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ABSTRACT 

The agent-based simulation is a powerful tool to study 

complex systems. It allows to take into account different 

levels of granularity, as well as the heterogeneity of the 

entities composing the system. One of the main issues raised 

by these simulations concerns the design of the agent 

behavior. Indeed, when the agent behavior is led by many 

conflicting needs, desires and necessities, its definition can 

be very complex. In order to address this issue, we propose a 

new formalism to define the agent decision making process. 

This formalism is based on the belief theory, which is a 

formal theory about reasoning that allows to manage 

information incompleteness, uncertainty and imprecision. An 

application of the approach is proposed in the context of a 

model dedicated to cropping plan decision-making. 

 
INTRODUCTION  

 

Agent-based simulations are now widely used to study 

complex systems. It allows to take into account different 

levels of granularity, as well as the heterogeneity of the 

entities composing the system. However, the problem of the 

agent design is still an open issue. Indeed, designing complex 

agents able to act “relevantly” in the simulation is a difficult 

task, in particular when their behavior is led by many 

conflicting needs and desires. 

 

In the agent community, numerous formalisms were 

proposed to model the agent decision-making process: 

logical formalisms, probabilistic formalisms and modal 

formalism (see (Das 2008)). However, most of these 

fromalisms are not of much use for agent-based simulations. 

A reason is their inadequacy to the simulation context: a 

formalism, to be used in simulation, has to allow thousands 

of agents to make a decision from many criteria in a short 

amount of time. Moreover, it has to be easily understable and 

usable by domain experts that are often not computer-

scientists. 

 

In this paper, we propose a new probabilistic formalism that 

is particularly well-fitted for agent-based simulations. This 

formalism is based on the use of utility functions. A utility 

function is a function that maps from a decision to a real 

number. The more a decision maximizes the utility function, 

the more it has a chance to be chosen by the agent. This type 

of formalisms is particularly well-fitted for agents whose 

decisions depend on numeric variables.  

 

In order to compute the utility of each decision, we propose 

to use the belief theory. This theory allows to formalize 

reasoning. It can be used to make a decision between several 

alternatives according to a set of criteria. An advantage of 

this theory is that it allows to make a decision even with 

incompleteness, uncertainly and imprecision. 

 

In the next section, we introduce the general context of our 

work. 

 

CONTEXT: UTILITY FUNCTIONS AND AGENT 

DECISION-MAKING PROCESS 

 

The use of utility functions for agent decision making is a 

classic approach that was used in many works (e.g. (Lang et 

al. 2002)). In this context, the utility of a decision is often 

linked to its expected outcomes: the expected utility of a 

decision is then computed from the resulting states of the 

decision’s possible outcomes and from their probability of 

happening (Von Neuman and Morgenstern 1947).  

 

For some applications, the decision cannot be evaluated by a 

unique attribute (or criterion). The decision making process 

of the agents will then consist in solving a multi-criteria 

analysis problem: an agent has to make a decision according 

to a set of criteria that will represent its needs and desires. In 

the literature, several approaches were proposed to solve this 

type of multi-criteria decision-making problems.  

 

A first family of approaches, called partial aggregation 

approaches, consists in comparing the different possible 

decisions by pair by the mean of outranking relations 

(Figueira et al. 2005; Behzadian et al. 2010).  

 

Another family of approaches, called complete aggregation 

approaches, consists in aggregating all criteria in a single 

criterion (utility function), which is then used to make the 

decision (Jacquet-Lagreze and Siskos 1982).  

 

A last family of approaches, which is highly interactive, 

consists in devising a preliminary solution and comparing it 



 

 

with other possible solutions to determine the best one 

(Ignizio 1978).  

 

Partial aggregation approaches allow to address the problem 

of criterion incompatibility but lack clarity compared to 

complete aggregation approaches (Ben Mena 2000). 

  

The approach we are interested in belongs to the complete 

aggregation approaches. It is built on the belief theory. In 

the next section, we describe this approach and its 

application for the agent decision making process. 

 

USE OF THE BELIEF THEORY TO FORMALIZE  

THE AGENT DECISION MAKING PROCESS 

 

Multi-criteria decision making using the belief theory 

Generality 

The belief theory, also called Dempster-Shafer theory, was 

proposed by Shafer in 1976 (Shafer, 1976). It is based on the 

Theory of Evidence introduced by Dempster (Dempster, 

1967), which concerns the lower and upper probability 

distributions. It allows to manage incompleteness, 

uncertainty and imprecision of data. It has been used with 

success for many applications (e.g. (Olteanu-Raimond and 

Mustière 2008; Taillandier et al. 2009)). 

 

The belief theory first defines a frame of discernment, noted 

Θ. It is composed of a finite set of hypotheses corresponding 

to the potential solutions of the considered problem.  

Θ = {H1, H2,…, HN} 

From this frame of discernment, let us define the set of all 

possible assumptions, noted 2
Θ
: 

2
Θ
 = {∅, {H1}, {H2}, ..., {H1, H2}, ...,Θ} 

Each set {Hi, ..., Hj} represents the proposition that the 

solution of the problem is one of the hypotheses of this set. 

 

The belief theory is based on the basic belief assignment, i.e. 

a function that assigns to a proposition P, with P∈2
Θ
, a value 

named the basic belief mass (bbm), noted mj(P). It represents 

how much a criterion j -called source of information- 

supports the proposition P. The bbm is ranged between 0 and 

1 and has to check the following property: 

1Pm
2P

j =∑
∈ Θ

)(

 

Decision making approach 

In our agent decision making context, each hypothesis 

represents the fact that a decision of the set of decisions D is 

the best one. For example: “{H1}: the best decision of D is 

d1”, “{H2}:  the best decision of D is d2”, “{H1, H2}: the best 

decision of D can be either d1 or d2”, etc. 

 

The decision making process is composed of four steps. 

Step 1 

This first step consists in initializing the basic belief masses. 

For this step, we propose to use the works of Appriou 

(Appriou 1991). He proposed to “specialize” the criteria for 

one hypothesis of the discernment frame. Thus, the criteria 

give one’s opinion only in favor of a hypothesis, in disfavor 

of it or do not give their opinion. For each hypothesis Hi of 

Θ, a subset S
i
 of 2

Θ
 is defined: 

Si = {{Hi}, {¬Hi}, Θ} 

• {Hi}: this proposition means that the hypothesis Hi 

is true. 

• {¬Hi} = Θ - {Hi}: this proposition means that the 

hypothesis Hi is false. 

• Θ: this proposition means the ignorance (i.e. every 

hypothesis can be true).  

•  

Thus, the initialization of the basic belief masses consists in 

computing, for each criterion j and for each hypothesis Hi of 

Θ, the basic belief masses { }( )i

H

j Hm i , { }( )i

H

j Hm i ¬  and 

( )ΘiH

jm . 

 

To compute all the bbm, belief functions have to be defined. 

A belief function is a function that returns a float value 

between 0 and 1 according to the value of a considered 

criterion for a given hypothesis. Let bf be a belief functions, j 

a criterion and Hi a decision of Θ. We note iH

jV the value of 

the criterion j for the hypothesis Hi. 

[ ]1,0:)( →ℜiH

jVbf  

 

Examples of belief functions are given in the application 

section. 

Step 2 

This step consists in combining criteria with each other. We 

propose to use the conjunctive operator introduced in (Smets 

and Kennes 1994) to provide a combined bbm synthesizing 

the knowledge from the different criteria. Let us consider two 

criteria C1 and C2. The conjunctive operator is defined as 

follows:  

{ } { }{ } )"()'()(,,,,
2121

"'

PmPmPmHHPH iii H

C

PPP

H

C

H

CCiii ×=Θ¬∈∀Θ∈∀ ∑
=∩  

The fusion of criteria can introduce a conflict, e.g. when one 

criterion assigns a bbm not null for the proposition {Hi} and 

another criterion assigns a bbm not null for the proposition 

{¬Hi} (i.e. when P’∩P”=φ). This conflict will be taken into 

account in the decision. 

 

For example, let {C1,C2} be a set of criteria, and H1 an 

hypothesis of Θ. Let the bbm be defined as follows: 
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The belief masses resulting after the fusion of C1 and C2 are 

equal to: 
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This conjunctive operator is commutative and associative. 

Thus, it is possible to combine the result of a previous fusion 

with the belief masses of another criterion.  

Let C be the criterion set. At the end of this step, for each 

decision Hi of Θ, we obtain the combined belief 

masses { }( )i

H

C Hm i , { }( )i

H

C Hm i ¬ , ( )ΘiH

Cm  and ( )φiH

Cm . 

Step 3 

This step consists in combining hypotheses with each other. 

This combination is interesting because it allows to take into 

account in the final ranking, the fact that some criteria reject 

some hypotheses (¬Hi). 

 

We propose to use the Dempster operator (Dempster 1967) 

to compute the belief masses resulting from the combination 

of two hypotheses Hi and Hj: 
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The coefficient 

( )φji HH

Cm
,

1

1

−

 is used to normalize the belief 

masses obtained. In the case of a total conflict 

( ( ) 1
,

=φji HH

Cm ), no decision can be made.  

 

For example, let Θ be composed of two hypotheses, H1 and 

H2 (Θ = {H1, H2}, {¬H1}={H2}, {¬H2}={H1}). Let the belief 

masses be defined as follows: 

 

{ }( ) 66.01
1 =Hm

H

C
, { }( ) 06.01

1 =¬Hm
H

C
, ( ) 04.01 =ΘH

Cm ,

( ) 24.01 =φH

Cm , { }( ) 02
2 =Hm

H

C
, 

{ }( ) 5.02
2 =¬Hm

H

C ( ) 5.02 =ΘH

Cm , ( ) 02 =φH

Cm  

 

The belief masses resulting from the fusion of H1 and H2 are 

equal to: 
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At the end of this step, a belief mass for each 

proposition
{ }( )1HmC

Θ

,
{ }( )2HmC

Θ

,...,
{ }( )21 , HHmC

Θ

,...,
( )ΘmC

Θ

 

is computed. 

Step 4 

The last step consists in making the decision. We are only 

interested in the propositions that concern a unique 

hypothesis (one decision) and not a set of hypotheses. Thus, 

to evaluate each proposition we propose to use the pignistic 

probability (Smets 1990).  

 

The pignistic probability of a proposition A is computed by 

the following formulae: 

∑
⊆

=
BA B

A
BmAP )()(

 

The more a proposition maximizes this probability, the more 

the corresponding hypothesis is true. Thus, the decision 

making will be based on this probability: this probability will 

represent the utility of the decision. 

 

For example, let Θ be composed of two hypotheses, H1 and 

H2 and the belief masses of all the propositions be defined as 

follows: 

 

{ }( ) 93.01 =Θ
HmC

, { }( ) 04.02 =Θ
HmC

, ( ) 03.0=ΘΘ
Cm  

 

The resulting pignistic probabilities are: 

{ }( ) { }( ) ( ) 945.0
2

1

1

1
11 =×Θ+×= ΘΘ

CC mHmHP     

{ }( ) { }( ) ( ) 055.0
2

1

1

1
22 =×Θ+×= ΘΘ

CC mHmHP  

Thus, H1 has more chances to be true than H2. 

 

Application of the belief theory to define the agent decision 

making process 

As presented in the previous section, the belief theory allows 

to make a decision from a set of possible decisions according 

to a set of criteria.  

 

In order to use the belief theory to formalize the decision 

making process of an agent, the modeler has to define several 

elements: 

• A set of criteria that allow to evaluate the different 

possible decisions.  

• For each criterion: a belief function for the 

hypotheses “this decision is the best one”, “this 

decision is not the best one”, “ignorance”. 

 

Remark that it is possible to decrease the complexity of the 

decision making computation by filtering the possible 

decisions:  only decisions that are Pareto-optimal are kept. 

 

For some agents, it will also be possible (or mandatory) to 

divide the decision making process into several sub-

processes. This division can be used to decrease the 

complexity of the decision process or to use different sets of 

criteria that will correspond to different steps of reasoning. 

Indeed, for example, it is possible to divide the decision 

making process into two steps: the first one consisting of 

choosing a general objective for the agent (e.g. eating, 

sleeping) and a second consisting in choosing the best place 

to carry out this objective.  

 



 

 

APPLICATION: CROPPING PLAN DECISION-

MAKING. 

 

The MAELIA project 
The MAELIA (MAELIA 2011) project aims at  developping 

an agent-based platform for the simulation of the socio-

environmental impacts of norms on the water resources. In 

particular, this project proposes to model the impacts of 

norms on the behavior of the farmers that are the most 

important water users in many regions. 

Farmer agents and culture choice 

The most important behavior of farmers will consist in 

allocating crops and crop management into their fields. This 

choice will have a deep impact on the profit of the farmer 

and on the quantity of water used. 

 

Using the works of (Dury et al. 2010), we defined four 

criteria that are taken into account during the cropping plan 

decision-making: 

• Expected profit: profit that can be expected. 

• Loss at worse: money that will be lost considering 

the worst scenario (no plant grown). 

• Workload: quantity of work. 

• Similarity to last cropping plan: influence of the 

last cropping plan chosen.  

 

The next sections describe in details each of these criteria, 

and in particular the belief functions defined for each of 

them. 

 

Expected Profit 

The first criterion concerns the profit that can be expected 

from a given cropping plan. The profit takes into account 

several elements: 

• Expected crop production 

• Agricultural product price (current price of the 

market) 

• Variable cost  

• Workforce price 

• Equipment price (tractor, irrigation systems, …) 

• Aid (e.g. European Union Aid) 

 

 

Figure 1. Belief functions for the profit criterion 

The belief functions are shown in Figure 1. These functions 

depend on the profit made (P). P can be negative or positive. 

If P is negative, the belief mass of the proposition “this 

decision is not the best one” will be higher than 0. If P is 

positive, it is the belief mass of the proposition “this decision 

is the best one” that will be higher than 0. Pmax is the 

maximal profit that can be made according to the parcel size 

and the market price. Dmax is the maximal deficit that can be 

made considering the worst scenario (no plant grown). Two 

attributes have to be defined for each farmer: Vp1 and Vp2. 

Vp1 represents the greedy part of the farmer: the higher Vp1 

is, the more the farmer will try to make benefice at all cost.  

Vp2 is the aversion of the farmer toward the deficit: the 

higher Vp2 is, the more the farmer will tend to avoid deficits.   

 

Loss at worse 

This criterion concerns the loss (in terms of money) while 

considering the worst scenario (no plant grown). Its goal is to 

assess the risk taken by the farmer. The belief functions are 

shown in Figure 2. These functions depend on the money that 

can be lost (L). If L is higher than 0, the belief mass for the 

proposition “this decision is not the best one” will be higher 

than 0. Lmax is the maximal loss that can be made according 

to the parcel size and the market price (variable cost). Vl1 is 

computed from Vp2 (see expected profit criterion) and from 

the probability that the worst outcome becomes true (it will 

depend on the type of culture).  

 

 

Figure 2. Belief functions for the loss criterion 

Workload 

This criterion concerns the workload necessary to carry out 

the cropping plan. Indeed, the farmers  seek to minimize this 

workload.  

The belief functions are shown in Figure 3. These functions 

depend on the workload value (W). This value takes into 

account the quantity of works (in terms of hours of work) 

necessary to carry out the cropping plan. If W is higher than 

0, the belief masse of the proposition “this decision is not the 

best one” will be higher than 0. Wmax is the maximal value 

that can be reach for the workload value. Vw1 is the aversion 

of the farmer toward the work: the higher Vw1 is, the more the 

farmer will tend to avoid working.  

 

 

Figure 3. Belief functions for the workload criterion 

Similarity to last cropping plan 

This criterion concerns influence of the last cropping plan. 

Indeed, farmers tend to seek for stabilized cropping plan. 

The belief functions are shown in Figure 4. These functions 

depend on the similarity value compare to the last cropping 

plan (S).  

 



 

 

The belief masse for the proposition “this decision is the best 

one” will be higher or equal to 0 if the similarity is higher 

than a given threshold S1. If the similarity is equals or higher  

than a given threshold S2, the belief masse of this proposition 

will be equal to Vxp1.  

 

 

Figure 4. Belief functions for the similarity to last cropping plan 

criterion 

S1 and S2 are two thresholds that allow to integrate a fuzzy 

aspect in the decision. One attribute has to be defined for 

each farmer: Vxp1. Vxp1 concerns the conservative part of the 

farmer: the higher Vxp1 is, the more the farmer will tend to 

make the same culture choices.  

 

Conclusion 

Our formalism allowed us to simply formalize the raw 

knowledge provided by the interviews and by the field 

experts. In particular, it offered us a powerful tool to 

aggregate the different motivations of the farmers (make 

profit, avoid loss …).  

 

A first prototype of the MAELIA model is currently under 

development with the GAMA simulation platform 

(Taillandier et al. 2010). This model will take into account 

more than ten thousands farmers and thus will allow us to test 

the scalability of our formalism.  

 

CONCLUSION 

 

In this paper, we proposed to use the belief theory to 

formalize the agent decision making process in agent-based 

simulations. We present an application of this formalism for 

a simulation dedicated to cropping plan decision-making. 

 

A key issue in the use of our formalism concerns the 

definition of the belief functions. In some applications, the 

definition can be based on expert knowledge. In other 

applications where knowledge is lacking, machine learning 

techniques can be used to build automatically these 

functions. In this context, we propose to develop methods to 

learn them directly through a participatory approach. This 

approach could be based on the one proposed by (Taillandier 

and Buard 2009). 
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