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This work presents a new algorithm for dictionary learning. Existing algorithms such as MOD and K-SVD often fail to find the best dictionary because they get trapped in a local minimum. Olshausen and Field's Sparsenet algorithm relies on a fixed step projected gradient descent. With the right step, it can avoid local local minima and converge towards the global minimum. The problem then becomes to find the right step size. In this work we provide the expression of the optimal step for the gradient descent but we use for descent is twice as large for the gradient descent. That large step allows the descent to bypass local minima and yields significantly better results than existing algorithms. The algorithms are compared on synthetic data. Our method outperforms existing algorithms both in approximation quality and in perfect recovery rate if an oracle support for the sparse representation is provided.

Introduction

In the method of sparse representations, a signal is expressed as a linear combination of a few vectors named atoms taken from a set called a dictionary. The sparsity constraint induces that any given dictionary can only represent a small subset of all possible signals, so the dictionary has to be adapted to the data being represented. Good pre-constructed dictionaries are known for common classes of signals, but sometimes it is not the case, for example when the dictionary has to discriminate against perturbations coming from noise [START_REF] Elad | Image denoising via sparse and redundant representations over learned dictionaries[END_REF]. In that case, the dictionary can be learned from examples of the data to be represented.

Several different algorithms have been proposed to learn the dictionary. Many of them iteratively optimise the dictionary and the decomposition [START_REF] Olshausen | Emergence of simple-cell receptive field properties by learning a sparse code for natural images[END_REF][START_REF] Engan | Method of optimal directions for frame design[END_REF][START_REF] Aharon | K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation[END_REF]. The difference between those algorithms is the way they update the dictionary to fit a known decomposition. In particular, Olshausen and Field's Sparsenet algorithm [START_REF] Olshausen | Emergence of simple-cell receptive field properties by learning a sparse code for natural images[END_REF] uses a fixed step gradient descent. In this work we observe that all those methods are suboptimal.

This work presents a modification to the sparsenet algorithm that enables it to bypass local minima. We use the fact that the optimal step of the gradient descent can easily be obtained, then multiply it by constant larger than 1. Empirical results show that our method often allows the optimisation to reach the global minimum.

Dictionary Learning

Problem

Let S be a matrix of N training signals {s n } N n=1 ∈ R D . Dictionary learning consists in finding a dictionary Φ of size D × M with M ≥ D and sparse coefficients X such that S ≈ ΦX. For example, if the exact sparsity level K is known, the problem can be formalised as minimising the error cost function

f (Φ, X) = S -ΦX 2 F RO (1) under the constraints ∀m ∈ [1, M ], ϕ m 2 = 1 (2) ∀n ∈ [1, N ], x n 0 ≤ K (3) 
with ϕ an atom (or column) of Φ and x n 0 the number of non-zero coefficients in the n th column of X.

Algorithms

Many dictionary learning algorithms follow an alternate optimisation method. When the dictionary Φ is fixed, then estimating the sparse coefficients X is a sparse representation problem that can be solved by Orthogonal Matching Pursuit for example. Existing algorithms differ in the way they update the dictionary Φ once the coefficients X are fixed:

-Sparsenet [START_REF] Olshausen | Emergence of simple-cell receptive field properties by learning a sparse code for natural images[END_REF] uses a projected gradient descent with a fixed step α:

ϕ i ← ϕ i + αRx i T (4) 
ϕ i ← ϕ i ϕ i 2 (5) 
-MOD [START_REF] Engan | Method of optimal directions for frame design[END_REF] directly computes the best dictionary with a pseudo-inverse:

Φ ← SX + (6) 
ϕ i ← ϕ i ϕ i 2 (7) 
-K-SVD [START_REF] Aharon | K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation[END_REF] jointly re-estimates each atom and the amplitude of its non-zero coefficients. For each atom ϕ i , the optimal choice is the principal component of a restricted "error" E (i) obtained by considering the contribution of ϕ i alone and removing all other atoms.

E (i) = R + ϕ i x i (8) ϕ i ← argmin ϕ 2 =1 E (i) -ϕϕ T E (i) 2 F (9) = argmax ϕ 2 =1 ϕ T E (i) E (i) T ϕ ( 10 
)
x i ← ϕ T i E (i) (11)
3

Motivations for an Adaptive Gradient Step Size

This section details an experimental framework used to compare the dictionary update methods presented in Section 2.2. We then show that with the right step, Sparsenet is less likely to get trapped in a local minimum than MOD and K-SVD.

Identifying the Global Optimum: Learning with a Fixed Support

We want to be able to check whether the solution found by an algorithm is the best one. It is easy in the noiseless case: if the training signals are exactly sparse on a dictionary, then there is at least one decomposition that leads to an error of 0: the one used for synthesising the signals. In that case, a factorisation (Φ, X) is globally optimal if and only if the value of its error cost (1) is 0. Dictionary learning algorithms often fail at that task because of the imperfection of the sparse representation step: when the dictionary is fixed, sparse approximation algorithms usually fail to recover the best coefficients, although there are particular dictionaries for which sparse representation is guaranteed to succeed [START_REF] Tropp | Greed is good: algorithmic results for sparse approximation[END_REF]. In order to observe the behaviour of the different dictionary update methods, we can simulate a successful sparse representation by using an oracle support: the support used for the synthesis of the training signals is known to the algorithm and only the values of the non-zero coefficients is updated by quadratic optimisation. The dictionary learning algorithm is then simplified into Algorithm (1).

Empirical Observations on Existing Algorithms

We ran a simulation to check whether existing update methods are able to recover the best dictionary once the support is known. Each data set is made of a dictionary containing i.i.d. atoms drawn from a uniform distribution on the unit sphere. For each dictionary, 256 8-sparse signals were synthesised by Algorithm 1 (Φ, X) = dict_learn(S, σ) Φ ← random dictionary while not converged do ∀n, x σn n ← Φ + n sn Φ ← dico_update(Φ, S, X) end while drawing uniform i.i.d. 8-sparse supports and i.i.d. Gaussian amplitudes. Then each algorithm was run for 1000iterations starting from a random dictionary. The oracle supports of the representations were provided as explained in Section 3.1.

Figure 1 shows the evolution of the SNR -10 log 10
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over the execution of the algorithm for each data set. 300dB is the highest SNR that can be reached due to numerical precision. Moreover, we ran some longer simulations and never saw an execution fail to reach 300dB once a threshold of 100dB was passed For each algorithm, the plots show how many runs converged to a global minimum and how fast they did it.

K-SVD found a global minimum in 17 cases and has the best convergence speed of all studied algorithms. MOD only converged to a global minimum in 1 case and shows a tendency to evolve by steps, so even after a large number of iterations it is hard to tell whether the algorithm has converged or not. The best results were obtained when running Sparsenet with a step size α = 0.05. In that case most runs converge to a global optimum although the convergence speed is more variable than with K-SVD. The behaviour of Sparsenet highly depends on the choice of α. In our case a step of 0.1 is too large almost always prevented the algorithm to converge, but a step of 0.01 is too small and leads to a very slow convergence.

Moreover, Sparsenet outperforms MOD although the MOD update is the optimal point that Sparsenet attempts to reach with a gradient descent. So the source of the gain cannot be that the step α = 0.05 is well adapted to the descent, but rather that it is larger than what an optimal step would be, thus allowing the descent to jump over local minima. The fact that the SNR sometimes decreases at one iteration for Sparsenet with α = 0.05 also hints at a larger than optimal step size.

Large Step Gradient Descent

This section presents our method to choose the step size of the gradient descent. Our method is based on optimal step gradient descent, but we purposefully choose a step size that is larger than the optimal one.

Optimal projected gradient descent

When fixing the coefficients and the whole dictionary but one atom ϕ i , there is a closed-form solution for the best atom ϕ * i that minimises the cost function 

ϕ * i = argmin ϕ i 2 =1 S -ΦX 2 F RO (12) 
= argmin

ϕ i 2 =1 E (i) -ϕ i x i 2 F RO (13) 
with E (i) the restricted errors described for K-SVD in Equation ( 8).

E (i) -ϕ i x i 2 F RO = E (i) k 2 F RO -2 E (i) k , ϕ i x i + ϕ i x i 2 F RO (14) 
E (i) k 2 F RO
is constant with respect to ϕ i . The unit norm constraint also implies

that ϕ i x i 2 F RO = x i 2 2
which is also constant with respect to ϕ i . So the only variable term is the inner product and the expression of the optimum ϕ * i is given by:

ϕ * i = argmax ϕ i 2 =1 E (i) x i T , ϕ i (15) = E (i) x i T E (i) x i T 2 (16)
The link with the gradient appears when developing the expression (16):

ϕ * i ∝ R + ϕ i x i x i T (17) ∝ ϕ i + 1 x i 2 2 Rx i T (18) 
Starting from the original atom, the best atom ϕ * i is in the direction of the gradient and the optimal step α * of the descent is the inverse of the energy of the amplitude coefficients.

α * = 1 x i 2 2 (19)

Experimental Validation

These experiments complement the ones presented in Section ??. We used the same framework running Sparsenet with the optimal step α * defined in Equation ( 19) and a larger step size 2α * . As expected, the optimal step gradient descent almost always gets trapped in a local minimum. Doubling that step results greatly improves the recovery rate from 8% to 79%. 

Conclusion

We have presented a dictionary learning algorithm capable of better approximation quality of the training signals than K-SVD. That algorithm uses a gradient descent with an adaptive step guaranteed to be higher than the optimal step. The large step allows the descent to bypass local minima and converge towards the global minimum.

While our algorithm yields much better recovery rates than the the existing ones, it can still be improved. We chose the step size 2α * because while large, it still ensures the stability of the algorithm. However that step size proves too small to escape some local minima. One could think of using even larger sizes in the beginning of the algorithm, then switch to a fast converging algorithm such as K-SVD once in the attraction basin of a global minimum.

Fig. 1 :

 1 Fig. 1: Approximation SNR depending on the iteration. K-SVD and MOD often get trapped in a local minimum. With α = 0.05, Sparsenet avoids local minima, but α = 0.1 is too large and α = 0.01 is too small.
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 2 Fig.2: Approximation SNR depending on the iteration. The optimal gradient descent only succeeds 8 times whereas using a 2α * step succeeds 79 times.
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