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A refinement of Günther’s candle inequality

Benoı̂t R. Kloeckner∗
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Greg Kuperberg†
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Dedicated to our friends Sylvain Gallot and Albert Schwarz

We introduce an upper bound on the curvature of a Riemannian manifold which is in between a sectional

curvature bound and a Ricci curvature bound. We prove that this condition implies Günther’s inequality on the

candle function of a manifold, thus bringing the inequality closer in form to the complementary inequality due

to Bishop.

1. INTRODUCTION

Two important relations between curvature and volume

in differential geometry are Bishop’s inequality [1, §11.10],

which is an upper bound on the volume of a ball form a lower

bound on Ricci curvature, and Günther’s inequality [7], which

is a lower bound on volume from an upper bound on sectional

curvature. Bishop’s inequality has a weaker hypothesis then

Günther’s inequality and can be interpreted as a stronger re-

sult. The asymmetry between these inequalities is a counter-

intuitive fact of Riemannian geometry.

In this article, we will partially remedy this asymmetry. We

will define another curvature statistic, the root-Ricci function,

denoted
√

Ric, that also implies Günther’s inequality1. It is

not a tensor because it involves square roots of sectional cur-

vatures, but it shares other properties with Ricci curvature.

To motivate the
√

Ric function, consider the geometry of

the complex hyperbolic plane CH2. In this 4-manifold, the

volume of a ball of radius r is

Vol(B(r)) =
π2

2
sinh(r)4 ∼ π2

32
exp(4r).

The corresponding sphere surface volume has a factor of

sinh(2r) from the unique complex line containing a given

geodesic γ , which has curvature−4, and two factors of sinh(r)
from the totally real planes that contain γ , which have curva-

ture −1. Günther’s inequality and Bishop’s inequality yield

the estimates

π2

48
exp(3

√
2r)& Vol(B(r))&

π2

12
exp(3r).

The true volume growth of balls in CH2 (and in some other

cases, see Section 3.1) is governed by the average of the

square roots of the negatives of the sectional curvatures. This

is how we define the
√

Ric function, for each tangent direction

u at each point p in M.

∗ benoit.kloeckner@ujf-grenoble.fr
† greg@math.ucdavis.edu; Supported by NSF grant CCF #1013079.
1 We take the “ic” in the Ricci tensor Ric to mean taking a partial trace of the

Riemann tensor R, but we take a square root first.

More precisely, let M be a Riemannian n-manifold with

sectional curvature K ≤ ρ for some constant ρ ≥ 0. For any

unit tangent vector u ∈UTpM with p ∈ M, we define

√
Ric(ρ ,u)

def
= ρ −

(

1

n− 1
Tr(

√

ρ −R(·,u, ·,u))
)2

.

Here R(u,v,w,x) is the Riemann curvature tensor expressed

as a tetralinear form, and the square root is the positive square

root of a positive semidefinite matrix or operator. The slightly

complicated definition is an average of curvatures, analogous

to the natural quantity Ric/(n − 1), but conjugated by the

transformation f (x) =
√

ρ − x.

The best version of either Günther’s or Bishop’s inequality

is not directly a bound on the volume of balls in M, but rather

a bound on the logarithmic derivative of the candle function

of M. Let γ = γu be a geodesic curve in M that begins at p =
γ(0) with initial velocity u ∈UTpM. Then the candle function

s(γ,r) is by definition the Jacobian of the map u 7→ γu(r). In

other words, it is defined by the equations

dq = s(γu,r)dudr q = γu(r) = expp(ru),

where dq is Riemannian measure on M, dr is Lebesgue mea-

sure on R, and du is Riemannian measure on the sphere

UTpM. This terminology has the physical interpretation that

if an observer is at the point q in M, and if a unit candle is at

the point p, then 1/s(γ,r) is its apparent brightness2.

The candle function sκ(r) of a geometry of constant curva-

ture κ is given by

sκ (r) =



















(

sin(
√

κr)√
κ

)n−1

κ > 0

rn−1 κ = 0
(

sinh(
√
−κr)√−κ

)n−1

κ < 0

.

Theorem 1.1. Let M be a Riemannian n-manifold with K ≤ ρ
for some ρ ≥ 0, and suppose that

√
Ric(ρ ,u)≤ κ

2 Certain distant objects in astronomy with known luminosity are called stan-

dard candles and are used to estimate astronomical distances.
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for some κ < ρ and for every u ∈UTM. Then

(logs(γ,r))′ ≥ (logsκ(r))
′

for every geodesic γ in M, when 2r
√

ρ ≤ π .

The prime denotes the derivative with respect to r.

When ρ = 0, the conclusion of Theorem 1.1 is identical

to Günther’s inequality for manifolds with K ≤ κ , but the hy-

pothesis is strictly weaker. When ρ > 0, the curvature hypoth-

esis is weaker, but the length restriction is stronger. The usual

version of the inequality holds up to a distance of π/
√

κ , ı.e.,

for our distance restriction, we replace κ with ρ and divide by

2.

ACKNOWLEDGMENTS

The authors would like to thank John Hunter and Sylvain

Gallot for helpful conversations.

2. RELATIONS BETWEEN CONDITIONS

2.1. Candle conditions

We first mention two interesting properties of the candle

function s(γ,r):

1. s(γ,r) vanishes when γ(0) and γ(r) are conjugate

points.

2. The candle function is symmetric: If γ̄(t) = γ(r − t),
then s(γ̄ ,r) = s(γ,r).

The second property is not trivial to prove, but it is a folk-

lore fact in differential geometry [17][Lem. 5] (and a standard

principle in optics).

Say that a manifold M is Candle(κ) if the inequality

s(γ,r) ≥ sκ(r)

holds for all γ,r; or LCD(κ), for logarithmic candle deriva-

tive3, if the logarithmic condition

(logs(γ,r))′ ≥ (logsκ(r))
′

holds for all γ,r; or Ball(κ) if the volume inequality

Vol(B(p,r))≥ Vol(Bκ(r))

holds for all p and r; here Bκ denotes a ball in the simply

connected space of constant curvature κ . (If κ > 0, then the

first two conditions are only meaningful up to the distance

π/
√

κ between conjugate points in the comparison geometry.)

We also write Candle(κ , ℓ), LCD(κ , ℓ), and Ball(κ , ℓ) if the

same conditions hold up to a distance of r = ℓ.

3 And not to be confused with liquid crystal displays.

The logarithmic derivative (logs(γ,r))′ of the candle func-

tion has its own important geometric interpretation: it is the

mean curvature of the geodesic sphere with radius r and cen-

ter p = γ(0) at the point γ(r). So it also equals ∆r, where ∆
is the Laplace Beltrami operator, and r is the distance from

any point to p. So if M is LCD(κ), then we obtain the com-

parison ∆r ≥ ∆κ rκ , and the statement that spheres in M are

more extrinsically curved than spheres in a space of constant

curvature κ .

2.2. Curvature and volume comparisons

If κ ≤ ρ = 0, then we can organize the comparison proper-

ties of an n-manifold M that we have mentioned as follows:

K ≤ κ =⇒
√

Ric(0)≤ κ =⇒ LCD(κ) =⇒
Candle(κ) =⇒ Ball(κ , inj(M)) (1)

where inj(M) is the injectivity radius of M. The first impli-

cation is elementary; the second one is Theorem 1.1; and the

third and fourth ones are also elementary, given by integrating

with respect to length r.

If κ ≤ ρ > 0, then

K ≤ κ =⇒
√

Ric(ρ)≤ κ =⇒ LCD(κ ,
π

2
√

ρ
)

=⇒ Candle(κ ,
π

2
√

ρ
) =⇒ Ball(κ , ℓ),

where

ℓ= min(inj(M),
π

2
√

ρ
).

Finally, for all ℓ > 0,

Candle(κ , ℓ) =⇒ Ric ≤ (n− 1)κg,

where g is the metric on M, because

s(γ,r) = rn−1 −Ric(γ ′(0))rn +O(rn+1). (2)

In particular, in two dimensions, all of the implications in (1)

are equivalences.

2.3. Curvature bounds

If ρ ′ > ρ , then
√

Ric(ρ)≥
√

Ric(ρ ′). In addition, the root-

Ricci function converges to Ricci curvature for large ρ :

lim
ρ→+∞

√
Ric(ρ ,u) =

1

n− 1
Ric(u,u) ∀u ∈UTM.

The corresponding limit ρ → ∞ in Theorem 1.1 has the in-

terpretation that the upper bound looks more and more like

a bound based on Ricci curvature at short distances. This is

an optimal limit in the sense that Ricci curvature is the first

non-trivial derivative of s(γ,r) at r = 0 by (2). On the other
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hand, without the length restriction, the limit ρ → ∞ is impos-

sible. That limit would be exactly Bishop’s inequality with

Ricci curvature, but such an inequality is not generally true.

Finally we can deduce a root-Ricci upper bound from a

combination of sectional curvature and Ricci bounds. The

concavity of the square root function implies that given the

value of Ric(u,u), the largest possible value of
√

Ric(ρ ,u)
is achieved when R(·,u, ·,u) has one small eigenvalue and all

other eigenvalues equal. For all κ ≤ α ≤ ρ , we then get a

number β = β (κ ,α,ρ), decreasing in α , such that

K ≤ α and Ric ≤ β g =⇒
√

Ric(ρ)≤ κ . (3)

An explicit computation yields the optimal value

β = ρ +(n− 2)α−
(

(n− 1)
√

ρ −κ − (n− 2)
√

ρ −α
)2
.

In particular,

β (κ ,ρ ,ρ) = (n− 1)2κ − n(n− 1)ρ

β (κ ,κ ,ρ) = (n− 1)κ .

In order to deduce
√

Ric(ρ)≤ κ from classical curvature up-

per bounds, we can therefore ask for the strong condition

K ≤ κ (which implies Ric ≤ (n−1)κg), or ask for the weaker

K ≤ ρ together with Ric ≤ β (κ ,ρ ,ρ)g, or choose from a con-

tinuum of combined bounds on K and Ric. Moreover, the

above calculation holds pointwise, so that in (3), α can be a

function on UTM instead of a constant.

3. APPLICATIONS

Most of the established applications of Günther’s inequal-

ity are also applications of Theorem 1.1. The subtlety is that

different applications use different criteria in the chain of im-

plications (1). We give some examples. In general, let M̃

denote the universal cover of M.

3.1. Exponential growth of balls

The first application of our result is to estimate the rate of

growth of balls, as already given by (1). This is related to the

volume entropy of a closed Riemannian manifold M, which is

by definition

hvol(M)
def
= lim

r→+∞

logVolBM̃(p,r)

r
.

By abuse of notation, we will use this same volume entropy

expression when M = M̃ is simply connected rather than

closed. Since a hyperbolic space of curvature κ < 0 and di-

mension n has volume entropy
√
−κ(n−1), Theorem 1.1 im-

plies that when K ≤ 0,

hvol(M)≥ (n− 1)
√
−κ+ (4)

where

κ+ = sup
u

√
Ric(0,u).

The estimate (4) is sharp for every rank one symmetric

space. (Recall that the rank one symmetric spaces are the

generalized hyperbolic spaces RHn, CHn, HHn, and OH2.)

The reason is that the operator R(·,γ ′, ·,γ ′) is constant along

any geodesic γ . So by the Jacobi field equation (Section 4),

the volume of B(p,r) has factors of sinh
√

λkr for each eigen-

value λk of R(·,γ ′, ·,γ ′). So we obtain the estimate

VolB(p,r) ∝ ∏
k

(sinh
√

λkr)∼ exp(κ+).

Theorem 1.1 as stated does not yield an optimal estimate

of the volume entropy of higher rank, nonpositively curved

symmetric spaces. In this case R(·,γ ′, ·,γ ′) is still constant,

but the growth of balls is governed by the directions in which

the root-Ricci curvature is the most negative, and
√

Ric(0) is

not constant. For example, if M = RH2 ×RH2 and u makes

an angle of 0 ≤ θ < π/2 with either factor of RH2, then

√
Ric(0,u) =−1

9
(sinθ + cosθ )2.

In this case, hvol(M) is determined by the angle θ = π/4.

However, we can apply Theorem 1.1 to a cone of geodesic

rays γ instead of to an entire ball. Then a bound on√
Ric(0,γ ′(t)) yields the LCD property for s(γ, ·). We get that

if M is a non-positively curved locally symmetric space, then

hvol(M) = (n− 1)
√
−κ−, (5)

where

κ− = inf
u

√
Ric(0,u).

This estimate can be computed directly, and shows that Theo-

rem 1.1 is sharp in this modified sense.

Manning [10] showed that if M is a closed Riemannian

manifold, then the topology entropy htop(M) of its geodesic

flow is at least hvol(M). He also showed that if M is non-

positively curved, then the two entropies are equal. These are

theorems about the condition Ball(κ) as applied to M̃. So,

Theorem 1.1 says that when K ≤ 0 (which is necessary to de-

fine κ+ = sup
√

Ric(0)),

htop(M)≥ (n− 1)
√
−κ+.

Another consequence of the exponential growth of balls

in M̃ is that if M is closed, then π1(M) has exponential

growth. In particular, if K ≤ κ < 0, then π1(M) has exponen-

tial growth. This result was found independently by Milnor

[12] and earlier by Schwarz [13]. In his paper, Milnor conjec-

tured that the K ≤ κ condition can be weakened. In particular,

he asked whether it is enough for Ric ≤ (n− 1)κg. It is not

clear whether he meant this hypothesis alone or in conjunc-

tion with K ≤ 0. In the former case, Lohkamp [9] showed

that every manifold of dimension n ≥ 3 has a Ricci-negative

metric. In the latter case, Eschenburg and O’Sullivan [5] may

have been the first to establish that M̃ has exponential volume

growth; see also [2, 14, 16]. Theorem 1.1 is another proof of

this fact by (3).
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3.2. Isoperimetric inequalities

Yau [3, 17] established that if M is complete, simply con-

nected, and has K ≤ κ < 0, and D ⊆ M is a domain, then D

satisfies a linear isoperimetric inequality:

Vol(∂D)≥ (n− 1)
√
−κ Vol(D).

His proof only uses a weakening of condition LCD(κ),
namely that

(logs(γ,r))′ ≥ (n− 1)
√
−κ.

So Theorem 1.1 yields Yau’s inequality when
√

Ric(0)≤ κ .

McKean [11] showed that the same weak LCD(κ) condi-

tion also implies a spectral gap

λ0(M̃)≥ −κn2

4

for the first eigenvalue of the positive Laplace-Beltrami op-

erator acting on L2(M). This spectral gap is deduced from a

Poincaré inequality that is of interest in and of itself:

∫

M
f 2 ≤ 4

−κn2

∫

M
|∇ f |2

for all smooth, compactly supported functions f . McKean

stated his result under the hypothesis K ≤ κ ; it has been gen-

eralized by Setti [14] and Borbély [2] to mixed sectional and

Ricci bounds; Theorem 1.1 provides a further generalization.

Note in particular that Borbély’s result is optimal for complex

hyperbolic spaces (and we get the same bound in this case),

but we get better bounds for quaternionic and octonionic hy-

perbolic spaces.

Croke [4] establishes the isoperimetric inequality for a

compact non-positively curved 4-manifold M with unique

geodesics. In other words, if B is a Euclidean 4-ball with

Vol(M) = Vol(B),

then

Vol(∂M)≥ Vol(∂B).

His proof only uses the condition Candle(0), in fact only for

maximal geodesics between boundary points4. So, Croke’s

theorem also holds if

√
Ric(

( π

2L

)2

)≤ 0,

where L is the maximal length of a geodesic; for any given

L, this curvature bound is weaker than K ≤ 0. It is a

well-known conjecture that if M is n-dimensional and non-

positively curved, then the isoperimetric inequality holds. The

conjecture can be attributed to Weil [15], because his proof in

4 We credit [4] as our original motivation for this article.

dimension n = 2 initiated the subject. More recently, Kleiner

[8] established the case n = 3. We are led to ask whether

Weil’s isoperimetric conjecture still holds for Candle(0) or

LCD(0) manifolds.

In a forthcoming paper, we will partially generalize Croke’s

result to signed curvature bounds. In this generalization,

Candle(κ) and LCD(κ) play an essential role and Theo-

rem 1.1 yields a weakening of the needed curvature assump-

tions.

4. THE PROOF

In this section, we will prove Theorem 1.1. The basic idea

is to analyze the energy functional that arises in a standard

proof of Günther’s inequality, with the aid of the change of

variables R = A2 −ρI.

Using the Jacobi field model, Theorem 1.1 is really a re-

sult about linear ordinary differential equations. The normal

bundle to the geodesic γ(t) can be identified with Rn−1 using

parallel transport. Then an orthogonal vector field y(t) along

γ is a Jacobi field if it satisfies the differential equation

y′′ =−R(t)y, (6)

where

R(t) = R(·,u(t), ·,u(t))

is the sectional curvature matrix and u(t) = γ ′(t) is the unit

tangent to γ at time t. By the first Bianchi identity, R(t) is a

symmetric matrix. The candle function s(r) = s(γ,r) is deter-

mined by a matrix solution

Y ′′ =−R(t)Y Y (0) = 0 (7)

by the formula

s(r) =
detY (r)

detY ′(0)
.

Its logarithmic derivative is given by

(logs(r))′ =
s′(r)
s(r)

=
(detY )′(r)

detY (r)
.

All invertible solutions Y (r) to (7) are equivalent by right mul-

tiplication by a constant matrix, and yield the same value for

s(r) and its derivative. In particular, if we let Y (r) = I, then

the logarithmic derivative simplifies to

(logs(r))′ = Tr(Y ′(r)).

Following a standard proof of Günther’s inequality

[6][Thm. 3.101], we define an energy functional whose mini-

mum, remarkably, both enforces (7) and minimizes the objec-

tive (logs(r))′. Namely, we assume Dirichlet boundary con-

ditions

y(0) = 0 y(r) = v,
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and we let

E(R,y) =

∫ r

0

(

〈y′,y′〉− 〈y,Ry〉
)

dt.

By a standard argument from calculus of variations, the crit-

ical points of E(R,y) are exactly the solutions to (6) with the

given boundary conditions.

We can repeat the same calculation with the matrix solution

Y (0) = 0 Y (r) = I,

with the analogous energy

E(R,Y ) =

∫ r

0

(

〈Y ′,Y ′〉− 〈Y,RY〉
)

dt.

Here the inner product of two matrices is the Hilbert-Schmidt

inner product

〈A,B〉= Tr(AT B).

Moreover, if Y is a solution to (7), then E(R,Y ) simplifies to

(logs(r))′ by integration by parts:

E(R,Y ) =
∫ r

0

(

〈Y ′,Y ′〉− 〈Y,RY〉
)

dt

= 〈Y (r),Y ′(r)〉− 〈Y (0),Y ′(0)〉−
∫ r

0
〈Y,Y ′′+RY〉dt

= 〈I,Y ′(r)〉− 0− 0= Tr(Y ′(r)) = (logs(r))′.

Thus, our goal is to minimize E(R,Y ) with respect to both Y

and R. We want to minimize with respect to Y in order to solve

(7). Then for that Y , we want to minimize with respect to R to

prove Theorem 1.1.

The following proposition tells us that (6) or (7) has a

unique solution with Dirichlet boundary conditions, and that

it is an energy minimum. Here and below, recall the matrix

notation A ≤ B (which was already used for Ricci curvature in

the introduction) to express the statement that B−A is positive

semidefinite.

Proposition 4.1. If R ≤ ρI, and if y is continuous with an L2

derivative, then E(R,y) is a positive definite quadratic func-

tion of y when
√

ρr < π , with the Dirichlet boundary condi-

tions y(0) = y(r) = 0.

Proof. Let

E(ρ ,y) = E(ρI,y) =

∫ r

0

(

〈y′,y′〉−ρ〈y,y〉
)

dt

be the corresponding energy of the comparison case with con-

stant curvature ρ . (Recall that the ultimate comparison is with

constant curvature κ , but to get started we use ρ instead.)

Then

E(ρ ,y)≤ E(R,y),

so it suffices to show that E(ρ ,y) is positive definite. When

ρ = 0, E(ρ ,y) is manifestly positive definite. Otherwise

E(ρ ,y) is diagonalized in the basis of functions

yk(t) = sin(
πkt

r
)

with k ≥ 1. A direct calculation yields

E(ρ ,yk) =
π2k2 − r2ρ

r
> 0,

as desired.

Remark. There is also a geometric reason that the comparison

case E(ρ ,y) is positive definite: When ρ = 0, a straight line

segment in Euclidean space is a minimizing geodesic; when

ρ > 0, the same is true of a geodesic arc of length r < π/
√

ρ
on a sphere with curvature

√
ρ . We give a direct calculation

to stay in the spirit of ODEs.

Proposition 4.2. Let ρ and r < π/
√

ρ be fixed and suppose

that R≤ ρI. Then s(r) and (logs(r))′ are both bounded below.

Proof. We will simply prove the usual Günther inequality for

As in the proof of Proposition 4.1,

E(R,Y )≥ E(ρ ,Y )

for all R and Y with Y (0) = 0 and Y (r) = I. For each fixed

R, the minimum of the left side is (logs(r))′. The minimum

of the right side (which may occur for a different Y , but no

matter) is (logsρ (r))
′, which is a positive number. We obtain

the same conclusion for s(r) by integration.

Proposition 4.3. Assume the hypotheses of Proposition 4.2.

If R is L∞, then the solution Y to (7) is bounded uniformly, ı.e.,

with a bound that depends only on ||R|| (and r and ρ). Also

Y ′ is uniformly bounded and Lipschitz, and Y ′′ is uniformly

bounded and L∞.

Proof. In this proposition and nowhere else, it is more conve-

nient to assume the initial conditions

Ŷ (0) = 0 Ŷ ′(0) = I

rather than Dirichlet boundary conditions. The fact that Ŷ and

its derivatives are uniformly bounded, with these initial con-

ditions, is exactly Grönwall’s inequality. To convert back to

Dirichlet boundary conditions, we want to instead bound

Y (t) = Ŷ (t)Ŷ (r)−1.

This follows from Proposition 4.2 by the formula

Ŷ (r)−1 = adj(Ŷ (r))det(Ŷ (r))−1,

where adj denotes the adjugate of a matrix.

Finally, Y ′′(t) is L∞ and uniformly bounded because Y (t)
satisfies (7). Also Y ′(0) = Ŷ (r)−1 is uniformly bounded, so

we can integrate to conclude that Y ′(t) is uniformly bounded

and Lipschitz.

To prove Theorem 1.1, we want to minimize (logs(r))′ or

E(R,Y ) over all R such that

R ≤ ρI Tr(
√

ρI−R)≥ α
def
=

√

ρ −κ. (8)
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To better understand this minimization problem, we make a

change of variables. Let A(t) be a symmetric matrix such that

R(t) = ρI−A(t)2 Tr(A(t))≥ α.

In order to know that every R(t) is realized, we can let

A =
√

ρI−R

be the positive square root of ρI −R. Even if A is not pos-

itive semidefinite, R(t) still satisfies (8). This simplifies the

optimization problem: in the new variable A, the semidefinite

hypothesis can be waived.

Now the energy function becomes:

E(A,Y ) =
∫ r

0

(

〈Y ′,Y ′〉− 〈Y,(ρ −A2)Y 〉
)

dt

=
∫ r

0

(

Tr((Y ′)TY ′)+Tr(Y T A2Y )−ρ Tr(Y TY )
)

dt.

For the moment, fix Y and let Z =YY T . Then as a function of

A,

E(A) =
∫ r

0
Tr(A2YY T )dt + constant.

Since YY T is symmetric and strictly positive definite, E is a

positive-definite quadratic function of A, and we can directly

solve for the minimum as

A =
α(YY T )−1

Tr((YY T )−1)
. (9)

Even though we waived the assumption that A is positive

semidefinite, minimization restores it as a conclusion. More-

over,

Tr(A) = Tr(
√

ρI−R) = α. (10)

Proposition 4.4. With the hypotheses (8), and if r < π/
√

ρ , a

minimum of (logs(r))′ exists. Equivalently, a joint minimum

of E(A,Y ) or E(R,Y ) exists.

Proof. The above calculation lets us assume (10), which

means that R is uniformly bounded. By Proposition 4.3, so

is Y ′′. We can restrict to a set of pairs (R,Y ′′) of class L∞,

which is compact in the weak-* topology by the Banach-

Alaoglou theorem. Equivalently, we can restrict to a uni-

formly bounded, uniformly Lipschitz set of pairs (∫ R,Y ′),
which is compact in the uniform topology by the Arzela-

Ascoli theorem. By integration by parts, we can write

E(R,Y ) =

∫ r

0

(

〈Y ′,Y ′〉− 〈Y,RY〉
)

dt.

= [〈Y,(∫ R)Y 〉]r0 +
∫ r

0

(

〈Y ′,Y ′〉dt + 2〈Y ′,(∫ R)Y 〉
)

dt.

Thus the energy is continuous as a function of ∫ R and Y ′ and

has a minimum on a compact family.

Proposition 4.4 reduces Theorem 1.1 to the equations (7)

and (9) combine to make a non-linear matrix ODE:

Y ′′ = (A2 −ρ)Y A =
α(YY T )−1

Tr((YY T )−1)

Y (0) = 0 Y (r) = I.

Proposition 4.4 tells us that this ODE has at least one solution;

we will proceed by finding all solutions with the given bound-

ary conditions. First, if we suppress the boundary condition

Y (r) = I, the solutions Y (t) are invariant under both left and

right multiplication by O(n− 1). So we can write

Y (t) =UŶ (t)V,

where Ŷ ′(0) is diagonal with positive entries. In this case Â(0)
is also diagonal, and we obtain that Ŷ (t) is diagonal for all t,

and with positive entries because the entries cannot cross 0.

Therefore UV = I, because the identity is the only diagonal

orthogonal matrix with positive entries.

So we can assume that Y = Ŷ , with diagonal entries

λ1(t),λ2(t), . . . ,λn−1(t)> 0.

Each of these entries satisfies the same scalar ODE,

w′′ = β (t)w−1 −ρw w(0) = 0 w(r) = 1, (11)

where

β (t) =
α

Tr((Y (t)Y (t)T )−1)2
.

We claim that if w > 0, then w′ > 0 as well. If ρ = 0, then this

is immediate. Otherwise, a positive solution w(t) satisfies

w(t)>
sin(

√
ρt)

sin(
√

ρr)
w′(t)>

√
ρ cos(

√
ρt)

sin(
√

ρr)
,

because the right side is the solution to w′′ = −ρw with the

same boundary conditions. So we obtain that w′ > 0 provided

that

r <
π

2
√

ρ
.

(This is where we need half of the distance allowed in the

usual form of Günther’s inequality.)

To complete the proof, consider the phase diagram in the

strip [0,1]× (0,∞) of the positive solutions (w(t),w′(t)) to

(11). If we let x = w(t), then the total elapsed time to reach

x = 1 is

r =

∫ 1

0

dt

dx
dx =

∫ 1

0

dx

w′(w−1(x))
,

which is a positive integral. On the other hand, if w1 and w2

are two distinct solutions with

w1(0) = w2(0) = 0 w′
1(0)> w′

2(0),
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then the solutions cannot intersect in the phase diagram; we

must have

w′
1(w

−1
1 (x))> w′

2(w
−1
2 (x)) > 0.

So two distinct, positive solutions to (11) cannot reach w(t) =
1 at the same time, which means with given the boundary con-

ditions that there is only one solution. Thus, the diagonal en-

tries λk(t) of Y (t) are all equal. In conclusion, Y , A, and R all

are isotropic at the minimum of the logarithmic candle deriva-

tive (logs(r))′.
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