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A refinement of Günther’s candle inequality
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Dedicated to our friends Sylvain Gallot and Albert Schwarz

We analyze an upper bound on the curvature of a Riemannian manifold, using “
√

Ric” curvature, which is

in between a sectional curvature bound and a Ricci curvature bound. (A special case of
√

Ric curvature was

previously discovered by Osserman and Sarnak for a different but related purpose.) We prove that our
√

Ric

bound implies Günther’s inequality on the candle function of a manifold, thus bringing that inequality closer in

form to the complementary inequality due to Bishop.

1. INTRODUCTION

Two important relations between curvature and volume

in differential geometry are Bishop’s inequality [3, §11.10],

which is an upper bound on the volume of a ball from a lower

bound on Ricci curvature, and Günther’s inequality [9], which

is a lower bound on volume from an upper bound on sectional

curvature. Bishop’s inequality has a weaker hypothesis then

Günther’s inequality and can be interpreted as a stronger re-

sult. The asymmetry between these inequalities is a counter-

intuitive fact of Riemannian geometry.

In this article, we will partially remedy this asymmetry. We

will define another curvature statistic, the root-Ricci function,

denoted
√

Ric, and we will establish a comparison theorem

that is stronger than Günther’s inequality1.
√

Ric is not a ten-

sor because it involves square roots of sectional curvatures,

but it shares other properties with Ricci curvature.

After the first version of this article was written, we learned

that a special case of
√

Ric was previously defined by Osser-

man and Sarnak [15], for the different but related purpose of

estimating the entropy of geodesic flow on a closed manifold.

(See Section 3.1.) Although their specific results are different,

there is a common motivation arising from volume growth in

a symmetric space.

1.1. Growth of the complex hyperbolic plane

Consider the geometry of the complex hyperbolic plane

CH2. In this 4-manifold, the volume of a ball of radius r is

Vol(B(r)) =
π2

2
sinh(r)4 ∼ π2

32
exp(4r).

The corresponding sphere surface volume has a factor of

sinh(2r) from the unique complex line containing a given

geodesic γ , which has curvature−4, and two factors of sinh(r)

∗ benoit.kloeckner@ujf-grenoble.fr
† greg@math.ucdavis.edu; Supported by NSF grant CCF #1013079.
1 We take the “ic” in the Ricci tensor Ric to mean taking a partial trace of the

Riemann tensor R, but we take a square root first.

from the totally real planes that contain γ , which have curva-

ture −1. Günther’s inequality and Bishop’s inequality yield

the estimates

π2

48
exp(3

√
2r)& Vol(B(r))&

π2

12
exp(3r).

The true volume growth of balls in CH2 (and in some other

cases, see Section 3.1) is governed by the average of the

square roots of the negatives of the sectional curvatures. This

is how we define the
√

Ric function, for each tangent direction

u at each point p in M.

1.2. Root-Ricci curvature

Let M be a Riemannian n-manifold with sectional curvature

K ≤ ρ for some constant ρ ≥ 0; we will implicitly assume that

ρ ≥ κ . For any unit tangent vector u ∈UTpM with p ∈ M, we

define

√
Ric(ρ ,u)

def
= Tr(

√

ρ −R(·,u, ·,u)).

Here R(u,v,w,x) is the Riemann curvature tensor expressed

as a tetralinear form, and the square root is the positive square

root of a positive semidefinite matrix or operator.

The formula for
√

Ric(ρ ,u) might seem arcane at first

glance. Regardless of its precise form, the formula is both

local (ı.e., a function of the Riemannian curvature) and also

optimal in certain regimes. Any such formula is potentially

interesting. One important, simpler case is ρ = 0, which ap-

plies only to non-positively curved manifolds:

√
Ric(0,u) = Tr(

√

−R(·,u, ·,u)).

In other words,
√

Ric(0,u) is the sum of the square roots of the

sectional curvatures −K(u,ei), where (ei) is a basis of u⊥ that

diagonalizes the Riemann curvature tensor. This special case

was defined previously by Osserman and Sarnak [15] (Sec-

tion 3.1), which in their notation would be written −σ(u).
For example, when M = CH2, one sectional curvature

K(u,ei) is −4 and the other two are −1, so

√
Ric(0,u) =

√
4+

√
1+

√
1 = 4,

which matches the asymptotics in Section 1.1.
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In the general formula
√

Ric(ρ ,u), the parameter ρ is im-

portant because it yields sharper bounds at shorter length

scales. In particular, in the limit ρ → ∞,
√

Ric(ρ ,u) becomes

equivalent to Ricci curvature. Section 2 discusses other ways

in which
√

Ric fits the framework of classical Riemannian ge-

ometry. Our definition for general ρ was motivated by our

proof of the refined Günther inequality, more precisely by

equation (10). The energy (8) of a curve in a manifold can

be viewed as linear in the curvature R(·,u, ·,u). We make a

quadratic change of variables to another matrix A, to express

the optimization problem as quadratic minimization with lin-

ear constraints; and we noticed an allowable extra parameter

ρ in the quadratic change of variables.

Another way to look at root-Ricci curvature is that it is

equivalent to an average curvature, like the normalized Ricci

curvature Ric/(n − 1), but after a reparameterization. By

analogy, the Lp norm of a function, or the root-mean-square

concept in statistics, is also an average of quantities that are

modified by the function f (x) = xp. In our case, we can ob-

tain a type of average curvature which is equivalent to
√

Ric

if we conjugate by f (x) =
√

ρ − x. Taking this viewpoint, we

say that the manifold M is of
√

Ric class (ρ ,κ) if K ≤ ρ , and

if also √
Ric(ρ ,u)

n− 1
≥
√

ρ −κ

for all u ∈ UTM. This is the
√

Ric curvature analogue of the

sectional curvature condition K ≤ κ .

1.3. A general candle inequality

The best version of either Günther’s or Bishop’s inequality

is not directly a bound on the volume of balls in M, but rather

a bound on the logarithmic derivative of the candle function

of M. Let γ = γu be a geodesic curve in M that begins at p =
γ(0) with initial velocity u ∈UTpM. Then the candle function

s(γ,r) is by definition the Jacobian of the map u 7→ γu(r). In

other words, it is defined by the equations

dq = s(γu,r)dudr q = γu(r) = expp(ru),

where dq is Riemannian measure on M, dr is Lebesgue mea-

sure on R, and du is Riemannian measure on the sphere

UTpM. This terminology has the physical interpretation that

if an observer is at the point q in M, and if a unit candle is at

the point p, then 1/s(γ,r) is its apparent brightness2.

The candle function sκ(r) of a geometry of constant curva-

ture κ is given by

sκ(r) =



















(

sin(
√

κr)√
κ

)n−1

κ > 0

rn−1 κ = 0
(

sinh(
√
−κr)√−κ

)n−1

κ < 0

.

2 Certain distant objects in astronomy with known luminosity are called stan-

dard candles and are used to estimate astronomical distances.

Theorem 1.1. Let M be a Riemannian n-manifold is of
√

Ric

class (ρ ,κ) for some κ ≤ ρ ≥ 0. Then

(logs(γ,r))′ ≥ (logsκ (r))
′

for every geodesic γ in M, when 2r
√

ρ ≤ π .

The prime denotes the derivative with respect to r.

When ρ = 0, the conclusion of Theorem 1.1 is identical to

Günther’s inequality for manifolds with K ≤ κ , but the hy-

pothesis is strictly weaker. When ρ > 0, the curvature hy-

pothesis is weaker still, but the length restriction is stronger.

The usual version of the inequality holds up to a distance of

π/
√

κ . For our distance restriction, we replace κ with ρ and

divide by 2.

The rest of this article is organized as follows. In Section 2

we give several relations between curvature bounds and vol-

ume comparisons. In Section 3 we list applications of Theo-

rem 1.1, and we prove Theorem 1.1 in Section 4.
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2. RELATIONS BETWEEN CONDITIONS

2.1. Candle conditions

We first mention two interesting properties of the candle

function s(γ,r):

1. s(γ,r) vanishes when γ(0) and γ(r) are conjugate

points.

2. The candle function is symmetric: If γ̄(t) = γ(r − t),
then s(γ̄ ,r) = s(γ,r).

The second property is not trivial to prove, but it is a folk-

lore fact in differential geometry [19][Lem. 5] (and a standard

principle in optics).

Say that a manifold M is Candle(κ) if the inequality

s(γ,r) ≥ sκ(r)

holds for all γ,r; or LCD(κ), for logarithmic candle deriva-

tive 3, if the logarithmic condition

(logs(γ,r))′ ≥ (logsκ (r))
′

holds for all γ,r; or Ball(κ) if the volume inequality

Vol(B(p,r))≥ Vol(Bκ(r))

3 And not to be confused with liquid crystal displays.
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holds for all p and r; here Bκ denotes a ball in the simply

connected space of constant curvature κ . (If κ > 0, then the

first two conditions are only meaningful up to the distance

π/
√

κ between conjugate points in the comparison geometry.)

We also write Candle(κ , ℓ), LCD(κ , ℓ), and Ball(κ , ℓ) if the

same conditions hold up to a distance of r = ℓ.
The logarithmic derivative (logs(γ,r))′ of the candle func-

tion has its own important geometric interpretation: it is the

mean curvature of the geodesic sphere with radius r and cen-

ter p = γ(0) at the point γ(r). So it also equals ∆r, where ∆
is the Laplace Beltrami operator, and r is the distance from

any point to p. So if M is LCD(κ), then we obtain the com-

parison ∆r ≥ ∆κrκ , and the statement that spheres in M are

more extrinsically curved than spheres in a space of constant

curvature κ .

2.2. Curvature and volume comparisons

If κ ≤ ρ = 0, then we can organize the comparison proper-

ties of an n-manifold M that we have mentioned as follows:

K ≤ κ =⇒
√

Ric class (0,κ) =⇒ LCD(κ)

=⇒ Candle(κ) =⇒ Ball(κ , inj(M)), (1)

where inj(M) is the injectivity radius of M. The first impli-

cation is elementary, while the second one is Theorem 1.1.

The third and fourth implications are also elementary, given

by integrating with respect to length r.

If κ ≤ ρ > 0, then

K ≤ κ =⇒
√

Ric class (ρ ,κ) =⇒ LCD(κ ,
π

2
√

ρ
)

=⇒ Candle(κ ,
π

2
√

ρ
) =⇒ Ball(κ , ℓ),

where

ℓ= min(inj(M),
π

2
√

ρ
).

Finally, for all ℓ > 0,

Candle(κ , ℓ) =⇒ Ric ≤ (n− 1)κg,

where g is the metric on M, because

s(γ,r) = rn−1 −Ric(γ ′(0))rn +O(rn+1). (2)

In particular, in two dimensions, all of the implications in (1)

are equivalences.

2.3. Curvature bounds

The function
√

Ric(ρ) increases with ρ faster than

(n− 1)
√

ρ −κ

in the sense that for all κ ≤ ρ ≤ ρ ′,
√

Ric class (ρ ,κ) =⇒
√

Ric class (ρ ′,κ).

In addition, the conjugate version of root-Ricci curvature con-

verges to normalized Ricci curvature for large ρ :

lim
ρ→∞

ρ −
(√

Ric(ρ ,u)

n− 1

)2

=
Ric(u,u)

n− 1
∀u ∈UTM.

The corresponding limit ρ → ∞ in Theorem 1.1 has the in-

terpretation that the upper bound looks more and more like a

bound based on Ricci curvature at short distances. This is an

optimal limit in the sense that Ricci curvature is the first non-

trivial derivative of s(γ,r) at r = 0 by (2). On the other hand,

without the length restriction, the limit ρ → ∞ is impossible.

That limit would be exactly Günther’s inequality with Ricci

curvature, but such an inequality is not generally true.

Finally we can deduce a root-Ricci upper bound from a

combination of sectional curvature and Ricci bounds. The

concavity of the square root function implies that given the

value of Ric(u,u), the weakest possible value of
√

Ric(ρ ,u)
is achieved when R(·,u, ·,u) has one small eigenvalue and all

other eigenvalues equal. For all κ ≤ α ≤ ρ , we then get a

number β = β (κ ,α,ρ), decreasing in α , such that

K ≤ α and Ric ≤ β g =⇒
√

Ric class (ρ ,κ). (3)

An explicit computation yields the optimal value

β = ρ +(n− 2)α −
(

(n− 1)
√

ρ −κ − (n− 2)
√

ρ −α
)2
.

In particular,

β (κ ,ρ ,ρ) = (n− 1)2κ − n(n− 1)ρ

β (κ ,κ ,ρ) = (n− 1)κ .

In order to deduce
√

Ric class (ρ ,κ) from classical curvature

upper bounds, we can therefore ask for the strong condition

K ≤ κ (which implies Ric ≤ (n−1)κg), or ask for the weaker

K ≤ ρ together with Ric ≤ β (κ ,ρ ,ρ)g, or choose from a con-

tinuum of combined bounds on K and Ric. Moreover, the

above calculation holds pointwise, so that in (3), α can be a

function on UTM instead of a constant.

3. APPLICATIONS

Most of the established applications of Günther’s inequal-

ity are also applications of Theorem 1.1. The subtlety is that

different applications use different criteria in the chain of im-

plications (1). We give some examples. In general, let M̃

denote the universal cover of M.

3.1. Exponential growth of balls

One evident application of our result is to estimate the rate

of growth of balls, as already given by (1). This is related
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to the volume entropy of a closed Riemannian manifold M,

which is by definition

hvol(M)
def
= lim

r→+∞

logVolBM̃(p,r)

r
.

By abuse of notation, we will use this same volume entropy

expression when M = M̃ is simply connected rather than

closed. Since a hyperbolic space of curvature κ < 0 and di-

mension n has volume entropy (n−1)
√−κ , Theorem 1.1 im-

plies that when K ≤ 0,

hvol(M)≥ α
def
= inf

u

√
Ric(0,u). (4)

The estimate (4) is sharp for every rank one symmetric space.

(Recall that the rank one symmetric spaces are the generalized

hyperbolic spaces RHn, CHn, HHn, and OH2.) The reason is

that the operator R(·,γ ′, ·,γ ′) is constant along any geodesic

γ . So by the Jacobi field equation (Section 4), the volume

of B(p,r) has factors of sinh
√

λkr for each eigenvalue λk of

R(·,γ ′, ·,γ ′). So we obtain the estimate

VolB(p,r) ∝ ∏
k

(sinh
√

λkr)∼ exp(αr).

However, although (4) is a good estimate, it is superseded

by the previous discovery of
√

Ric(0,u), for the specific pur-

pose of estimating entropies. In addition to the volume en-

tropy of M, the geodesic flow on M has a topological en-

tropy htop(M) and a measure-theoretic entropy hµ(M) with

respect to any invariant measure µ . Manning [12] showed that

htop(M)≥ hvol(M) for any closed M, with equality when M is

nonpositively curved. Goodwyn [8] showed that htop(M) ≥
hµ(M) for any µ , with equality for the optimal choice of µ .

(In fact he showed this for any dynamical system.)

With these background facts, Osserman and Sarnak [15] de-

fined
√

Ric(0,u) and established that

hµ(M)≥
∫

UT M

√
Ric(0,u)dµ(u) (5)

when M is negatively curved, ı.e., K ≤ κ < 0, and µ is normal-

ized Riemannian measure on UTM. This result was general-

ized to non-positive curvature by Ballmann and Wojtkowski

[2].

This use of
√

Ric curvature concludes a topic that began

with the Schwarz-Milnor theorem [14, 16] that if M is neg-

atively curved, then π1(M) has exponential growth. Part of

their result is that if M is compact, then π1(M) has exponential

growth if and only if hvol(M) > 0. So equation (5), together

with Manning’s theorem, shows that if M is compact and non-

positively curved, then either M is flat, or the growth of π1(M)
is bounded below by (5).

Ballmann [1] also showed that a non-positively curved

manifold M of finite volume satisfies the weak Tits alterna-

tive: either M is flat, or its fundamental group contains a

non-abelian free group. This is qualitatively a much stronger

version of the Schwarz-Milnor theorem, and even its exten-

sion due to Manning, Osserman, Sarnak, Ballmann, and Wo-

jtkowski.

3.2. Isoperimetric inequalities

Yau [5, 19] established that if M is complete, simply con-

nected, and has K ≤ κ < 0, and D ⊆ M is a domain, then D

satisfies a linear isoperimetric inequality:

Vol(∂D)≥ (n− 1)
√
−κ Vol(D).

His proof only uses a weakening of condition LCD(κ),
namely that

(logs(γ,r))′ ≥ (n− 1)
√
−κ.

So Theorem 1.1 yields Yau’s inequality when M is of
√

Ric

class (0,κ).
McKean [13] showed that the same weak LCD(κ) condi-

tion also implies a spectral gap

λ0(M̃)≥ −κn2

4

for the first eigenvalue of the positive Laplace-Beltrami op-

erator acting on L2(M). This spectral gap follows from a

Poincaré inequality that is independently interesting:
∫

M
f 2 ≤ 4

−κn2

∫

M
|∇ f |2

for all smooth, compactly supported functions f . McKean

stated his result under the hypothesis K ≤ κ ; it has been gen-

eralized by Setti [17] and Borbély [4] to mixed sectional and

Ricci bounds; Theorem 1.1 provides a further generalization.

Note in particular that Borbély’s result is optimal for complex

hyperbolic spaces (and we get the same bound in this case),

but we get better bounds for quaternionic and octonionic hy-

perbolic spaces.

Croke [6] establishes the isoperimetric inequality for a

compact non-positively curved 4-manifold M with unique

geodesics. In other words, if B is a Euclidean 4-ball with

Vol(M) = Vol(B),

then

Vol(∂M) ≥ Vol(∂B).

His proof only uses the condition Candle(0), in fact only for

maximal geodesics between boundary points4. So, Croke’s

theorem also holds if M is of
√

Ric class (( π
2L
)2,0), where L

is the maximal length of a geodesic; for any given L, this cur-

vature bound is weaker than K ≤ 0. It is a well-known con-

jecture that if M is n-dimensional and non-positively curved,

then the isoperimetric inequality holds. The conjecture can be

attributed to Weil [18], because his proof in dimension n = 2

initiated the subject. More recently, Kleiner [10] established

the case n = 3. We are led to ask whether Weil’s isoperimetric

conjecture still holds for Candle(0) or LCD(0) manifolds.

In a forthcoming paper, we will partially generalize Croke’s

result to signed curvature bounds. In these generalizations, the

main direct hypotheses are the Candle(κ) and LCD(κ) condi-

tions, which are natural but not local. Theorem 1.1 provides

important local conditions under which these hypotheses hold.

4 We credit [6] as our original motivation for this article.
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3.3. Almost non-positive curvature

As mentioned above, one strength of root-Ricci curvature

estimates is that we can adjust the parameter ρ ; however, most

of the applications mentioned so far are in the non-positively

curved case ρ = 0. It is therefore natural to ask to which extent

manifolds with almost non-positive sectional curvature and

negative root-Ricci curvature behave like negatively curved

manifolds.

More precisely, suppose that M is compact, has diameter δ
and satisfies both curvature bounds

K ≤ ρ and
√

Ric(ρ)≤ κ .

Say that M is almost non-positively curved if 0 < ρ ≪ δ−2,

and that M is strongly negatively root-Ricci curved if κ ≪
−δ−2. Under these assumptions, Theorem 1.1 shows that the

balls in M̃ grow exponentially up to a large multiple of the

diameter δ . We conjecture that if M is also compact, then

π1(M) has exponential growth or equivalently that M has pos-

itive volume entropy.

In light of Ballmann’s result that a non-positively curved

manifold M of finite volume satisfies the weak Tits alterna-

tive, we ask whether a compact, almost-non-positively curved,

strongly negatively root-Ricci curved manifold must contain

a non-abelian free group in its fundamental group. We con-

jecture at the very least that an almost non-positively curved

manifold with strongly negative root-Ricci curvature cannot

be a torus. This would be an interesting complement to the re-

sult of Lohkamp [11] that every closed manifold of dimension

n ≥ 3 has a Ricci-negative metric.

4. THE PROOF

In this section, we will prove Theorem 1.1. The basic idea

is to analyze the energy functional that arises in a standard

proof of Günther’s inequality, with the aid of the change of

variables R = A2 −ρI.

Using the Jacobi field model, Theorem 1.1 is really a re-

sult about linear ordinary differential equations. The normal

bundle to the geodesic γ(t) can be identified with Rn−1 using

parallel transport. Then an orthogonal vector field y(t) along

γ is a Jacobi field if it satisfies the differential equation

y′′ =−R(t)y, (6)

where

R(t) = R(·,u(t), ·,u(t))
is the sectional curvature matrix and u(t) = γ ′(t) is the unit

tangent to γ at time t. By the first Bianchi identity, R(t) is a

symmetric matrix. The candle function s(r) = s(γ,r) is deter-

mined by a matrix solution

Y ′′ =−R(t)Y Y (0) = 0 (7)

by the formula

s(r) =
detY (r)

detY ′(0)
.

Its logarithmic derivative is given by

(logs(r))′ =
s′(r)
s(r)

=
(detY )′(r)

detY (r)
.

All invertible solutions Y (r) to (7) are equivalent by right mul-

tiplication by a constant matrix, and yield the same value for

s(r) and its derivative. In particular, if we let Y (r) = I, then

the logarithmic derivative simplifies to

(logs(r))′ = Tr(Y ′(r)).

Following a standard proof of Günther’s inequality

[7][Thm. 3.101], we define an energy functional whose mini-

mum, remarkably, both enforces (7) and minimizes the objec-

tive (logs(r))′. Namely, we assume Dirichlet boundary con-

ditions

y(0) = 0 y(r) = v,

and we let

E(R,y) =

∫ r

0

(

〈y′,y′〉− 〈y,Ry〉
)

dt. (8)

By a standard argument from calculus of variations, the crit-

ical points of E(R,y) are exactly the solutions to (6) with the

given boundary conditions.

We can repeat the same calculation with the matrix solution

Y (0) = 0 Y (r) = I,

with the analogous energy

E(R,Y ) =

∫ r

0

(

〈Y ′,Y ′〉− 〈Y,RY〉
)

dt.

Here the inner product of two matrices is the Hilbert-Schmidt

inner product

〈A,B〉= Tr(AT B).

Moreover, if Y is a solution to (7), then E(R,Y ) simplifies to

(logs(r))′ by integration by parts:

E(R,Y ) =
∫ r

0

(

〈Y ′,Y ′〉− 〈Y,RY〉
)

dt

= 〈Y (r),Y ′(r)〉− 〈Y(0),Y ′(0)〉−
∫ r

0
〈Y,Y ′′+RY〉dt

= 〈I,Y ′(r)〉− 0− 0= Tr(Y ′(r)) = (logs(r))′.

Thus, our goal is to minimize E(R,Y ) with respect to both Y

and R. We want to minimize with respect to Y in order to solve

(7). Then for that Y , we want to minimize with respect to R to

prove Theorem 1.1.

The following proposition tells us that (6) or (7) has a

unique solution with Dirichlet boundary conditions, and that

it is an energy minimum. Here and below, recall the matrix

notation A ≤ B (which was already used for Ricci curvature in

the introduction) to express the statement that B−A is positive

semidefinite.



6

Proposition 4.1. If R ≤ ρI, and if y is continuous with an L2

derivative, then E(R,y) is a positive definite quadratic func-

tion of y when
√

ρr < π , with the Dirichlet boundary condi-

tions y(0) = y(r) = 0.

Proof. Let

E(ρ ,y) = E(ρI,y) =

∫ r

0

(

〈y′,y′〉−ρ〈y,y〉
)

dt

be the corresponding energy of the comparison case with con-

stant curvature ρ . (Recall that the ultimate comparison is with

constant curvature κ , but to get started we use ρ instead.)

Then

E(ρ ,y)≤ E(R,y),

so it suffices to show that E(ρ ,y) is positive definite. When

ρ = 0, E(ρ ,y) is manifestly positive definite. Otherwise

E(ρ ,y) is diagonalized in the basis of functions

yk(t) = sin(
πkt

r
)

with k ≥ 1. A direct calculation yields

E(ρ ,yk) =
π2k2 − r2ρ

r
> 0,

as desired.

Remark. There is also a geometric reason that the comparison

case E(ρ ,y) is positive definite: When ρ = 0, a straight line

segment in Euclidean space is a minimizing geodesic; when

ρ > 0, the same is true of a geodesic arc of length r < π/
√

ρ
on a sphere with curvature

√
ρ . We give a direct calculation

to stay in the spirit of ODEs.

Proposition 4.2. Let ρ and r < π/
√

ρ be fixed and suppose

that R≤ ρI. Then s(r) and (logs(r))′ are both bounded below.

Proof. We will simply prove the usual Günther inequality. As

in the proof of Proposition 4.1,

E(R,Y )≥ E(ρ ,Y )

for all R and Y with Y (0) = 0 and Y (r) = I. For each fixed

R, the minimum of the left side is (logs(r))′. The minimum

of the right side (which may occur for a different Y , but no

matter) is (logsρ(r))
′, which is a positive number. We obtain

the same conclusion for s(r) by integration.

Proposition 4.3. Assume the hypotheses of Proposition 4.2.

If R is L∞, then the solution Y to (7) is bounded uniformly, ı.e.,

with a bound that depends only on ||R|| (and r and ρ). Also

Y ′ is uniformly bounded and Lipschitz, and Y ′′ is uniformly

bounded and L∞.

Proof. In this proposition and nowhere else, it is more conve-

nient to assume the initial conditions

Ŷ (0) = 0 Ŷ ′(0) = I

rather than Dirichlet boundary conditions. The fact that Ŷ and

its derivatives are uniformly bounded, with these initial con-

ditions, is exactly Grönwall’s inequality. To convert back to

Dirichlet boundary conditions, we want to instead bound

Y (t) = Ŷ (t)Ŷ (r)−1.

This follows from Proposition 4.2 by the formula

Ŷ (r)−1 = adj(Ŷ (r))det(Ŷ (r))−1,

where adj denotes the adjugate of a matrix.

Finally, Y ′′(t) is L∞ and uniformly bounded because Y (t)
satisfies (7). Also Y ′(0) = Ŷ (r)−1 is uniformly bounded, so

we can integrate to conclude that Y ′(t) is uniformly bounded

and Lipschitz.

To prove Theorem 1.1, we want to minimize (logs(r))′ or

E(R,Y ) over all R such that

R ≤ ρI Tr(
√

ρI−R)≥ α
def
=
√

ρ −κ. (9)

To better understand this minimization problem, we make a

change of variables. Let A(t) be a symmetric matrix such that

R(t) = ρI−A(t)2 Tr(A(t))≥ α. (10)

In order to know that every R(t) is realized, we can let

A =
√

ρI−R

be the positive square root of ρI −R. Even if A is not pos-

itive semidefinite, R(t) still satisfies (9). This simplifies the

optimization problem: in the new variable A, the semidefinite

hypothesis can be waived.

Now the energy function becomes:

E(A,Y ) =

∫ r

0

(

〈Y ′,Y ′〉− 〈Y,(ρ −A2)Y 〉
)

dt

=

∫ r

0

(

Tr((Y ′)TY ′)+Tr(Y T A2Y )−ρ Tr(Y TY )
)

dt.

For the moment, fix Y and let Z =YY T . Then as a function of

A,

E(A) =

∫ r

0
Tr(A2YY T )dt + constant.

Since YY T is symmetric and strictly positive definite, E is a

positive-definite quadratic function of A, and we can directly

solve for the minimum as

A =
α(YY T )−1

Tr((YY T )−1)
. (11)

Even though we waived the assumption that A is positive

semidefinite, minimization restores it as a conclusion. More-

over,

Tr(A) = Tr(
√

ρI−R) = α. (12)
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Proposition 4.4. With the hypotheses (9), and if r < π/
√

ρ , a

minimum of (logs(r))′ exists. Equivalently, a joint minimum

of E(A,Y ) or E(R,Y ) exists.

Proof. The above calculation lets us assume (12), which

means that R is uniformly bounded. By Proposition 4.3, so

is Y ′′. We can restrict to a set of pairs (R,Y ′′) of class L∞,

which is compact in the weak-* topology by the Banach-

Alaoglou theorem. Equivalently, we can restrict to a uni-

formly bounded, uniformly Lipschitz set of pairs (∫ R,Y ′),
which is compact in the uniform topology by the Arzela-

Ascoli theorem. By integration by parts, we can write

E(R,Y ) =

∫ r

0

(

〈Y ′,Y ′〉− 〈Y,RY〉
)

dt.

= [〈Y,(∫ R)Y 〉]r0 +
∫ r

0

(

〈Y ′,Y ′〉dt + 2〈Y ′,(∫ R)Y 〉
)

dt.

Thus the energy is continuous as a function of ∫ R and Y ′ and

has a minimum on a compact family.

Proposition 4.4 reduces Theorem 1.1 to solving the follow-

ing non-linear matrix ODE, which is obtained by combining

(7) and (11):

Y ′′ = (A2 −ρ)Y A =
α(YY T )−1

Tr((YY T )−1)

Y (0) = 0 Y (r) = I.

Proposition 4.4 tells us that this ODE has at least one solution;

we will proceed by finding all solutions with the given bound-

ary conditions. First, if we suppress the boundary condition

Y (r) = I, the solutions Y (t) are invariant under both left and

right multiplication by O(n− 1). So we can write

Y (t) =UŶ (t)V,

where Ŷ ′(0) is diagonal with positive entries. In this case Â(0)
is also diagonal, and we obtain that Ŷ (t) is diagonal for all t,

and with positive entries because the entries cannot cross 0.

Therefore UV = I, because the identity is the only diagonal

orthogonal matrix with positive entries.

So we can assume that Y = Ŷ , with diagonal entries

λ1(t),λ2(t), . . . ,λn−1(t)> 0.

Each of these entries satisfies the same scalar ODE,

w′′ = β (t)w−1 −ρw w(0) = 0 w(r) = 1, (13)

where

β (t) =
α

Tr((Y (t)Y (t)T )−1)2
.

We claim that if w > 0, then w′ > 0 as well. If ρ = 0, then this

is immediate. Otherwise, a positive solution w(t) satisfies

w(t)>
sin(

√
ρt)

sin(
√

ρr)
w′(t)>

√
ρ cos(

√
ρt)

sin(
√

ρr)
,

because the right side is the solution to w′′ = −ρw with the

same boundary conditions. So we obtain that w′ > 0 provided

that

r <
π

2
√

ρ
.

(This is where we need half of the distance allowed in the

usual form of Günther’s inequality.)

To complete the proof, consider the phase diagram in the

strip [0,1]× (0,∞) of the positive solutions (w(t),w′(t)) to

(13). If we let x = w(t), then the total elapsed time to reach

x = 1 is

r =

∫ 1

0

dt

dx
dx =

∫ 1

0

dx

w′(w−1(x))
,

which is a positive integral. On the other hand, if w1 and w2

are two distinct solutions with

w1(0) = w2(0) = 0 w′
1(0)> w′

2(0),

then the solutions cannot intersect in the phase diagram; we

must have

w′
1(w

−1
1 (x))> w′

2(w
−1
2 (x))> 0.

So two distinct, positive solutions to (13) cannot reach w(t) =
1 at the same time, which means with given the boundary con-

ditions that there is only one solution. Thus, the diagonal en-

tries λk(t) of Y (t) are all equal. In conclusion, Y , A, and R all

are isotropic at the minimum of the logarithmic candle deriva-

tive (logs(r))′. This additional property implies the estimate

for (logs(r))′ immediately. (Note that when R is isotropic, the

hypothesis becomes equivalent to K ≤ κ , the usual assump-
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