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ABSTRACT

Parameter space exploration is a key issue in agent-based
modeling. Many approaches were proposed concerning the
optimization of a specific output of the model, but rare are
the ones that aim at making the map of the parameter space.
Yet, this map can bring very important information about 3
model, Tn this paper, we propose a new approach dedicated
to this map making. Our approach is based on a reactive
dichotomy of the parameter space following a criterion and
on the use of random decompositions, We present two
experiments that show that our approach allows, with the
same number of simulations, to make a more relevant map
than a uniform splitting,

INTRODUCTION

The agent-based modeling is now widely used to stady
complex systems. Its ability to represent several levels of
interaction along a detailed environment representation
favored such a development, There are nowadays numerous
tools to help modelers to develop agent-based models.
However analyzing such models can be very complex,
Indeed, agent-based models can bring into plays numerous
parameters that can each have an impact on the global
dynamic of the system. Moreover, the stochastic nature of the
agent-based models makes their analysis even more difficult,

The problem of the parameter space exploration is a classic
problem in simulations. If numerous approaches were
already proposed {e.g., (Gramacy et al, 2004; Lee et al.
2006)), very few specifically concern the agent-based
simulations. Indeed, agent-based models are generally
characterized by a large number of parameters that have a
deep impact on the global dynamics of the system: a small
modification of the value of cne single parameter can lead to
a radical modification of the dynamics of the whole system.
Moreover, carrying out a simulation of an agent-based model
is often very time-consuming, Tt is thus very important to
limit as much as possible the number of simulations carried
out.
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Most of the existing approaches dedicated to agent-based
models search to find the parameter values that allow to
optimize a given fitness function (e.g.,, (Brueckner and
Parunak 2003; Rogers and Tessin 2004, Calvez and Hutzler
2007)). While these studies are important for some
application contexts (e.g., calibration of a model), they
usually give rather few information on the system dynamics.
In order to get a better view of the system dynamics, we
propose to analyze the whole parameter space and not only
to focus on values that optimizes a given output. The goal is
to give the best approximation of the studied outputs
according to the whole parameter space, i.e., to make a map
of the model parameter space, while carrying out as few
simulations as possible.

The mostly used approach to build such a map consists in
splitting the parameter space into a uniform grid and to
compute for each cell a representative output value. The
problem of this approach comes from the uniform size of the
cells: whatever the interest of the atea covered by the cell, its
size will remain the same. Thus, there is a risk of too many
simulations that will be carried out in uninteresting areas
(typically, areas where there are no variations of the output
values), and too few in interesting ones (areas with important
variations of the output values). Another problem comes
from the size chosen for the cells: if too big, some important
properties of the system dynamic can be missed; if too small,
the computation times will be very high.

In order to tackle this issue, we propose a new approach
based on a reactive dichotomy of the parameter space and on
the use of random splitting, The next section describes the
approach.

APPROACH PROPOSED

As mentioned in the previous section, our parameter space
exploration approach is based on a reactive decomposition of
the parameter space. It is based on the algorithm proposed in
{(Munos and Moore 2002), which is dedicated to the state
abstraction for continuous time and space, deterministic
dynamic control problems (e.g., reinforcement learning).

The principle of the approach is to start from a rough
uniform grid and to split, in an iterative way, the most
“promising” cells into sub-cells until a stopping criterion is
checked. The choice of the most “promising” cells is made
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Thus, for each cell, the criterion value will be computed for
each direction, but only the direction that maximizes the
criterion value will be kept.

Once each cell characterized by a criterion value and a
direction, we propose to select the K cells that maximize the
criterion value, The main interest to select K cells at the same
iteration instead of just one is to allow the distribution of
simulations. Indeed, each splitting can be computed
independently on different processors or computers to
minimize the computational time of the parameter space
exploration process. Several frameworks specially dedicated
to this task were proposed (Rioux et al. 2008; Abramson et
al. 2009; Lorca et al. 2011).

Remarks that other selection methods such as selection by
roulette, by tournament (see (Mitchell, 1996) for a
description), and others, can be used at this step of our
approach. The conclusion of the paper comes back on this
point.

The K cells selected are then split in two sub-cells of same
size along the direction chosen. Figure 3 shows the three
possible decompositions for a cell of dimension 3.

7

Decomposition

Decomposition

Decompaosition
along x alongy alongz

Figure 3: Possible decompositions for a cell of dimension 3
(%.y,2)

Drawing of random points and splitting of the cells
containing these points.

The initial decomposition of the model parameter space into
a grid can have a deep impact on the final result. As the cell
selection method we propose in the previous section is purely
greedy, i.e., it selects only the cells with the highest criterion
value, a risk is to miss very local behavior of the system
dynamic. Figure 4 illustrates this problem: in this example,
cell 3 that hides a very interesting local phenomenon has
little chance to be selected as the variation of the output
value between the points P> and P; is very small.

A solution to this issue consists in using a more precise initial
decomposition (with smaller cells), but it will increase the
number of simulations that will be carried out during the
initializing and thus decrease the number of simulations
dedicated to the next stages of the exploration process.

Figure 4: Example of initial decomposition for a parameter
space of dimension 1 (x)

Another solution that we propose to apply in our approach is
to draw random points in the parameter space to carry out
random splitting of the cells.

Thus, R points will be drawn in the model parameter space.
For each point, the cell containing this point will be split
according to this point in two sub-cells along a random
direction. Figure 5 shows the three possible decompositions
for a cell of dimension 3 according to a given point.

z
! °
X
y. 3
@ L J .
Decomposition Decomposition Decompaosition
along x alongy along z

Figure 5: Possible random decompositions for a cell of
dimension 3 (x,y,z)

R is a parameter of our approach. If R = 0, the approach will
be fully greedy. A high value of R will favor the
diversification of the search process over its intensification
on the “interesting” cells detected.

The next section presents two experiments we carried out to
evaluate our approach.

EXPERIMENTS

In order to test our approach, we propose two case-studies.
Each of these case-studies consists in comparing the results
obtained with a uniform decomposition of the model
parameter space into a grid and with our approach for the
same number of simulations. The goal is to evaluate the
representativeness of the map built with these two
approaches.

Our approach was implemented within the GAMA
simulation platform (Taillandier et al. 2010; GAMA 2011).
This platform provides a complete modelling and simulation
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» evaporation rate € [0,1]: evaporatien rate of the
pheromone

We propose to study the influence of the diffusion and
evaporation rates on the time necessary for the ant colony to
carry all the food in the nest. We then make the map of the
function Time(diffusion_rate, evaporation_rate), As the
model is stochastic (the movement of the ants, when no
pheromone is detected, is random), we propose to carry 5
simulations and to compute the average time obtained to
determine the global fime of a set of parameter values.

Figure 7a shows the precise map obtained for the ant model.
The darker, the higher is the time necessary to carry all the
food to the nest. Figure 7b shows the map obtained with a
uniform decomposition (grid 10 x 10, thus 121 » 3
simulations) and Figure 7¢ with our approach (we used the
“Average corner-value difference” criterion, an initial grid of
3x3, K=5,R=1,58=121), Asshown by the figures, our
approach allowed to make a more relevant map than the
uniform decomposition, Indeed, the map made by our
approach presents a far more precise frontier between the
black and the gray areas in the right part of the map.

CONCLUSION AND FUTURE WORK

In this paper, we proposed a new approach to make the map
of an agent-based model parameter space. Our approach is
based on a reactive decomposition of the parameter space.
We presented two case studies that show that our approach
can allow to obtain, with the same number of simulations
carried out, a more representative map than with a uniform
decomposition.

The first experiments cartied out concerned simple models.
A first perspective is to apply our approach in the context of
real models integrating a great number of parameters.

In the experiments, we used a simple criterion for the choice
of the most “promising” cells. We would like to study and
test more complex criteria, in particular criteria that take into
account expert knowledge. Indeed, domain-experts that study
a complex system often have knowledge about its dynamic
and the impact of the different parameters, We propose to
use this knowledge to define more relevant criteria.

As mentioned in a previous section, we would like to test
other cell selection strategies, In particular, strategies that are
not purely greedy. We can base these strategies on classic
strategies used by optimization algorithms such as Simulated
Annealing (Kirkpatrick 1983),

At last, we would like to work on the formalization of the
output function. Indeed, in some context, the formalization of
what the modeller wants to observe can be complex: for
example, formalising the concept of “line of ants” in the ant
foraging model is not straightforward, Thus, we propose to
develop a new method based on the work we carried out

concerning the definition of objective functions for
optimisation problems (Taillandier and Gaffuri 2009). This
approach is based on man-machine dialogue: several
solutions (that can be simulation results) are presented to the
user and are commented by himvher. The analysis of the
comuments allows to learn a function that translates the user
needs,
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