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STABILITY ESTIMATES FOR AN INVERSE PROBLEM
FOR THE SCHRÖDINGER EQUATION AT NEGATIVE

ENERGY IN TWO DIMENSIONS

MATTEO SANTACESARIA

Abstract. We study the inverse problem of determining a real-valued

potential in the two-dimensional Schrödinger equation at negative en-

ergy from the Dirichlet-to-Neumann map. It is known that the problem

is ill-posed and a stability estimate of logarithmic type holds. In this

paper we prove three new stability estimates. The main feature of the

first one is that the stability increases exponentially with respect to the

smoothness of the potential, in a sense to be made precise. The others

show how the first estimate depends on the energy, for low and high

energies (in modulus). In particular it is found that for high energies

the stability estimate changes, in some sense, from logarithmic type to

Lipschitz type: in this sense the ill-posedness of the problem decreases

when increasing the energy (in modulus).

1. Introduction

The problem of the recovery of a potential in the Schrödinger equation

from boundary measurements, the Dirichlet-to-Neumann map, has been

studied since the 1980s, namely in connection with Calderón’s inverse con-

ductivity problem. The aim of this paper is to give new insights about its

stability issues.

It is well known that the problem is ill-posed: Alessandrini [1] proved that

a logarithmic stability holds and Mandache [20] showed that it was optimal,

in some sense. Nevertheless, Mandache’s result provided also the information

that stability could be increased in a way depending on the smoothness

of potentials. Optimal stability estimates, with respect to smoothness of

potentials, were indeed recently obtained in [27] and [31] in dimensions d ≥ 3

and d = 2, respectively (at zero energy). However, even for smooth potentials

the problem remains ill-posed.

It was observed that one way to increase stability is to modify another

factor in the equation: the energy. Indeed, at high energies the ill-posedness

diminishes considerably: this motivated some rapidly converging approxi-

mation algorithms in two and three dimensions [24], [26], [29] and stability

estimates of Lipschitz-logarithmic type explicitly depending on the energy

in three dimensions [16].
1
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In this paper we continue the work started in [31], at zero energy (the

Calderón problem), and give new stability estimates depending on the smooth-

ness of potentials and the energy. We restricted ourself to the negative energy

case, for the simplicity of the proofs. Results for the positive energy case are

indeed similar in many respects and will be published in a subsequent paper.

We consider the Schrödinger equation at fixed energy E,

(1.1) (−∆+ v)ψ = Eψ on D, E ∈ R,

where D is a open bounded domain in R
2 and v ∈ L∞(D) (we will refer to

v as a potential). Under the assumption that

(1.2) 0 is not a Dirichlet eigenvalue for the operator −∆+ v − E in D,

we can define the Dirichlet-to-Neumann operator Φ(E) : H1/2(∂D) → H−1/2(∂D),

corresponing to the potential v, as follows:

(1.3) Φ(E)f =
∂u

∂ν

∣

∣

∣

∣

∂D

,

where f ∈ H1/2(∂D), ν is the outer normal of ∂D, and u is the H1(D)-

solution of the Dirichlet problem

(1.4) (−∆+ v)u = Eu on D, u|∂D = f.

The following inverse problem arises from this construction.

Problem 1. Given Φ(E) for a fixed E ∈ R, find v on D.

This problem can be considered as the Gel’fand inverse boundary value

problem for the two-dimensional Schrödinger equation at fixed energy (see

[11], [22]). At zero energy this problem can be seen also as a generalization

of the Calderón problem of the electrical impedance tomography (see [7],

[22]). In addition, the history of inverse problems for the two-dimensional

Schrödinger equation at fixed energy goes back to [9] (see also [23, 12] and

reference therein). Problem 1 can also be considered as an example of ill-

posed problem: see [18], [5] for an introduction to this theory.

Note that this problem is not overdetermined, in the sense that we consider

the reconstruction of a function v of two variables from inverse problem data

dependent on two variables.

In this paper we study interior stability estimates, i.e. we want to prove

that given two Dirichlet-to-Neumann operators Φ1(E) and Φ2(E), corre-

sponding to potentials v1 and v2 on D, we have that

‖v1 − v2‖L∞(D) ≤ ω
(

‖Φ1(E)− Φ2(E)‖H1/2(∂D)→H−1/2(∂D)

)

,
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where the function ω(t) → 0 as fast as possible as t→ 0 at any fixed E. The

explicit dependence of ω on E is analysed as well.

There is a wide literature on the Gel’fand inverse problem at fixed energy

(i.e. Problem 1 in multidimensions). In the case of complex-valued potentials

the global injectivity of the map v → Φ was firstly proved in [22] for D ⊂
R
d with d ≥ 3 and in [6] for d = 2 with v ∈ Lp: in particular, these

results were obtained by the use of global reconstructions developed in the

same papers. A global stability estimate for Problem 1 for d ≥ 3 was first

found by Alessandrini in [1]; a principal improvement of this result was given

recently in [27]. In the two-dimensional case the first global stability estimate

was given in [28]. Note that for the Calderón problem (of the electrical

impedance tomography) in its initial formulation the global uniqueness was

firstly proved in [32] for d ≥ 3 and in [21] for d = 2. In addition, for the

case of piecewise constant or piecewise real analytic conductivity the first

uniqueness results for the Calderón problem in dimension d ≥ 2 were given

in [8] and [17]. In the case of piecewise constant conductivities a Lipschitz

stability estimate was proved in [2] (see [30] for additional studies in this

direction).

Most stability results for the Calderón problem in two dimensions have

been formulated with the goal of proving stability estimates using the least

regular conductivities possible (see [19], [4]). Instead, we have tried to ad-

dress different questions: how the estimates vary with respect to the smooth-

ness of the potentials and the energy.

The results, detailed below, constitute also a progress in the non-smooth

case: they indicate stability dependence of the smooth part of a singular

potential with respect to boundary value data.

We will assume for simplicity that

D is an open bounded domain in R
2, ∂D ∈ C2,

v ∈Wm,1(R2) for some m > 2, v̄ = v, supp v ⊂ D,
(1.5)

where

Wm,1(R2) = {v : ∂Jv ∈ L1(R2), |J | ≤ m}, m ∈ N ∪ {0},(1.6)

J ∈ (N ∪ {0})2, |J | = J1 + J2, ∂Jv(x) =
∂|J |v(x)

∂xJ11 ∂x
J2
2

.

Let

‖v‖m,1 = max
|J |≤m

‖∂Jv‖L1(R2).

We will need the following regularity condition:

(1.7) |E| > E1,
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where E1 = E1(‖v‖m,1,D). This condition implies, in particular, that the

Faddeev eigenfunctions are well-defined on the entire fixed-energy surface in

the spectral parameter.

Theorem 1.1. Let the conditions (1.2), (1.5), (1.7) hold for the potentials

v1, v2, where D is fixed, and let Φ1(E) , Φ2(E) be the corresponding Dirichlet-

to-Neumann operators at fixed negative energy E < 0. Let ‖vj‖m,1 ≤ N ,

j = 1, 2, for some N > 0. Then there exists a constant c1 = c1(E,D,N,m)

such that

(1.8) ‖v2 − v1‖L∞(D) ≤ c1(log(3 + ‖Φ2(E)− Φ1(E)‖−1
∗ ))−α,

where α = m− 2 and ‖Φ2 − Φ1‖∗ = ‖Φ2 − Φ1‖H1/2(∂D)→H−1/2(∂D).

Moreover, there exists a constant c2 = c2(D,N,m, p) such that for any

0 < κ < 1/(l + 2), where l = diam(D), we have

‖v2 − v1‖L∞(D) ≤ c2

[

(

|E|1/2 + κ log(3 + δ−1)
)−(m−2)

(1.9)

+ δ(3 + δ−1)κ(l+2)e|E|1/2(l+3)

]

,

where δ = ‖Φ2(E)− Φ1(E)‖∗.
In addition, there exists a constant c3 = c3(D,N,m, p) such that for E, δ

which satisfy

(1.10) |E|1/2 > log(3 + δ−1), |E| > 1,

we have

‖v2 − v1‖L∞(D) ≤ c3

[

|E|−(m−2)/2 log(3 + δ−1)−(m−2) + δe|E|(l+3)

]

.(1.11)

The novelty of estimate (1.8), with respect to [28], is that, asm→ +∞, we

have α → +∞. Moreover, under the assumption of Theorem 1.1, according

to instability estimates of Mandache [20] and Isaev [14], our result is almost

optimal. To be more precise, it was proved that stability estimate (1.8)

cannot hold for α > 2m for real-valued potentials and α > m for complex-

valued potentials. Indeed, our estimates are still valid for complex-valued

potentials, if |E| is sufficiently large with respect to ‖v‖C(D̄).

In addition, estimate (1.8) extends the result obtained in [31] for the same

problem at zero energy. In dimension d ≥ 3 a global stability estimate similar

to (1.8) was proved in [27], at zero energy.

As regards (1.9) and (1.11), their main feature is the explicit dependence

on the energy E. These estimates consist each one of two parts, the first

logarithmic and the second Hölder or Lipschitz; when |E| increases, the

logarithmic part decreases and the Hölder/Lipschitz part becomes dominant.
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These estimates, namely (1.11), are coherent with the approximate re-

construction algorithm developed in [24] and [29] at positive energy. In fact,

inequalities like (1.8), (1.9) and (1.11) should be valid also for the Schrödinger

equation at positive energy.

Note that, for Problem 1 in three dimensions, global energy-dependent

stability estimates changing from logarithmic type to Lipschitz type for high

energies were given recently in [16]. However these estimates are given in

the L2(D) norm and without any dependence on the smoothness of the

potentials.

The proof of Theorem 1.1 follows the scheme of [31] and it is based on the

same ∂̄ techniques. The map Φ(E) → v(x) is considered as the composition

of Φ(E) → r(λ) and r(λ) → v(x), where r(λ) is a complex valued function,

closely related to the so-called generalised scattering amplitude (see Section

2 for details).

The stability of Φ(E) → r(λ) – previously known only for E = 0 – relies

on an identity of [25] (based in particular on [1]), and estimates on r(λ) for

λ near 0 and ∞. The estimate is of logarithmic type, with respect to Φ (at

fixed E): it is proved in section 3. Note that the results of this section are

valid also for positive energy.

The stability of r(λ) → v(x) is of Hölder type and follows the same ar-

guments as in [31, Section 4]. The composition of the two above-mentioned

maps gives the result of Theorem 1.1, as showed in Section 4.

Remark 1.1. We point out another possible approach to obtain inequality

(1.8). The approach is based on the following observation (which follows from

[13, Basic Lemma]): for potentials v satisfying the assumptions of Theorem

1.1 we have that v − E is of conductivity type, i.e. there exists a positive

real-valued function ψ0 ∈ L∞(D) bounded from below such that

(1.12) v − E =
∆ψ0

ψ0
.

Thus Problem 1 at fixed negative energy is reduced to the the same problem

at zero energy for the conductivity-type potential ∆ψ0

ψ0
. It is then possible to

apply the result of [31] and find the same stability estimate.

Remark 1.2. In a similar way as in [15], the stability estimates of Theorem

1.1 can be extended to the case when we do not assume that condition

(1.2) is fulfilled and consider the Cauchy data set instead of the Dirichlet-

to-Neumann map Φ(E).

This work was fulfilled in the framework of research carried out under the

supervision of R.G. Novikov.
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2. Preliminaries

We recall the definition of the Faddeev eigenfunctions ψ(x, k) of equation

(1.1), for x = (x1, x2) ∈ R
2, k = (k1, k2) ∈ ΣE ⊂ C

2, ΣE = {k ∈ C
2 : k2 =

k21 +k
2
2 = E} for E 6= 0 (see [10], [23], [12]). We first extend v ≡ 0 on R

2 \D
and define ψ(x, k) as the solution of the following integral equation:

ψ(x, k) = eikx +

∫

y∈R2

G(x− y, k)v(y)ψ(y, k)dy,(2.1)

G(x, k) = g(x, k)eikx,(2.2)

g(x, k) = −
(

1

2π

)2 ∫

ξ∈R2

eiξx

ξ2 + 2kξ
dξ,(2.3)

where x ∈ R
2, k ∈ ΣE \ R2. It is convenient to write (2.1) in the following

form

(2.4) µ(x, k) = 1 +

∫

y∈R2

g(x− y, k)v(y)µ(y, k)dy,

where µ(x, k)eikx = ψ(x, k).

We define EE ⊂ ΣE \R2 the set of exceptional points of integral equation

(2.4): k ∈ ΣE \ (EE ∪ R
2) if and only if equation (2.4) is uniquely solvable

in L∞(R2).

Remark 2.1. From [24, Proposition 1.1] we have that there exists E0 =

E0(‖v‖m,1,D) such that for |E| ≥ E0(‖v‖m,1,D) there are no exceptional

points for equation (2.4), i.e. EE = ∅: thus the Faddeev eigenfunctions exist

(unique) for all k ∈ ΣE \ R2.

Following [13], [23], we make the following change of variables

z = x1 + ix2, λ =
k1 + ik2√

E
,

and write ψ, µ as functions of these new variables. For k ∈ ΣE \ (EE ∪ R
2)

we can define, for the corresponding λ, the following generalised scattering

amplitude:

b(λ,E) =
1

(2π)2

∫

C

exp

[

i

2

√
E

(

1 + (sgnE)
1

λλ̄

)

(2.5)

×
(

(sgnE)zλ̄+ λz̄
)

]

v(z)µ(z, λ)dRez dImz.

This function plays an important role in the inverse problem because of the

following ∂̄-equation, which holds when v is real-valued (see [23] for more

details):

(2.6)
∂

∂λ̄
µ(z, λ) = r(z, λ)µ(z, λ),
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for λ not an exceptional point (i.e. k(λ) ∈ ΣE \ (EE ∪ R
2)), where

r(z, λ) = r(λ) exp

[

i

2

√
E

(

1 + (sgnE)
1

λλ̄

)

(

(sgnE)zλ̄ + λz̄
)

]

,(2.7)

r(λ) =
π

λ̄
sgn(λλ̄− 1)b(λ,E).(2.8)

We recall that if v ∈Wm,1(R2) with supp v ⊂ D, then ‖v̂‖m < +∞, where

v̂(p) = (2π)−2

∫

R2

eipxv(x)dx, p ∈ C
2,(2.9)

‖u‖m = sup
p∈R2

|(1 + |p|2)m/2u(p)|,(2.10)

for a test function u.

The following lemma is a variation of a result in [24]:

Lemma 2.1. Let the conditions (1.5), (1.7) hold for a potentials v and let

E ∈ R \ {0}. Then there exists an R = R(m, ‖v̂‖m) > 1, such that

(2.11) |b(λ,E)| ≤ 2‖v̂‖m
(

1 + |E| (|λ|+ sgn(E)/|λ|)2
)−m/2

,

for |λ| > 2R
|E|1/2 and |λ| < |E|1/2

2R .

Proof. We consider the function H(k, p) defined as

(2.12) H(k, p) =
1

(2π)2

∫

R2

ei(p−k)xv(x)ψ(x, k)dx,

for

(2.13) k = k(λ) =

(√
E

2
(λ+ λ−1),

i
√
E

2
(λ−1 − λ)

)

,

λ ∈ C \ {0}, Im k(λ) 6= 0, p ∈ R
2 and ψ(x, k) as defined at the beginning

of this section. Since EE = ∅ (see Remark 2.1), the function H(k(λ), k(λ) +

k(λ)) = b(λ,E) is defined for every λ ∈ C \ {0}. Then, by [24, Proposition

1.1, Corollary 1.1] (see also Remark 2.2) we have

(2.14) |H(k, p)| ≤ 2‖v̂‖m(1 + p2)−m/2, for |k| > R(m, ‖v̂‖m),

where |k| = (|Rek|2 + |Imk|2)1/2. This finishes the proof of Lemma 2.1. �

At several points in the paper we will use [24, Lemma 2.1], which we

restate in an adapted form.
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Lemma 2.2. Let the conditions (1.5), (1.7) hold for a potentials v. Let

µ(x, k) be the associated Faddeev functions. Then, for any 0 < σ < 1, we

have

|µ(x, k)− 1|+
∣

∣

∣

∣

∂µ(x, k)

∂x1

∣

∣

∣

∣

+

∣

∣

∣

∣

∂µ(x, k)

∂x2

∣

∣

∣

∣

≤ |k|−σc(m,σ)‖v̂‖m,(2.15)

for k ∈ C
2 such that k2 < 0 and |k| ≥ R, where R is defined in Lemma 2.1.

Throughout all the paper c(α, β, . . .) is a positive constant depending on

parameters α, β, . . .

Remark 2.2. Even if [24, Proposition 1.1, Corollary 1.1, Lemma 2.1] were

proved for E > 0, they are still valid in the negative energy case (and zero

energy case).

We also restate [3, Lemma 2.6], which will be useful in section 4.

Lemma 2.3 ([3]). Let q1 ∈ Ls1(C)∩Ls2(C), 1 < s1 < 2 < s2 <∞ and q2 ∈
Ls(C), 1 < s < 2. Assume u is a function in Ls̃(C), with 1/s̃ = 1/s − 1/2,

which satisfies

(2.16)
∂u(λ)

∂λ̄
= q1(λ)ū(λ) + q2(λ), λ ∈ C.

Then there exists c = c(s, s1, s2) > 0 such that

(2.17) ‖u‖Ls̃ ≤ c‖q2‖Ls exp(c(‖q1‖Ls1 + ‖q1‖Ls2 )).

We will make also use of the well-known Hölder’s inequality, which we

recall in a special case: for f ∈ Lp(C), g ∈ Lq(C) such that 1 ≤ p, q ≤ ∞,

1 ≤ r <∞, 1/p+ 1/q = 1/r, we have

(2.18) ‖fg‖Lr(C) ≤ ‖f‖Lp(C)‖g‖Lq(C).

3. From Φ(E) to r(λ)

Lemma 3.1. Let the conditions (1.5), (1.7) hold and take 0 < a1 < min
(

1, |E|1/2
2R

)

,

a2 > max
(

1, 2R
|E|1/2

)

, for E ∈ R \{0} and R as defined in Lemma 2.1. Then

for p ≥ 1 we have

∥

∥|λ|jr(λ)
∥

∥

Lp(|λ|<a1) ≤ c(p,m)‖v̂‖m|E|−m/2am−1+j+2/p
1 ,(3.1)

∥

∥|λ|jr(λ)
∥

∥

Lp(|λ|>a2) ≤ c(p,m)‖v̂‖m|E|−m/2a−m−1+j+2/p
2 ,(3.2)

where j = 1, 0,−1 and r was defined in (2.8).
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Proof. It is a corollary of Lemma 2.1. Indeed |r(λ)| = π|b(λ,E)|/|λ| and

‖|λ|jr‖pLp(|λ|<a1) ≤ c

( ‖v̂‖m
|E|m/2

)p ∫

t<a1

t1+(m−1+j)pdt

= c(p,m)

( ‖v̂‖m
|E|m/2

)p

a
(m−1+j)p+2
1 ,

which gives (3.1). The proof of (3.2) is analogous. �

Lemma 3.2. Let D ⊂ {x ∈ R
2 : |x| ≤ l}, E < 0, v1, v2 be two potentials

satisfying (1.2), (1.5), (1.7), Φ1(E),Φ2(E) the corresponding Dirichlet-to-

Neumann operator and b1, b2 the corresponding generalised scattering ampli-

tude. Let ‖vj‖m,1 ≤ N , j = 1, 2. Then we have

(3.3)

|b2(λ)− b1(λ)| ≤ c(D,N)e(l+1)
√

|E|(|λ|+1/|λ|)‖Φ2(E)−Φ1(E)‖∗, λ ∈ C \ {0}.

Proof. We have the following identity:

(3.4) b2(λ)−b1(λ) =
(

1

2π

)2 ∫

∂D
ψ1(x, k(λ))(Φ2(E)−Φ1(E))ψ2(x, k(λ))dx,

where ψi(x, k) are the Faddeev functions associated to the potential vi, i =

1, 2. This identity is a particular case of the one in [25, Theorem 1]: we refer

to that paper for a proof.

From this identity we obtain:

|b2(λ)− b1(λ)| ≤
1

(2π)2
‖ψ1(·, k)‖H1/2(∂D)‖Φ2(E) −Φ1(E)‖∗‖ψ2(·, k)‖H1/2(∂D).

(3.5)

Now, for p̃ > 2, using the trace theorem and Lemma 2.2 we get

‖ψj(·, k(λ))‖H1/2(∂D) ≤ c‖ψj(·, k(λ))‖W 1,p̃(D)

≤ c

√

|E|
2

l(|λ|+ 1/|λ|)e
√

|E|

2
l(|λ|+1/|λ|)‖µj(·, k(λ))‖W 1,p̃(D)

≤ c e

√
|E|

2
(l+1)(|λ|+1/|λ|)‖µj(·, k(λ))‖W 1,p̃(D) ≤ c(D,N,m)e

√
|E|

2
(l+1)(|λ|+1/|λ|),

for j = 1, 2. This, combined with (3.5), gives (3.3). �

Now we turn to the main result of the section.

Proposition 3.3. Let E < 0 be such that |E| ≥ E1 = max((2R)2, E0), where

R is defined in Lemma 2.1 and E0 in Remark 2.1, let v1, v2 be two potentials

satisfying (1.2), (1.5), (1.7), Φ1(E),Φ2(E) the corresponding Dirichlet-to-

Neumann operator and r1, r2 as defined in (2.8). Let ‖vk‖m,1 ≤ N , k = 1, 2.

Then for every p ≥ 1 there exists a constant θ1 = θ1(E,D,N,m, p) such that

(3.6) ‖|λ|j |r2 − r1|‖Lp(C) ≤ θ1 log(3 + δ−1)−(m−2),
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for j = −1, 0, 1, δ = ‖Φ2(E) − Φ1(E)‖∗. Moreover, there exists a constant

θ2 = θ2(D,N,m, p) such that for any 0 < κ < 1
l+2 , where l = diam(D), and

for |E| ≥ E1 we have

‖|λ|j |r2 − r1|‖Lp(C) ≤ θ2

[

|E|−1
(

|E|1/2 + κ log(3 + δ−1)
)−(m−2)

(3.7)

+
δ(3 + δ−1)κ(l+2)

|E|1/2p e|E|1/2(l+2)

]

, j = −1, 0, 1.

In addition, there exists a constant θ3 = θ3(D,N,m, p) such that for E, δ

which satisfy

(3.8) |E|1/2 > log(3 + δ−1),

we have

‖|λ|j |r2 − r1|‖Lp(C) ≤ θ3

[

|E|−m/2 log(3 + δ−1)−(m−2) +
δ

|E|1/2p e
|E|(l+2)

]

,

(3.9)

for j = −1, 0, 1.

Proof. Let choose 0 < a1 ≤ 1 ≤ a2 to be determined and let

(3.10) δ = ‖Φ2(E)− Φ1(E)‖∗.

We split down the left term of (3.6) as follows:

‖|λ|j |r2 − r1|‖Lp(C) ≤ ‖|λ|j |r2 − r1|‖Lp(|λ|<a1) + ‖|λ|j |r2 − r1|‖Lp(a1<|λ|<a2)

+ ‖|λ|j |r2 − r1|‖Lp(|λ|>a2).

From (3.1) and (3.2) we have

‖|λ|j |r2 − r1|‖Lp(|λ|<a1) ≤ c(N, p,m)|E|−m/2am−1+j+2/p
1 ,(3.11)

‖|λ|j |r2 − r1|‖Lp(|λ|>a2) ≤ c(N, p,m)|E|−m/2a−m−1+j+2/p
2 .(3.12)

From Lemma 3.2 and (3.10) we obtain, for j = −1, 0, 1,

(3.13)

‖|λ|j |r2−r1|‖Lp(a1<|λ|<a2) ≤ c(D,N, p)
δ

|E|1/2p
(

e(
√

|E|l+2)/a1 + e(
√

|E|l+2)a2
)

.

We now prove (3.6). Fix an energy E < 0 satisfying the hypothesis and

define

(3.14) a2 =
1

a1
= β log(3 + δ−1),

for 0 < β < 1/(l
√

|E| + 2). We choose δβ(E) < 1 such that for every

δ ≤ δβ(E), a2 > 1 (and so a1 < 1). Note that since E1 > (2R)2, the

estimates in Lemma 3.1 hold for a1 < 1 and a2 > 1.



STABILITY ESTIMATES IN 2D AT NEGATIVE ENERGY 11

The aim is to have (3.11), (3.12) of the order log(3 + δ−1)−(m−2). Indeed

we have, for every p ≥ 1 and δ ≤ δβ(E),

a
m−1+j+2/p
1 ≤ c(β) log(3 + δ−1)−(m−2), a

−m−1+j+2/p
2 ≤ c(β) log(3 + δ−1)−(m−2),

for j = −1, 0, 1. Thus, for δ ≤ δβ(E),

‖|λ|j |r2 − r1|‖Lp(C) ≤ c(D,N,m, p, β)

[

|E|−m/2 log(3 + δ−1)−(m−2)

+
δ

|E|1/2p (3 + δ−1)β(
√

|E|l+2)

]

.

Since by construction β(
√

|E|l + 2) < 1, we have that

δ

|E|1/2p (3 + δ−1)β(
√

|E|l+2) → 0 for δ → 0(3.15)

more rapidly than the other term, at fixed E. This gives

(3.16) ‖|λ|j |r2 − r1‖Lp(C) ≤ c(E,D,N,m, p, β)
(

log(3 + δ−1)
)−(m−2)

,

for δ ≤ δ̃β(E) (where δ̃β(E) is sufficiently small in order to estimate the term

in (3.15)). Estimate (3.16) for general δ (with modified constant) follows

from (3.16) for δ ≤ δ̃β(E) and the fact that ‖|λ|k|rj |‖Lp(D) < c(D,N, p), for

j = 1, 2, k = −1, 0, 1 and p ≥ 1: this follows from Lemma 3.1 (using the

fact that |E| > R): indeed the estimate of Lemma 2.1 hold for every λ ∈ C,

since |E| > R.

In order to prove (3.7) we define, in (3.11)-(3.13),

(3.17) a2 =
1

a1
= 1 +

κ log(3 + δ−1)

|E|1/2 ,

for any 0 < κ < 1
l+2 . Note that we have a2 > 1 and a1 < 1. Thus we find,

for every p ≥ 1, j = −1, 0, 1,

a
m−1+j+2/p
1 ≤ |E|(m−2)/2

(

|E|1/2 + κ log(3 + δ−1)
)m−2 ,

a
−m−1+j+2/p
2 ≤ |E|(m−2)/2

(

|E|1/2 + κ log(3 + δ−1)
)m−2 .

We have also that

e(
√

|E|l+2)/a1 + e(
√

|E|l+2)a2 ≤ 2e(l+2)(|E|1/2+κ log(3+δ−1))

= 2(3 + δ−1)κ(l+2)e(l+2)|E|1/2 .
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Repeating the same arguments as above we obtain, for δ > 0,

‖|λ|j |r2 − r1|‖Lp(C) ≤ c(D,N,m, p)

[

|E|−1
(

|E|1/2 + κ log(3 + δ−1)
)−(m−2)

+
δ(3 + δ−1)κ(l+2)

|E|1/2p e(l+2)|E|1/2
]

,

which proves estimate (3.7).

We pass to estimate (3.9). Take, in (3.11)-(3.13),

(3.18) a2 =
1

a1
= log(3 + δ−1).

Define δ̃ < 1 such that for δ ≤ δ̃ we have a2 > 1 (so a1 < 1). From our

assumption (3.8) we have that e(
√

|E|l+2)/a1 +e(
√

|E|l+2)a2 < 2e|E|(l+2). Then

we obtain, using the same arguments as above,

‖|λ|j |r2 − r1|‖Lp(C) ≤ c(D,N,m, p)

[

|E|−m/2 log(3 + δ−1)−(m−2) +
δ

|E|1/2p e
|E|(l+2)

]

,

for δ ≤ δ̃. To remove this last assumption we argue as for (3.6). This

completes the proof of Proposition 3.3. �

4. Proof of Theorem 1.1

We begin with a lemma which generalises [31, Proposition 4.2] to negative

energy.

Lemma 4.1. Let E < 0 be such that |E| ≥ E1, where E1 is defined in Propo-

sition 3.3; let v1, v2 be two potentials satisfying (1.5), (1.7), with ‖vj‖m,1 ≤
N , µ1(z, λ), µ2(z, λ) the corresponding Faddeev functions and r1, r2 as de-

fined in (2.8), (2.7). Let 1 < s < 2, and s̃ such that 1/s̃ = 1/s − 1/2.

Then

sup
z∈C

‖µ2(z, ·) − µ1(z, ·)‖Ls̃(C) ≤ c(D,N, s,m)‖r2 − r1‖Ls(C),(4.1)

sup
z∈C

∥

∥

∥

∥

∂µ2(z, ·)
∂z̄

− ∂µ1(z, ·)
∂z̄

∥

∥

∥

∥

Ls̃(C)

≤ c(D,N, s,m)

[

‖r2 − r1‖Ls(C)(4.2)

+ |E|1/2
(

∥

∥

∥

∥

(

|λ|+ 1

|λ|

)

|r2 − r1|
∥

∥

∥

∥

Ls(C)

+ ‖r2 − r1‖Ls(C)

)]

.

Proof. We begin with the proof of (4.1). Let

ν(z, λ) = µ2(z, λ)− µ1(z, λ).(4.3)
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From the ∂̄-equation (2.6) we deduce that ν satisfies the following non-

homogeneous ∂̄-equation:

∂

∂λ̄
ν(z, λ) = r1(z, λ)ν(z, λ) + (r2(z, λ) − r1(z, λ))µ2(z, λ),(4.4)

for λ ∈ C. Note that from Lemma 2.2 we have that ν(z, ·) ∈ Ls̃(C) for every

2 < s̃ ≤ ∞. In addition, from Lemma 2.1 (using the fact that |E| > R), we

have that ‖rj‖Lp(D) < c(D,N, p,m), for 1 < p < ∞, j = 1, 2. Then it is

possible to use Lemma 2.3 in order to obtain

‖ν(z, ·)‖Ls̃ ≤ c(D,N, s,m)
∥

∥

∥
µ2(z, λ)(r2(λ)− r1(λ))

∥

∥

∥

Ls(C)

≤ c(D,N, s,m) sup
z∈C

‖µ2(z, ·)‖L∞ ‖r2 − r1‖Ls(C)

≤ c(D,N, s,m) ‖r2 − r1‖Ls(C) ,

and the constant is independent from E for |E| > R, because of Lemma 2.2

and Lemma 2.1.

Now we pass to (4.2). To simplify notations we write, for z, λ ∈ C,

µjz(z, λ) =
∂µj(z, λ)

∂z
, µjz̄(z, λ) =

∂µj(z, λ)

∂z̄
, j = 1, 2.

From the ∂̄-equation (2.6) we have that µjz and µjz̄ satisfy the following

system of non-homogeneous ∂̄-equations, for j = 1, 2:

∂

∂λ̄
µjz(z, λ) = rj(z, λ)

(

µjz̄(z, λ) +

√

|E|
2

(

λ̄− 1

λ

)

µj(z, λ)

)

,

∂

∂λ̄
µjz̄(z, λ) = rj(z, λ)

(

µjz(z, λ) +

√

|E|
2

(

1

λ̄
− λ

)

µj(z, λ)

)

.

Define now µj±(z, λ) = µjz(z, λ)±µjz̄(z, λ), for j = 1, 2. Then they satisfy the

following two non-homogeneous ∂̄-equations:

∂

∂λ̄
µj±(z, λ) = rj(z, λ)

(

±µj±(z, λ) +
√

|E|
2

((

λ̄− 1

λ

)

±
(

1

λ̄
− λ

))

µj(z, λ)

)

.

Finally define τ±(z, λ) = µ2±(z, λ) − µ1±(z, λ). They satisfy the two non-

homogeneous ∂̄-equations below:

∂

∂λ̄
τ±(z, λ) =

[

±
(

r1(z, λ)τ±(z, λ) + (r2(z, λ) − r1(z, λ))µ2±(z, λ)
)

+

√

|E|
2

((

λ̄− 1

λ

)

±
(

1

λ̄
− λ

))

(

(r2(z, λ) − r1(z, λ))µ2(z, λ) + r1(z, λ)ν(z, λ)
)

]

,

where ν(z, λ) was defined in (4.3).
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Now remark that by Lemma 2.2 and regularity assumptions on the poten-

tials we have that µjz(z, ·), µjz̄(z, ·) ∈ Ls̃(C) ∩ L∞(C) for any s̃ > 2, j = 1, 2

(and their norms are bounded by a constant C(D,N, p,m) thanks to Lemma

2.2). This, in particular, yields τ±(z, ·) ∈ Ls̃(C). These arguments, along

with the above remarks on the Lp boundedness of rj , make possible to use

Lemma 2.3, which gives

‖τ±(z, ·)‖Ls̃(C)

≤ c(D,N, s,m)

[

‖r2 − r1‖Ls(C)‖µ2±(z, ·)‖L∞(C)

+
√

|E|
(

∥

∥

∥

∥

(

|λ|+ 1

|λ|

)

|r2 − r1|
∥

∥

∥

∥

Ls(C)

‖µ2(z, ·)‖L∞(C)

+ ‖(|λ| + |λ|−1)r1‖L2(C)‖ν(z, ·)‖Ls̃(C)

)]

≤ c(D,N, s,m)

[

‖r2 − r1‖Ls(C) +
√

|E|
(

∥

∥

∥

∥

(

|λ|+ 1

|λ|

)

|r2 − r1|
∥

∥

∥

∥

Ls(C)

+ ‖|λ||r2 − r1|‖Ls(C)

)]

,

where we used Hölder’s inequality (2.18) (since 1/s = 1/2+1/s̃) and estimate

(4.1). Again, the constants are independent from E since |E| > R.

The proof of (4.2) now follows from this last inequality and the fact that

µ2z̄ − µ1z̄ =
1
2 (τ+ − τ−). �

Remark 4.1. We also have proved that

sup
z∈C

∥

∥

∥

∥

∂µ2(z, ·)
∂z

− ∂µ1(z, ·)
∂z

∥

∥

∥

∥

Ls̃(C)

≤ c(D,N, s,m)

[

‖r2 − r1‖Ls(C)

+ |E|1/2
(

∥

∥

∥

∥

(

|λ|+ 1

|λ|

)

|r2 − r1|
∥

∥

∥

∥

Ls(C)

+ ‖r2 − r1‖Ls(C)

)]

.

Proof of Theorem 1.1. We recall the derivation of an explicit formula for the

potential, taken from [23].

Let v(z) be a potential which satisfies the hypothesis of Theorem 1.1

and µ(z, λ) the corresponding Faddeev functions. Since µ(z, λ) satisfies the

estimates of Lemma 2.2, the ∂̄-equation (2.6) and b(λ,E) decreases at infinity

like in Lemma 2.1, it is possible to write the following development:

(4.5) µ(z, λ) = 1 +
µ−1(z)

λ
+O

(

1

|λ|2
)

, λ→ ∞,
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for some function µ−1(z). If we insert (4.5) into equation (1.1), for ψ(z, λ) =

e−
√

|E|

2
(z/λ+z̄λ)µ(z, λ), we obtain, letting λ→ ∞,

(4.6) v(z) = −2|E|1/2 ∂µ−1(z)

∂z
, z ∈ C.

More explicitly, we have, as a consequence of (2.6),

µ(z, λ)− 1 =
1

2πi

∫

C

r(z, λ′)
λ′ − λ

µ(z, λ′)dλ′ dλ̄′.

By Lebesgue’s dominated convergence (using Lemma 2.1) we obtain

µ−1(z) = − 1

2πi

∫

C

r(z, λ)µ(z, λ)dλ dλ̄,

and the explicit formula

(4.7)

v(z) =
|E|1/2
πi

∫

C

r(z, λ)

(

|E|1/2
2

(

λ̄− 1

λ

)

µ(z, λ) +

(

∂µ(z, λ)

∂z̄

)

)

dλ dλ̄.

Formula (4.7) for v1 and v2 yields

v2(z)− v1(z) =
|E|1/2
πi

∫

C

[

|E|1/2
2

(

λ̄− 1

λ

)

(

(r2 − r1)µ2 + r1(µ1 − µ2)
)

+ (r2 − r1)

(

∂µ2
∂z̄

)

+ r1

(

∂µ2
∂z̄

− ∂µ1
∂z̄

)

]

dλ dλ̄.

Then, using several times Hölder’s inequality (2.18), we find

|v2(z)− v1(z)| ≤
|E|1/2
π

[

|E|1/2
2

(

∥

∥

∥

∥

(

λ̄− 1

λ

)

(r2 − r1)

∥

∥

∥

∥

L1

‖µ2(z, ·)‖L∞

+

∥

∥

∥

∥

(

λ̄− 1

λ

)

r1

∥

∥

∥

∥

Lp̃′
‖µ2(z, ·) − µ1(z, ·)‖Lp̃

)

+ ‖r2 − r1‖Lp

∥

∥

∥

∥

∂µ2(z, ·)
∂z̄

∥

∥

∥

∥

Lp′

+ ‖r1‖Lp̃′

∥

∥

∥

∥

∂µ2(z, ·)
∂z̄

− ∂µ1(z, ·)
∂z̄

∥

∥

∥

∥

Lp̃

]

,

for 1 < p < 2, p̃ such that 1/p̃ = 1/p− 1/2 and 1/p+1/p′ = 1/p̃+1/p̃′ = 1.

From Lemmas 4.1, 2.2 and 3.1 we obtain

|v2(z)− v1(z)| ≤ c(D,N,m, p)|E|1/2
[

|E|1/2
(

∥

∥

∥

∥

(

λ̄− 1

λ

)

(r2 − r1)

∥

∥

∥

∥

L1

+
1
∑

k=−1

‖|λ|k|r2 − r1|‖Lp(C)

)

+ ‖r2 − r1‖Lp

]

.
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Now Proposition 3.3 gives

(4.8) ‖v2−v1‖L∞(D) ≤ c(E,D,N,m)(log(3+‖Φ2(E)−Φ1(E)‖−1
∗ ))−(m−2),

which is (1.8). Estimates (1.9) and (1.11) are also obtained as a consequence

of the above inequality and Proposition 3.3. This finishes the proof of The-

orem 1.1. �
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