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ABSTRACT 

 
Parameter space exploration is a key issue in agent-based 

modeling. Many approaches were proposed concerning the 

optimization of a specific output of the model, but rare are 

the ones that aim at making the map of the parameter space. 

Yet, this map can bring very important information about a 

model. In this paper, we propose a new approach dedicated 

to this map making. Our approach is based on a reactive 

dichotomy of the parameter space following a criterion and 

on the use of random decompositions. We present two 

experiments that show that our approach allows, with the 

same number of simulations, to make a more relevant map 

than a uniform splitting. 

 
INTRODUCTION 

 

The agent-based modeling is now widely used to study 

complex systems. Its ability to represent several levels of 

interaction along a detailed environment representation 

favored such a development. There are nowadays numerous 

tools to help modelers to develop agent-based models. 

However analyzing such models can be very complex. 

Indeed, agent-based models can bring into plays numerous 

parameters that can each have an impact on the global 

dynamic of the system. Moreover, the stochastic nature of the 

agent-based models makes their analysis even more difficult. 

 

The problem of the parameter space exploration is a classic 

problem in simulations. If numerous approaches were 

already proposed (e.g., (Gramacy et al. 2004; Lee et al. 

2006)), very few specifically concern the agent-based 

simulations. Indeed, agent-based models are generally 

characterized by a large number of parameters that have a 

deep impact on the global dynamics of the system: a small 

modification of the value of one single parameter can lead to 

a radical modification of the dynamics of the whole system. 

Moreover, carrying out a simulation of an agent-based model 

is often very time-consuming. It is thus very important to 

limit as much as possible the number of simulations carried 

out.  

 

Most of the existing approaches dedicated to agent-based 

models search to find the parameter values that allow to 

optimize a given fitness function (e.g., (Brueckner and 

Parunak 2003; Rogers and Tessin 2004; Calvez and Hutzler 

2007)). While these studies are important for some 

application contexts (e.g., calibration of a model), they 

usually give rather few information on the system dynamics. 

In order to get a better view of the system dynamics, we 

propose to analyze the whole parameter space and not only 

to focus on values that optimizes a given output. The goal is 

to give the best approximation of the studied outputs 

according to the whole parameter space, i.e., to make a map 

of the model parameter space, while carrying out as few 

simulations as possible.  

 

The mostly used approach to build such a map consists in 

splitting the parameter space into a uniform grid and to 

compute for each cell a representative output value. The 

problem of this approach comes from the uniform size of the 

cells: whatever the interest of the area covered by the cell, its 

size will remain the same. Thus, there is a risk of too many 

simulations that will be carried out in uninteresting areas 

(typically, areas where there are no variations of the output 

values), and too few in interesting ones (areas with important 

variations of the output values). Another problem comes 

from the size chosen for the cells: if too big, some important 

properties of the system dynamic can be missed; if too small, 

the computation times will be very high.  

 

In order to tackle this issue, we propose a new approach 

based on a reactive dichotomy of the parameter space and on 

the use of random splitting. The next section describes the 

approach.  

 

APPROACH PROPOSED 

 

As mentioned in the previous section, our parameter space 

exploration approach is based on a reactive decomposition of 

the parameter space. It is based on the algorithm proposed in 

(Munos and Moore 2002), which is dedicated to the state 

abstraction for continuous time and space, deterministic 

dynamic control problems (e.g., reinforcement learning). 

 

The principle of the approach is to start from a rough 

uniform grid and to split, in an iterative way, the most 

“promising” cells into sub-cells until a stopping criterion is 

checked. The choice of the most “promising” cells is made 



 

 

according to a criterion that characterized the quantity of 

variations of the output inside this cell. Higher the variations, 

more the cell has a chance to be split. The general algorithm 

is the following: 

 

Input values: S, K and R : integer 

Initialization stage: decomposition of the parameter 

space into a grid 

While the number of sets of parameter values for 

which the output values was computed < S: 

Selection of the K most promising cells  

For each selected cell: 

Splitting of the cell 

End for 

For R points built randomly 

Splitting of the cell that contains the point 

End for 

End while 

 

Three parameters have to be defined: 

• S: number of sets of parameter values for which the 

output value was computed during the exploration 

• K: number of “promising” cells that will be split at 

each iteration 

• R: number of random points that will be drawn at 

each iteration 

 

Our approach is composed of three important stages: 

• Building of the initial grid. 

• Selection and splitting of the most promising cells. 

• Drawing of random points and splitting of the cells 

containing these points. 

These stages are described in the following sections. 

 

Initialization 

 

The first step of our approach consists in splitting the model 

parameter space into a uniform grid. Figure 1 gives an 

example of initial grid that can be built for a parameter space 

composed of two parameters x and y which values are real 

between respectively [0,1] and [0,6]. 

 
 

Figures 1: Example of grid of dimension 2 (x,y) 

 

Each cell will be composed of 2
N
 points with N, the 

dimension of the model parameter space. Each point 

corresponds to a vector of parameter value. Figure 2 gives an 

example of a grid for a parameter space of dimension 3. 

 

For each point, the value of the studied output will be 

computed. In order to cope with the stochastic nature of the 

agent-based models, we propose, to determine the output 

value of a point, to carry out several simulations and to 

compute their average output value. We propose as well to 

define the global output value of a cell as the average output 

value of each point composing it. Thus, for example, in the 

case of the cell shown Figure 2, the global output value will 

be equal to the average output value of P1, P2, P3, P4, P5, P6, 

P7 and P8. 

 
 

Figure 2: Cell of dimension 3 (x,y,z) 

 

Selection and splitting of the most promising cells 

 

This stage consists in selecting and splitting the most 

“promising” cells, i.e., the ones for which the value of the 

output studied varies the most.  

 

Munos and Moore (Munos and Moore 2002) present several 

criteria that can be used for the selection. In our context, 

where the goal is to give a global view of the model 

parameter space and not only to focus on optimal parameter 

values, the two most relevant ones are: 

• Average corner-value difference (ACVD): average 

of the absolute difference of the output value 

between two points of the cell along a direction. 

For example, in the case of the cell shown in Figure 

1, the value of this criterion for the direction x, y 

and z are computed as follows: 
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• Value non-linearity (VNL): variance of the absolute 

increase of the output values between two points of 

the cell along a direction. The computation of this 

criterion is similar than the one based on the 

average, except that here the variance is used 

instead of the average. 



 

 

 

Thus, for each cell, the criterion value will be computed for 

each direction, but only the direction that maximizes the 

criterion value will be kept.   

 

Once each cell characterized by a criterion value and a 

direction, we propose to select the K cells that maximize the 

criterion value. The main interest to select K cells at the same 

iteration instead of just one is to allow the distribution of 

simulations. Indeed, each splitting can be computed 

independently on different processors or computers to 

minimize the computational time of the parameter space 

exploration process. Several frameworks specially dedicated 

to this task were proposed (Rioux et al. 2008; Abramson et 

al. 2009; Lorca et al. 2011). 

 

Remarks that other selection methods such as selection by 

roulette, by tournament (see (Mitchell, 1996) for a 

description), and others, can be used at this step of our 

approach. The conclusion of the paper comes back on this 

point.  

 

The K cells selected are then split in two sub-cells of same 

size along the direction chosen. Figure 3 shows the three 

possible decompositions for a cell of dimension 3.  

 
 

Figure 3: Possible decompositions for a cell of dimension 3 

(x,y,z) 

 

Drawing of random points and splitting of the cells 

containing these points. 

 

The initial decomposition of the model parameter space into 

a grid can have a deep impact on the final result. As the cell 

selection method we propose in the previous section is purely 

greedy, i.e., it selects only the cells with the highest criterion 

value, a risk is to miss very local behavior of the system 

dynamic. Figure 4 illustrates this problem: in this example, 

cell 3 that hides a very interesting local phenomenon has 

little chance to be selected as the variation of the output 

value between the points P2 and P3 is very small.   

 

A solution to this issue consists in using a more precise initial 

decomposition (with smaller cells), but it will increase the 

number of simulations that will be carried out during the 

initializing and thus decrease the number of simulations 

dedicated to the next stages of the exploration process.  

 

 
 

Figure 4: Example of initial decomposition for a parameter 

space of dimension 1 (x) 

 

Another solution that we propose to apply in our approach is 

to draw random points in the parameter space to carry out 

random splitting of the cells.   

 

Thus, R points will be drawn in the model parameter space. 

For each point, the cell containing this point will be split 

according to this point in two sub-cells along a random 

direction. Figure 5 shows the three possible decompositions 

for a cell of dimension 3 according to a given point.  

 
 

Figure 5: Possible random decompositions for a cell of 

dimension 3 (x,y,z) 

 

R is a parameter of our approach. If R = 0, the approach will 

be fully greedy. A high value of R will favor the 

diversification of the search process over its intensification 

on the “interesting” cells detected. 

 

The next section presents two experiments we carried out to 

evaluate our approach. 

 

EXPERIMENTS 
 

In order to test our approach, we propose two case-studies. 

Each of these case-studies consists in comparing the results 

obtained with a uniform decomposition of the model 

parameter space into a grid and with our approach for the 

same number of simulations. The goal is to evaluate the 

representativeness of the map built with these two 

approaches. 

 

Our approach was implemented within the GAMA 

simulation platform (Taillandier et al. 2010; GAMA 2011). 

This platform provides a complete modelling and simulation 



 

 

development environment for building spatially explicit 

multi-agent simulations. Its main advantage comes from the 

simplicity to define a model with it. Indeed, GAMA provides 

a rich modelling language, GAML, for easily modelling 

agents and environments. Moreover, this platform provides a 

batch mode that allows to run sets of simulations with 

different parameter values.  At last, this platform, which is 

implemented in Java, is easily extensible.   

 

The first case-study we propose consists in testing our 

approach for a mathematical function. The goal is to have 

first evaluation of our approach for a very simple 

deterministic model. 

 

The function chosen is: 
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We propose to make the map of this function for: 

• x ∈ [-10,10] 

• y ∈ [-10,10] 

 

 
 

Figure 6: a) Precise map of the considered function; b) 

Approximate map of the considered function obtained with a 

uniform grid (20×20); c) Approximate map of the considered 

function obtained with our approach (initial grid 10×10, K = 

20, R = 2, S = 441) 

Figure 6a shows the precise map of this function. The darker, 

the higher the value of the function is. Figure 6b shows the 

map obtained with a uniform decomposition (grid 20 × 20, 

thus 441 simulations) and Figure 6c with our approach (we 

used the “Average corner-value difference” criterion, an 

initial grid of 10 ×10, K = 20, R = 2, S = 441). As shown by 

the figures, our approach allowed to make a more relevant 

map than the uniform decomposition. Indeed, the map made 

by our approach presents a more precise frontier between the 

black and the gray areas.  Moreover, it allows to visualize the 

white area (minimum of the function) at the center of the 

map. 

 

The second case-study we propose consists in testing our 

approach for a classic model: the ant foraging model 

(Resnick 2000). The goal is to have first evaluation of our 

approach for a stochastic model. 

 

In this model, a colony of ants forages for food. When an ant 

finds a piece of food, it carries the food back to the nest and 

drops pheromone as it moves. When an ant smells the 

pheromone, it follows the pheromone.  

 

 
 

Figure 7: a) Precise map of the ant model; b) Approximate 

map of the ant model obtained with a uniform grid (10×10); 

c) Approximate map of the ant model obtained with our 

approach (initial grid 3×3, K = 5, R = 1, S = 121) 

 

Two parameters are defined in this model:  

• diffusion rate ∈ [0,1]: diffusion rate of the 

pheromone 



 

 

• evaporation rate ∈ [0,1]: evaporation rate of the 

pheromone 

 

We propose to study the influence of the diffusion and 

evaporation rates on the time necessary for the ant colony to 

carry all the food in the nest.  We then make the map of the 

function Time(diffusion_rate, evaporation_rate). As the 

model is stochastic (the movement of the ants, when no 

pheromone is detected, is random), we propose to carry 5 

simulations and to compute the average time obtained to 

determine the global time of a set of parameter values.  

 

Figure 7a shows the precise map obtained for the ant model. 

The darker, the higher is the time necessary to carry all the 

food to the nest. Figure 7b shows the map obtained with a 

uniform decomposition (grid 10 × 10, thus 121 × 5 

simulations) and Figure 7c with our approach (we used the 

“Average corner-value difference” criterion, an initial grid of 

3 ×3, K = 5, R = 1, S = 121).  As shown by the figures, our 

approach allowed to make a more relevant map than the 

uniform decomposition. Indeed, the map made by our 

approach presents a far more precise frontier between the 

black and the gray areas in the right part of the map. 

 

CONCLUSION AND FUTURE WORK 

 

In this paper, we proposed a new approach to make the map 

of an agent-based model parameter space. Our approach is 

based on a reactive decomposition of the parameter space. 

We presented two case studies that show that our approach 

can allow to obtain, with the same number of simulations 

carried out, a more representative map than with a uniform 

decomposition.  

 

The first experiments carried out concerned simple models. 

A first perspective is to apply our approach in the context of 

real models integrating a great number of parameters. 

 

In the experiments, we used a simple criterion for the choice 

of the most “promising” cells. We would like to study and 

test more complex criteria, in particular criteria that take into 

account expert knowledge. Indeed, domain-experts that study 

a complex system often have knowledge about its dynamic 

and the impact of the different parameters. We propose to 

use this knowledge to define more relevant criteria.  

 

As mentioned in a previous section, we would like to test 

other cell selection strategies. In particular, strategies that are 

not purely greedy. We can base these strategies on classic 

strategies used by optimization algorithms such as Simulated 

Annealing (Kirkpatrick 1983). 

 

At last, we would like to work on the formalization of the 

output function. Indeed, in some context, the formalization of 

what the modeller wants to observe can be complex: for 

example, formalising the concept of “line of ants” in the ant 

foraging model is not straightforward. Thus, we propose to 

develop a new method based on the work we carried out 

concerning the definition of objective functions for 

optimisation problems (Taillandier and Gaffuri 2009). This 

approach is based on man-machine dialogue: several 

solutions (that can be simulation results) are presented to the 

user and are commented by him/her. The analysis of the 

comments allows to learn a function that translates the user 

needs. 
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