novikov | The inverse scattering problem on a fixed energy level for the twodimensional Schrödinger operator[END_REF], [START_REF] Grinevich | The scattering transform for the two-dimensional Schrödinger operator with a potential that decreases at infinity at fixed nonzero energy, (Russian)[END_REF]). We first extend v ≡ 0 on R 2 \ D and define ψ(x, k) as the solution of the following integral equation:

ψ(x, k) = e ikx + y∈R 2 G(x -y, k)v(y)ψ(y, k)dy, (2.1) G(x, k) = g(x, k)e ikx , (2.2) g(x, k) = - 1 2π 2 ξ∈R 2 e iξx ξ 2 + 2kξ dξ, (2.3) where x ∈ R 2 , k ∈ Σ E \ R 2 . It is convenient to write (2.1) in the following form (2.4) µ(x, k) = 1 + y∈R 2 g(x -y, k)v(y)µ(y, k)dy,
where µ(x, k)e ikx = ψ(x, k).

We define Following [START_REF] Grinevich | Two-dimensional "inverse scattering problem" for negative energies and generalized-analytic functions. I. Energies below the ground state[END_REF], [START_REF] Novikov | The inverse scattering problem on a fixed energy level for the twodimensional Schrödinger operator[END_REF], we make the following change of variables

E E ⊂ Σ E \ R 2 the set of exceptional points of integral equation (2.4): k ∈ Σ E \ (E E ∪ R 2 ) if and only if equation (2.4) is uniquely solvable in L ∞ (R 2 ).
z = x 1 + ix 2 , λ = k 1 + ik 2 √ E ,
and write ψ, µ as functions of these new variables. For

k ∈ Σ E \ (E E ∪ R 2 )
we can define, for the corresponding λ, the following generalised scattering amplitude:

b(λ, E) = 1 (2π) 2 C exp i 2 √ E 1 + (sgn E) 1 λ λ (2.5) × (sgn E)z λ + λz v(z)µ(z, λ)dRez dImz.
This function plays an important role in the inverse problem because of the following ∂-equation, which holds when v is real-valued (see [START_REF] Novikov | The inverse scattering problem on a fixed energy level for the twodimensional Schrödinger operator[END_REF] for more details):

(2.6) ∂ ∂ λ µ(z, λ) = r(z, λ)µ(z, λ), for λ not an exceptional point (i.e. k(λ) ∈ Σ E \ (E E ∪ R 2 )), where r(z, λ) = r(λ) exp i 2 √ E 1 + (sgn E) 1 λ λ (sgn E)z λ + λz , (2.7) r(λ) = π λ sgn(λ λ -1)b(λ, E). (2.8) We recall that if v ∈ W m,1 (R 2 ) with supp v ⊂ D, then v m < +∞, where v(p) = (2π) -2 R 2 e ipx v(x)dx, p ∈ C 2 , (2.9) u m = sup p∈R 2 |(1 + |p| 2 ) m/2 u(p)|, (2.10)
for a test function u.

The following lemma is a variation of a result in [START_REF] Novikov | Approximate solution of the inverse problem of quantum scattering theory with fixed energy in dimension 2[END_REF]:

Lemma 2.1. Let the conditions (1.5), (1.7) hold for a potentials v and let

E ∈ R \ {0}. Then there exists an R = R(m, v m ) > 1, such that (2.11) |b(λ, E)| ≤ 2 v m 1 + |E| (|λ| + sgn(E)/|λ|) 2 -m/2 , for |λ| > 2R |E| 1/2 and |λ| < |E| 1/2 2R .
Proof. We consider the function H(k, p) defined as (2.12) ψ(x,k) as defined at the beginning of this section. Since E E = ∅ (see Remark 2.1), the function 

H(k, p) = 1 (2π) 2 R 2 e i(p-k)x v(x)ψ(x, k)dx, for (2.13) k = k(λ) = √ E 2 (λ + λ -1 ), i √ E 2 (λ -1 -λ) , λ ∈ C \ {0}, Im k(λ) = 0, p ∈ R 2 and
H(k(λ), k(λ) + k(λ)) = b(λ, E) is defined for every λ ∈ C \ {0}.
|H(k, p)| ≤ 2 v m (1 + p 2 ) -m/2 , for |k| > R(m, v m ),
where |k| = (|Rek| 2 + |Imk| 2 ) 1/2 . This finishes the proof of Lemma 2.1.

At several points in the paper we will use [24, Lemma 2.1], which we restate in an adapted form. Lemma 2.2. Let the conditions (1.5), (1.7) hold for a potentials v. Let µ(x, k) be the associated Faddeev functions. Then, for any 0 < σ < 1, we have

|µ(x, k) -1| + ∂µ(x, k) ∂x 1 + ∂µ(x, k) ∂x 2 ≤ |k| -σ c(m, σ) v m , (2.15) for k ∈ C 2 such that k 2 < 0 and |k| ≥ R, where R is defined in Lemma 2.1.
Throughout all the paper c(α, β, . . .) is a positive constant depending on parameters α, β, . . . proved for E > 0, they are still valid in the negative energy case (and zero energy case).

We also restate [3, Lemma 2.6], which will be useful in section 4.

Lemma 2.3 ([3]). Let q 1 ∈ L s 1 (C) ∩ L s 2 (C), 1 < s 1 < 2 < s 2 < ∞ and q 2 ∈ L s (C), 1 < s < 2. Assume u is a function in L s(C), with 1/s = 1/s -1/2, which satisfies (2.16) ∂u(λ) ∂ λ = q 1 (λ)ū(λ) + q 2 (λ), λ ∈ C.
Then there exists c = c(s, s 1 , s 2 ) > 0 such that (2.17) u L s ≤ c q 2 L s exp(c( q 1 L s 1 + q 1 L s 2 )).

We will make also use of the well-known Hölder's inequality, which we recall in a special case: for f ∈ L p (C), g ∈ L q (C) such that 1 ≤ p, q ≤ ∞, 1 ≤ r < ∞, 1/p + 1/q = 1/r, we have

(2.18) f g L r (C) ≤ f L p (C) g L q (C) .
3. From Φ(E) to r(λ) Lemma 3.1. Let the conditions (1.5), (1.7) hold and take 0 < a 1 < min 1,

|E| 1/2 2R , a 2 > max 1, 2R |E| 1/2
, for E ∈ R \ {0} and R as defined in Lemma 2.1. Then for p ≥ 1 we have

|λ| j r(λ) L p (|λ|<a 1 ) ≤ c(p, m) v m |E| -m/2 a m-1+j+2/p 1 , (3.1) |λ| j r(λ) L p (|λ|>a 2 ) ≤ c(p, m) v m |E| -m/2 a -m-1+j+2/p 2 , (3.2)
where j = 1, 0, -1 and r was defined in (2.8). 

(3.3) |b 2 (λ) -b 1 (λ)| ≤ c(D, N )e (l+1) √ |E|(|λ|+1/|λ|) Φ 2 (E) -Φ 1 (E) * , λ ∈ C \ {0}.
Proof. We have the following identity:

(3.4) b 2 (λ)-b 1 (λ) = 1 2π 2 ∂D ψ 1 (x, k(λ))(Φ 2 (E)-Φ 1 (E))ψ 2 (x, k(λ))dx,
where ψ i (x, k) are the Faddeev functions associated to the potential v i , i = 1, 2. This identity is a particular case of the one in [25, Theorem 1]: we refer to that paper for a proof.

From this identity we obtain:

|b 2 (λ) -b 1 (λ)| ≤ 1 (2π) 2 ψ 1 (•, k) H 1/2 (∂D) Φ 2 (E) -Φ 1 (E) * ψ 2 (•, k) H 1/2 (∂D) .
(3.5) Now, for p > 2, using the trace theorem and Lemma 2.2 we get Then for every p ≥ 1 there exists a constant θ 1 = θ 1 (E, D, N, m, p) such that

ψ j (•, k(λ)) H 1/2 (∂D) ≤ c ψ j (•, k(λ)) W 1, p (D) ≤ c |E| 2 l(|λ| + 1/|λ|)e √ |E| 2 l(|λ|+1/|λ|) µ j (•, k(λ)) W 1, p (D) ≤ c e √ |E| 2 (l+1)(|λ|+1/|λ|) µ j (•, k(λ)) W 1, p (D) ≤ c(D, N, m)e √ |E| 2 ( 
(3.6) |λ| j |r 2 -r 1 | L p (C) ≤ θ 1 log(3 + δ -1 ) -(m-2) , for j = -1, 0, 1, δ = Φ 2 (E) -Φ 1 (E) * .
Moreover, there exists a constant θ 2 = θ 2 (D, N, m, p) such that for any 0 < κ < 1 l+2 , where l = diam(D), and for |E| ≥ E 1 we have

|λ| j |r 2 -r 1 | L p (C) ≤ θ 2 |E| -1 |E| 1/2 + κ log(3 + δ -1 ) -(m-2) (3.7) + δ(3 + δ -1 ) κ(l+2) |E| 1/2p e |E| 1/2 (l+2) , j = -1, 0, 1.
In addition, there exists a constant θ 3 = θ 3 (D, N, m, p) such that for E, δ which satisfy

(3.8) |E| 1/2 > log(3 + δ -1 ),
we have

|λ| j |r 2 -r 1 | L p (C) ≤ θ 3 |E| -m/2 log(3 + δ -1 ) -(m-2) + δ |E| 1/2p e |E|(l+2) , (3.9) for j = -1, 0, 1.
Proof. Let choose 0 < a 1 ≤ 1 ≤ a 2 to be determined and let

(3.10) δ = Φ 2 (E) -Φ 1 (E) * .
We split down the left term of (3.6) as follows:

|λ| j |r 2 -r 1 | L p (C) ≤ |λ| j |r 2 -r 1 | L p (|λ|<a 1 ) + |λ| j |r 2 -r 1 | L p (a 1 <|λ|<a 2 ) + |λ| j |r 2 -r 1 | L p (|λ|>a 2 ) .
From (3.1) and (3.2) we have

|λ| j |r 2 -r 1 | L p (|λ|<a 1 ) ≤ c(N, p, m)|E| -m/2 a m-1+j+2/p 1 , (3.11) |λ| j |r 2 -r 1 | L p (|λ|>a 2 ) ≤ c(N, p, m)|E| -m/2 a -m-1+j+2/p 2 . (3.12)
From Lemma 3.2 and (3.10) we obtain, for j = -1, 0, 1, (3.13)

|λ| j |r 2 -r 1 | L p (a 1 <|λ|<a 2 ) ≤ c(D, N, p) δ |E| 1/2p e ( √ |E|l+2)/a 1 + e ( √ |E|l+2)a 2 .
We now prove (3.6). Fix an energy E < 0 satisfying the hypothesis and define

(3.14) a 2 = 1 a 1 = β log(3 + δ -1 ),
for 0 < β < 1/(l |E| + 2). We choose δ β (E) < 1 such that for every δ ≤ δ β (E), a 2 > 1 (and so a 1 < 1). Note that since E 1 > (2R) 2 , the estimates in Lemma 3.1 hold for a 1 < 1 and a 2 > 1.

The aim is to have (3.11), (3.12) of the order log(3 + δ -1 ) -(m-2) . Indeed we have, for every p ≥ 1 and δ ≤ δ β (E),

a m-1+j+2/p 1 ≤ c(β) log(3 + δ -1 ) -(m-2) , a -m-1+j+2/p 2 ≤ c(β) log(3 + δ -1 ) -(m-2) , for j = -1, 0, 1. Thus, for δ ≤ δ β (E), |λ| j |r 2 -r 1 | L p (C) ≤ c(D, N, m, p, β) |E| -m/2 log(3 + δ -1 ) -(m-2) + δ |E| 1/2p (3 + δ -1 ) β( √ |E|l+2) .
Since by construction β( |E|l + 2) < 1, we have that

δ |E| 1/2p (3 + δ -1 ) β( √ |E|l+2) → 0 for δ → 0 (3.15)
more rapidly than the other term, at fixed E. This gives

(3.16) |λ| j |r 2 -r 1 L p (C) ≤ c(E, D, N, m, p, β) log(3 + δ -1 ) -(m-2) ,
for δ ≤ δβ (E) (where δβ (E) is sufficiently small in order to estimate the term in ( In order to prove (3.7) we define, in (3.11)-(

a 2 = 1 a 1 = 1 + κ log(3 + δ -1 ) |E| 1/2 , 3.13), (3.17) 
for any 0 < κ < 1 l+2 . Note that we have a 2 > 1 and a 1 < 1. Thus we find, for every p ≥ 1, j = -1, 0, 1,

a m-1+j+2/p 1 ≤ |E| (m-2)/2 |E| 1/2 + κ log(3 + δ -1 ) m-2 , a -m-1+j+2/p 2 ≤ |E| (m-2)/2 |E| 1/2 + κ log(3 + δ -1 ) m-2 .
We have also that

e ( √ |E|l+2)/a 1 + e ( √ |E|l+2)a 2 ≤ 2e (l+2)(|E| 1/2 +κ log(3+δ -1 )) = 2(3 + δ -1 ) κ(l+2) e (l+2)|E| 1/2 .
Repeating the same arguments as above we obtain, for δ > 0,

|λ| j |r 2 -r 1 | L p (C) ≤ c(D, N, m, p) |E| -1 |E| 1/2 + κ log(3 + δ -1 ) -(m-2) + δ(3 + δ -1 ) κ(l+2) |E| 1/2p e (l+2)|E| 1/2 ,
which proves estimate (3.7).

We pass to estimate (3.9). Take, in (3.11)-(3.13),

(3.18)

a 2 = 1 a 1 = log(3 + δ -1 ).
Define δ < 1 such that for δ ≤ δ we have a 2 > 1 (so a 1 < 1). From our assumption (3.8) we have that e ( √ |E|l+2)/a 1 + e ( √ |E|l+2)a 2 < 2e |E|(l+2) . Then we obtain, using the same arguments as above,

|λ| j |r 2 -r 1 | L p (C) ≤ c(D, N, m, p) |E| -m/2 log(3 + δ -1 ) -(m-2) + δ |E| 1/2p e |E|(l+2) ,
for δ ≤ δ. To remove this last assumption we argue as for (3.6). This completes the proof of Proposition 3.3.

Proof of Theorem 1.1

We begin with a lemma which generalises [START_REF] Santacesaria | New global stability estimates for the Calderón problem in two dimensions[END_REF]Proposition 4.2] to negative energy.

Lemma 4.1. Let E < 0 be such that |E| ≥ E 1 , where E 1 is defined in Proposition 3.3; let v 1 , v 2 be two potentials satisfying (1.5), (1.7), with v j m,1 ≤ N , µ 1 (z, λ), µ 2 (z, λ) the corresponding Faddeev functions and r 1 , r 2 as defined in (2.8), (2.7). Let 1 < s < 2, and s such that 1/s = 1/s -1/2. Then

sup z∈C µ 2 (z, •) -µ 1 (z, •) L s (C) ≤ c(D, N, s, m) r 2 -r 1 L s (C) , (4.1) sup z∈C ∂µ 2 (z, •) ∂ z - ∂µ 1 (z, •) ∂ z L s(C) ≤ c(D, N, s, m) r 2 -r 1 L s (C) (4.2) + |E| 1/2 |λ| + 1 |λ| |r 2 -r 1 | L s (C) + r 2 -r 1 L s (C) .
Proof. We begin with the proof of (4.1). Let

ν(z, λ) = µ 2 (z, λ) -µ 1 (z, λ). (4.3)
From the ∂-equation (2.6) we deduce that ν satisfies the following nonhomogeneous ∂-equation:

∂ ∂ λ ν(z, λ) = r 1 (z, λ)ν(z, λ) + (r 2 (z, λ) -r 1 (z, λ))µ 2 (z, λ), (4.4) 
for λ ∈ C. Note that from Lemma 2.2 we have that ν(z, •) ∈ L s(C) for every 2 < s ≤ ∞. In addition, from Lemma 2.1 (using the fact that |E| > R), we have that r j L p (D) < c(D, N, p, m), for 1 < p < ∞, j = 1, 2. Then it is possible to use Lemma 2.3 in order to obtain

ν(z, •) L s ≤ c(D, N, s, m) µ 2 (z, λ)(r 2 (λ) -r 1 (λ)) L s (C) ≤ c(D, N, s, m) sup z∈C µ 2 (z, •) L ∞ r 2 -r 1 L s (C) ≤ c(D, N, s, m) r 2 -r 1 L s (C) ,
and the constant is independent from E for |E| > R, because of Lemma 2.2 and Lemma 2.1. Now we pass to (4.2). To simplify notations we write, for z, λ ∈ C,

µ j z (z, λ) = ∂µ j (z, λ) ∂z , µ j z (z, λ) = ∂µ j (z, λ) ∂ z , j = 1, 2.
From the ∂-equation (2.6) we have that µ j z and µ j z satisfy the following system of non-homogeneous ∂-equations, for j = 1, 2:

∂ ∂ λ µ j z (z, λ) = r j (z, λ) µ j z(z, λ) + |E| 2 λ - 1 λ µ j (z, λ) , ∂ ∂ λ µ j z (z, λ) = r j (z, λ) µ j z (z, λ) + |E| 2 1 λ -λ µ j (z, λ) .
Define now µ j ± (z, λ) = µ j z (z, λ) ± µ j z (z, λ), for j = 1, 2. Then they satisfy the following two non-homogeneous ∂-equations:

∂ ∂ λ µ j ± (z, λ) = r j (z, λ) ±µ j ± (z, λ) + |E| 2 λ - 1 λ ± 1 λ -λ µ j (z, λ) .
Finally define τ ± (z, λ) = µ 2 ± (z, λ)µ 1 ± (z, λ). They satisfy the two nonhomogeneous ∂-equations below:

∂ ∂ λ τ ± (z, λ) = ± r 1 (z, λ)τ ± (z, λ) + (r 2 (z, λ) -r 1 (z, λ))µ 2 ± (z, λ) + |E| 2 λ - 1 λ ± 1 λ -λ (r 2 (z, λ) -r 1 (z, λ))µ 2 (z, λ) + r 1 (z, λ)ν(z, λ) ,
where ν(z, λ) was defined in (4.3). Now remark that by Lemma 2.2 and regularity assumptions on the potentials we have that µ j z (z, •), µ j z (z, •) ∈ L s(C) ∩ L ∞ (C) for any s > 2, j = 1, 2 (and their norms are bounded by a constant C(D, N, p, m) thanks to Lemma 2.2). This, in particular, yields τ ± (z, •) ∈ L s(C). These arguments, along with the above remarks on the L p boundedness of r j , make possible to use Lemma 2.3, which gives

τ ± (z, •) L s (C) ≤ c(D, N, s, m) r 2 -r 1 L s (C) µ 2 ± (z, •) L ∞ (C) + |E| |λ| + 1 |λ| |r 2 -r 1 | L s (C) µ 2 (z, •) L ∞ (C) + (|λ| + |λ| -1 )r 1 L 2 (C) ν(z, •) L s (C) ≤ c(D, N, s, m) r 2 -r 1 L s (C) + |E| |λ| + 1 |λ| |r 2 -r 1 | L s (C) + |λ||r 2 -r 1 | L s (C) ,
where we used Hölder's inequality (2.18) (since 1/s = 1/2+1/s) and estimate (4.1). Again, the constants are independent from E since |E| > R.

The proof of (4.2) now follows from this last inequality and the fact that Proof of Theorem 1.1. We recall the derivation of an explicit formula for the potential, taken from [START_REF] Novikov | The inverse scattering problem on a fixed energy level for the twodimensional Schrödinger operator[END_REF]. Let v(z) be a potential which satisfies the hypothesis of Theorem 1.1 and µ(z, λ) the corresponding Faddeev functions. Since µ(z, λ) satisfies the estimates of Lemma 2.2, the ∂-equation (2.6) and b(λ, E) decreases at infinity like in Lemma 2.1, it is possible to write the following development: Formula (4.7) for v 1 and v 2 yields

µ 2 z -µ 1 z = 1 2 (τ + -τ -).
v 2 (z) -v 1 (z) = |E| 1/2 πi C |E| 1/2 2 λ - 1 λ (r 2 -r 1 )µ 2 + r 1 (µ 1 -µ 2 ) + (r 2 -r 1 ) ∂µ 2 ∂ z + r 1 ∂µ 2 ∂ z - ∂µ 1 ∂ z dλ d λ.
Then, using several times Hölder's inequality (2.18), we find 

|v 2 (z) -v 1 (z)| ≤ |E| 1/2 π |E| 1/2 2 λ - 1 λ (r 2 -r 1 ) L 1 µ 2 (z, •) L ∞ + λ - 1 λ r 1 L p′ µ 2 (z, •) -µ 1 (z, •) L p + r 2 -r 1 L p ∂µ 2 (z, •) ∂ z L p ′ + r 1 L p′ ∂µ 2 (z, •) ∂ z - ∂µ 1 (z, •) ∂ z L p , for 1 

Remark 2 . 1 .

 21 From [24, Proposition 1.1] we have that there exists E 0 = E 0 ( v m,1 , D) such that for |E| ≥ E 0 ( v m,1 , D) there are no exceptional points for equation (2.4), i.e. E E = ∅: thus the Faddeev eigenfunctions exist (unique) for all k ∈ Σ E \ R 2 .

Remark 2 . 2 .

 22 Even if [24, Proposition 1.1, Corollary 1.1, Lemma 2.1] were

Proof. 1 ,

 1 It is a corollary of Lemma 2.1. Indeed |r(λ)| = π|b(λ, E)|/|λ| and |λ| j r p L p (|λ|<a 1 )which gives(3.1). The proof of (3.2) is analogous.Lemma 3.2. Let D ⊂ {x ∈ R 2 : |x| ≤ l}, E < 0, v 1 , v 2 betwo potentials satisfying (1.2), (1.5), (1.7), Φ 1 (E), Φ 2 (E) the corresponding Dirichlet-to-Neumann operator and b 1 , b 2 the corresponding generalised scattering amplitude. Let v j m,1 ≤ N , j = 1, 2. Then we have

Proposition 3 . 3 .

 33 l+1)(|λ|+1/|λ|) , for j = 1, 2. This, combined with (3.5), gives(3.3). Now we turn to the main result of the section. Let E < 0 be such that |E| ≥ E 1 = max((2R) 2 , E 0 ), where R is defined in Lemma 2.1 and E 0 in Remark 2.1, let v 1 , v 2 be two potentials satisfying (1.2), (1.5), (1.7), Φ 1 (E), Φ 2 (E) the corresponding Dirichlet-to-Neumann operator and r 1 , r 2 as defined in (2.8). Let v k m,1 ≤ N , k = 1, 2.

  ). Estimate(3.16) for general δ (with modified constant) follows from(3.16) for δ ≤ δβ (E) and the fact that |λ| k |r j | L p (D) < c(D, N, p), for j = 1, 2, k = -1, 0, 1 and p ≥ 1: this follows from Lemma 3.1 (using the fact that |E| > R): indeed the estimate of Lemma 2.1 hold for every λ ∈ C, since |E| > R.

Remark 4 . 1 .+ |E| 1/2 |λ| + 1 |λ| |r 2 -r 1 |

 4121 We also have proved thatsup z∈C ∂µ 2 (z, •) ∂z -∂µ 1 (z, •) ∂z L s(C) ≤ c(D, N, s, m) r 2r 1 L s (C) L s (C) + r 2r 1 L s (C) .

( 4

 4 .5) µ(z, λ) = 1 + µ -1 (z) λ + O 1 |λ| 2 , λ → ∞,for some function µ -1 (z). If we insert (4.5) into equation (1.1), for ψ(z, λ) =e - √ |E| 2 (z/λ+zλ) µ(z, λ), we obtain, letting λ → ∞, (4.6) v(z) = -2|E| 1/2 ∂µ -1 (z) ∂z , z ∈ C.More explicitly, we have, as a consequence of (2.6),µ(z, λ) -1 = 1 2πi C r(z, λ ′ ) λ ′λ µ(z, λ ′ )dλ ′ d λ′ .By Lebesgue's dominated convergence (using Lemma 2.1) we obtainµ -1 (z) = -1 2πi C r(z, λ)µ(z, λ)dλ d λ, , λ) + ∂µ(z, λ) ∂ z dλ d λ.

1 λ (r 2 -r 1 ) L 1 + 1 k=- 1 |λ| k |r 2 -

 121112 < p < 2, p such that 1/p = 1/p -1/2 and 1/p + 1/p ′ = 1/p + 1/p ′ = 1. From Lemmas 4.1, 2.2 and 3.1 we obtain|v 2 (z)v 1 (z)| ≤ c(D, N, m, p)|E| 1/2 |E| 1/2 λr 1 | L p (C) + r 2r 1 L p . Now Proposition 3.3 gives (4.8) v 2v 1 L ∞ (D) ≤ c(E, D, N, m)(log(3 + Φ 2 (E) -Φ 1 (E) -1 * )) -(m-2) ,which is (1.8). Estimates (1.9) and(1.11) are also obtained as a consequence of the above inequality and Proposition 3.3. This finishes the proof of Theorem 1.1.