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Abstract. 27 

We present a dynamic model of continental lithosphere deformation under extension or 28 

compression, focusing on the role of an effective mechanical parameter called ―necking level‖ 29 

or ―necking depth‖, a widely used concept in basin modelling studies. Though it has generally 30 

been assumed that ―necking depth‖ depends strongly upon the rheological structure of the 31 

lithosphere (especially the depth distribution of its strong layers), such a dependency has never 32 

been demonstrated. Our model, which accommodates small deformations of a thin 33 

inhomogeneous plate induced by in-plane as well as by mantle boundary forces (applied to the 34 

model sides and base, respectively), shows that ―necking depth‖ is a function of the horizontal 35 

position and depends mainly on the relative thicknesses and strengths of the rigid layers in the 36 

uppermost crust and below the Moho. Using different yield strength envelopes we 37 

demonstrate that the final structure of the lithosphere formed as a result of deformation and its 38 

consequent isostatic adjustment can be closely approximated by a model with a flat necking 39 

level. In the process of extension and compression of the continental lithosphere all 40 

boundaries, including the topographic surface and the Moho, deform. As a result, the total 41 

disturbance of the isostatic equilibrium state (specified as a load) is only a part of the 42 

topographic weight. Estimates of the correct load can be made using the depth to the necking 43 

level inferred from lithosphere structure, composition and thermal state. The final topography 44 

of lithospheric interfaces depends on both necking depth and effective flexural rigidity. Any 45 

attempt to estimate simultaneously strain distribution, necking depth and effective flexural 46 

rigidity, however, represents an ill-posed problem and is not possible without reliance upon 47 

strong independent assumptions constraining lithosphere structure. 48 

49 
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1. Introduction 50 

The topography of continents – both uplifted orogens and downwarped sedimentary basins 51 

– results from a series of processes: tectonic deformations, erosion, sedimentation, isostatic 52 

response of the lithosphere, etc. and, naturally, there is a long history of their quantitative 53 

modelling. Numerical models typically incorporate complexities such as the rheological 54 

effects of pressure, temperature and strain rate, compositional variations, inherited structures 55 

and so forth. In such models the lithosphere is considered as a rheologically layered entity 56 

with lateral heterogeneity [e.g. Mitrovica et al., 1989; Braun and Beaumont, 1989a; Bassi, 57 

1991; Govers and Wortel, 1999 and many others]. These kinds of complex models have not 58 

fully replaced simple kinematic ones postulating a relationship between horizontal shortening 59 

or lengthening and the amplitude of vertical displacement of lithospheric boundaries [e.g. 60 

McKenzie, 1978; Weissel and Karner, 1989; Kooi et al., 1992; van der Beek et al., 1994; 61 

Spadini et al., 1995; Cloetingh et al., 1995]. Indeed, although kinematic models often do not 62 

have a fully appropriate physical background, they are still used in quantitative modelling 63 

studies, for example in sedimentary basin analysis. These models are especially convenient 64 

because they permit formulation of effective algorithms for solving inverse problems, such as 65 

reconstruction of the history of sedimentary basin formation using data on infill thickness, age 66 

and lithology and on the structure of underlying crust. Using horizontally varying strain these 67 

models are capable of reproducing complex tectonic structures forming in laterally 68 

inhomogeneous lithosphere and compare well different geophysical and geological data. 69 

One of the earliest ways in which the lithosphere (or crust) was idealised in order to 70 

facilitate modelling was a thin elastic plate. It was used for the first time by Vening Meinesz 71 

[1931] and later by Gunn [1947] as a proxy for modelling the response to loading. This simple 72 

model, reintroduced by Walcott (1970), is still widely in use today (e.g. Jordan and Watts, 73 

2005; Leever et al., 2006; Pérez-Gussinyé et al., 2007). The key parameter characterising the 74 



Page 4 of 47

Acc
ep

te
d 

M
an

us
cr

ip
t

 

 4 

rheology (or strength) of the lithosphere and, hence, its isostatic response to external loads is 75 

then the effective elastic thickness Te (simply linked to the effective flexural rigidity of the 76 

plate). Of course, Te is an ―effective‖ parameter that serves as a proxy for what undoubtedly is 77 

a more complex lithospheric rheological structure. Several studies were made in which Te was 78 

compared to how more complex, more realistic, numerical rheological models of lithosphere 79 

responded, in order to understand better the controls on Te. Burov and Diament [1995; 1996], 80 

for example, found that non-elastic effects and possible decoupling between layers in the 81 

lithosphere could play an important role in how a layered rheology was expressed as effective 82 

Te value, especially in continental lithosphere. 83 

Thin elastic plate theory has provided a very successful way of modelling regional isostatic 84 

response, in which only vertical forces (surface load and buoyancy) are balanced, although 85 

sometimes horizontal (in-plane) forces have also been incorporated into the mechanical 86 

equilibrium equation [e.g. Cloetingh et al., 1985; Stephenson and Lambeck, 1985]. When 87 

dealing with active tectonic deformation in extensional or compressional processes, of course, 88 

the horizontal dynamics must be considered as well. Braun and Beaumont (1989b) found that 89 

the results of their numerical modelling, incorporating complex rheologies, could be 90 

interpreted as if extension occurred in two stages. The first stage included the deformation by 91 

external forces in the absence of isostatic rebound and the second one was the isostatic 92 

response of the lithosphere to that deformation. They hypothesized that within the lithosphere 93 

there exists a flat level that does not move vertically during the first stage. For this level they 94 

introduced the term ―necking depth‖ – or zn. Necking depth was suggested to depend on depth 95 

variations of lithospheric strength.  96 

Later, the necking depth was used as a mechanical parameter in numerous basin modelling 97 

studies (involving backstripping of sedimentary loads and forward modelling of thermal 98 

subsidence; cf. Cloetingh et al., 1995), in which zn controlled the geometry of the rifted 99 
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lithosphere at the end of the active extensional period while Te controlled its response to 100 

subsequent sedimentary and thermal loads.  101 

Cloetingh et al. [1995] considered zn, like Te, to be a proxy for the actual, more complex, 102 

rheology of the lithosphere and, accordingly, that insights into the rheology of the lithosphere 103 

could be gained by looking at possible systematic relationships between Te and zn (given other 104 

―known‖ parameters such as crustal and lithosphere thicknesses, heat flow, and tectonic age). 105 

The results of this endeavour were somewhat ambiguous. On the basis of numerical 106 

modelling, Govers and Wortel [1999] concluded that there is no one-to-one relationship 107 

between depth to the necking level and strength distribution within the lithosphere.  108 

However, the use of the necking level appeared to be successful for detailed analyses of the 109 

structure and evolution of numerous sedimentary basins (for bibliography see Cloetingh et al., 110 

[1995]) and in explaining the formation of rift shoulders [e.g. Braun and Beaumont, 1989b 111 

and many others]. Indeed, the necking-level model approximates well the numerical results 112 

obtained adopting complex lithospheric rheologies [Mitrovica et al., 1989; Braun and 113 

Beaumont, 1989a; Bassi, 1991; and others]. Accordingly, it is of interest to analyse further the 114 

meaning of ―necking level‖ in the context of more realistic lithospheric models, and to 115 

investigate its possible relationship to other tectonic parameters such as crustal thickness, heat 116 

flow or tectonic age, and, indeed, Te. Because of the inherent ambiguities in the complex 117 

numerical approaches to this problem [cf. Govers and Wortel, 1999], we choose to apply an 118 

analytical approach, reducing the number of free parameters and considering only several 119 

archetypical yield strength envelopes [Ranalli and Murphy, 1987] characterizing different 120 

lithospheric structures.  121 

In the following part of the paper we focus on a dynamic description of continental 122 

lithosphere deformation under extension or compression. We have adopted the two stage 123 

scheme of Braun and Beaumont [1989b], mentioned above (deformation and consequent 124 



Page 6 of 47

Acc
ep

te
d 

M
an

us
cr

ip
t

 

 6 

isostatic rebound) and investigate the position of the level at which the first stage vertical 125 

displacement is equal to zero. Even though this level exists for both compressional and 126 

extensional deformations, we retain Braun and Beaumont’s term ―necking level‖ although 127 

they initially introduced it to describe extensional necking of the lithosphere only. We do 128 

simply this because the term is already well established in the geodynamics literature. 129 

We present the general analysis of the problem and give an analytical solution for small 130 

deformations of a thin inhomogeneous elastic plate by forces applied to its side boundaries or 131 

to its bottom. This solution can be presented in the form of deformation around a necking 132 

surface )(xz
n

 which, in general, is not flat. In the last part of the paper we present and discuss 133 

some results of our numerical calculations and show that a model with a flat equivalent 134 

necking depth constz
n
  provides a very close approximation to the exact solution after the 135 

isostatic adjustment stage. We then discuss which data are required to estimate the depth to 136 

the necking level and effective elastic rigidity of the lithosphere simultaneously. 137 

 138 

2. Kinematic necking-level model.  139 

Let us now briefly recall the approach frequently used in modelling lithospheric 140 

deformation by intraplate forces [e.g. Kooi et al., 1992; van der Beek et al., 1994; Spadini et 141 

al., 1995]. The lithosphere is assumed to be composed of one or several layers, such that: (a) 142 

U - the horizontal component of velocity or displacement vector within each layer does not 143 

depend upon the vertical coordinate z, and (b) the lithosphere deforms about some necking 144 

level constz
n
 , which does not move vertically during intraplate deformation in the absence 145 

of isostatic rebound. In the particular case of one layered homogeneous lithosphere, the 146 

horizontal (U) and vertical (W) components of velocity or displacement vector are related by 147 

the equation: 148 
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W x z t z z
U x t

xn( , , ) ( )
( , )

  



 (1) 149 

(for the sake of simplicity, hereafter we consider only 2D problems with horizontal Ox axis 150 

and Oz axis directed upward). The deformation about the necking level is a first stage of the 151 

previously mentioned two-stage scheme. The second stage being the restoration of the 152 

isostatic balance which could have been disturbed during the first stage. It is implicitly 153 

assumed that the position of zn  depends upon the depth distribution of mechanical properties 154 

of the lithosphere, which in its turn is mostly determined by temperature profile and lithology 155 

[Ranalli and Murphy, 1987, Afonso and Ranalli, 2004]. Cloetingh et al. (1995) estimated 156 

zn to vary from 4 to 35 km and made an attempt to relate its depth to the thermal age of the 157 

lithosphere, its thickness and strain rate at the stage of extension. Considering these results, 158 

Fernandez and Ranalli (1997) concluded that ―the relationship between strength envelopes 159 

and kinematic level of necking is more complicated than previously thought‖. They classified 160 

the necking-level based model as a kinematic one with rheological constraints.  161 

Moreover, kinematic considerations presented in Appendix A show that this 162 

relationship cannot be found by a purely kinematic approach and calls either for additional 163 

assumptions (for example, of local isostatic equilibrium giving a 2D analogue of the 164 

McKenzie [1978] model or the presence of a flat necking level, etc.) or for consideration of 165 

forces and strain-stress relationships, i.e. for a dynamic approach.  166 

 167 

3. Dynamic model. 168 

3.1 Statement of the problem 169 

The rheology of the medium (i.e. the equations coupling the stress and the strain and/or 170 

strain rate tensors) must be assigned when constructing a dynamic model. The rheology of the 171 

lithosphere depends upon several factors including rock compositions, temperature, pressure, 172 
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stress distribution and magnitude, strain rate [e.g. Goetze and Evans, 1979; Ranalli and 173 

Murphy, 1987; Kohlsted et al., 1995; Afonso and Ranalli, 2004]. In recent years, various yield 174 

strength envelopes accounting for these factors were proposed. They mostly vary by the 175 

assumption of what has been adopted as a constant: the strain rate [e.g. Ranalli and Murphy; 176 

1987; Carter and Tsenn, 1987; Cloetingh & Banda, 1992], external forces [Kusznir, 1991] or 177 

some combination [Ershov and Stepheson, 2006]. Fig.1 shows five typical yield strength 178 

envelopes for different thermal regime and lithospheric structure accounting for heat 179 

generation in the upper crust and for a strain rate    10 14  s1 . Following Turcotte and 180 

Shubert [2002] the steady-state continental lithosphere isotherm is assigned: 181 

 kzqTzT ms /)(  khQhz rradr /))/exp(1( 2 , where Ts  is the surface temperature,   182 

is the average crustal density, Qrad  is the radioactive heat generation per rock mass unit at the 183 

top of the crust, k is a thermal conductivity, qm  is heat flow at the base of the lithosphere, hr  - 184 

characterize the decrease of the radioactive heat generation with depth. For all envelopes, 185 

Ts   K270 , k  335.  KgradmW  , = 3103   3mkg , Qrad =8.8  10 10  kgW . For all the 186 

models, hr =10 km, except for the model «Hot» where hr =7.1 km. Other parameters are given 187 

in Table 1. Resulting strength envelopes «Shield», «Collisional» and «Hot» are close to 188 

models S1, C1 and H1 of Ranalli and Murphy [1987] and «Normal» and «Alpine» are close to 189 

those of Cloetingh et al [1995].  190 

To construct these envelopes, we used the linear Coulomb frictional law [Sibson, 1974] 191 

which is mostly constrained by experimental data obtained for conditions corresponding to the 192 

upper crust. For higher pressure and temperature it overestimates the strength of rocks [see 193 

experimental data compiled in Ranalli and Murphy, 1987 and Kohlstedt et al., 1995]. To 194 

account for this effect, we limited the strength of the upper mantle to 1 GPa. We use these 195 
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strength profiles to characterize the relative position and thickness of ―rigid‖ and ―compliant‖ 196 

layers within the different types of the lithosphere.  197 

According to numerous geological and geophysical studies, discontinuities generally 198 

accommodate compression or extension of rigid layers, hence elastic or plastic deformations 199 

are comparatively small. However, when a rigid layer contains numerous discontinuities, an 200 

equivalent continuous medium can be used for a generalized description of the macroscale 201 

deformations, although the choice of the stress-strain relationships is still open. Below we use 202 

linear stress-strain relationships to investigate the problem of lithosphere extension - 203 

compression. For a Newtonian compressible stratified medium the problem can be 204 

investigated using the equations obtained in Mikhailov et al. [1996; 1999]. 205 

Simple constitutive laws have been successfully applied to model many geodynamic 206 

processes. An impressive collection of such results can be found, for example, in Turcotte and 207 

Schubert [2002]. In our case, a simple model permits investigation of the main characteristics, 208 

and their dependence on rheology, of extensional and compressional structures of the 209 

lithosphere. In particular, the topography of the necking surface in our model is close to that 210 

of Govers and Wortel [1999], which was found using a dynamic numerical modelling 211 

techniques and more realistic rheologies. Thus, the complex rheological behaviours, transient 212 

effects, and so on, incorporated in many numerical models can be considered to produce 213 

second order effects. Our results simply demonstrate the validity of the necking level model, 214 

which has indeed been successfully used for modelling many sedimentary basins [see 215 

Cloetingh et al., 1995 for an overview].  216 

 217 

3.2 Effective elastic model.  218 

Let us use a heterogeneous pure elastic model to consider relatively fast deformations of 219 

the lithosphere by intraplate forces. Such a model provides an analogue (effective) description 220 
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and it is used below to specify large scale irreversible deformations including sliding along 221 

faults. The effective elastic models are widely used to describe deformation in non-elastic 222 

media [e.g. Lomakin, 1976; Ranalli, 1994; Burov and Diament, 1995; 1996]. To investigate 223 

the mechanical response to the loading due to extension or compression one may consider the 224 

problem of isostatic equilibrium of a thin elastic plate floating on a non-viscous substratum 225 

[Turcotte and Shubert, 2002]. Since deformations by intraplate forces are supposed to be 226 

irreversible and non-elastic, they can be considered separately from the associated isostatic 227 

response. As before, these processes will be referred as stage (a) and stage (b). For both 228 

stages, the purely elastic model only provides an approximation of the real, more complicated, 229 

processes, its parameters are effective and cannot be determined in laboratory (for stage (b) 230 

this question was studied in detail by Burov and Diament [1995, 1996)]). Moreover, 231 

parameters in problems (a) and (b) describe different physical mechanisms of deformation and 232 

as a result have different values. Fortunately, as it is shown below, the solution of problem (a) 233 

depends only on the relative distribution of the effective Young’s modulus with depth and to 234 

characterize the depths of compliant and rigid layers we used the yield stress envelopes (Fig. 235 

1). In problem (b), the behaviour of the lithosphere can be specified by the flexural rigidity 236 

estimated from a combined analysis of gravity and topography.  237 

In our model inhomogeneous mechanical properties of the lithosphere have to be assigned 238 

at the onset of deformation. Such inhomogeneity can be intrinsic (e.g. vertical rheological 239 

stratification of the lithosphere) or formed after intraplate forces are applied, as a result of 240 

faulting or rock damage. Subsequently, the mechanical properties of the lithosphere change 241 

only as a result of material displacements; accordingly, all transient effects resulting, for 242 

example, from time varying temperatures are ignored.  243 

Let us first consider problem (a). We adopt the following notations: E x z( , )  - apparent 244 

Young's modulus,   - Poisson's ratio assumed to be equal to 0.5 in order to obtain formulas 245 
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similar to (1), U x z( , )  and W x z( , )  are the horizontal and vertical components of the 246 

displacement vector. For the sake of simplicity, we assume that at t  0  the lithosphere was in 247 

local isostatic equilibrium (equation A3 in Appendix A) and the initial topography of the top 248 

of the lithosphere ( 0lz ), the Moho ( 0Mohoz ) and the asthenosphere ( 0az ) were flat. 249 

In Appendix B we solve the problem of a deformation of the lithosphere by intraplate forces 250 

considering only small deformations of a thin plate. This implies that we have assumed (1) 251 

that L  - equal to the characteristic scale of variations of E x z( , )  and U x z( , )  along horizontal 252 

axisOx  - is much larger than H - the characteristic scale of variations of E x z( , )  and the 253 

vertical component W x z( , )  along vertical axis Oz  (this yields a small parameter 254 

  H L 1); and (2) that - magnitudes of displacements are also small, i.e. characteristic 255 

scales for the horizontal and vertical components of displacements are of the order of 256 

u L0

2  , w H0

2  .  257 

We then proceed to use dimensionless values by introducing characteristic scales and 258 

expand all components of displacement and stress in power series of the squared small 259 

parameter (
2
). 260 

Assuming further that the distribution of apparent Young’s modulus can be presented 261 

as )z(F)x(E)z,x(E 11  where )z(F1  is a non-dimensional function that can be associated 262 

with the yield strength profile, we arrive at an analytical solution, which, in the first expansion 263 

terms, is analogous to a 2D state of plane stress [e.g. Turcotte and Schubert, 2002, section 264 

3.5). But to find the displacement fields and position of the necking surface, it is necessary to 265 

analyse the equations for the second order terms that strongly depend on vertical stratification 266 

of the model.  267 

From the obtained equations, it follows that the first term of the expansion of the 268 

horizontal component of displacement U1  does not depend on the vertical coordinate z, i.e. 269 
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U U x1 1 ( ) . As a result, the vertical component of displacement is related to the horizontal 270 

strain through an unknown function )(1 xf , which can be presented in a form close to equation 271 

(1):  272 

x

U
xzzxf

x

U
zW n







 1
1

1
1 ))(()(  ,      (2)  273 

where z xn ( )  is the position of the necking surface.  274 

In Appendix B we obtain equation for z xn ( )  by considering second order terms of the 275 

expansion (equation B9). To express this equation in a more useful form for our analysis, let 276 

us introduce the depth: 277 

dz)z,x(Edzz)z,x(E)x(d
0l

0a

0l

0a

z

z

z

z

1   .      (3) 278 

By analogy with the centre of mass this depth can be identified as the centre of rigidity of 279 

every vertical section. Then, introducing n-th central moment ( 2n ) in respect to the centre 280 

of rigidity as: 281 

dz)z,x(Edz))x(dz()z,x(E)x(c
0l

0a

0l

0a

z

z

z

z

n

1n        (4) 282 

one transforms equation for the necking surface (B9) to the form:  283 

0)dz(
x2

c

x

)dz(
c 1n

2

1x2

1x

2

3

2

1x1n

2

2 










.   (5) 284 

where 
x

U1
1x




   is the main component of the strain in x-direction.  285 

During the first stage the model has to be somehow fixed relative to the vertical axis 286 

Oz by assigning an asymptotic value to )x(zn  at the model side boundaries or at x . 287 

The final result (after isostatic rebound) does not depend on this asymptotic value. Indeed, any 288 

shift of the asymptote only produces an additional constant in the total perturbation of the 289 
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initial isostatic balance (see below); thus, during the isostatic adjustment stage the lithosphere 290 

will return to the same place independent of its flexural rigidity. We place the asymptotic 291 

value at the centre of rigidity 1d  whose depth is different for different yield strength envelopes 292 

used in this study.  293 

From equation (5) it follows that in the general case when x const1 , the necking surface 294 

)(xzn  is not flat. Furthermore, this equation is non-linear relative to )(xzn ; thus, when 295 

approaching the final solution, corresponding to some )x(1x  after two steps (i.e. deforming 296 

first to 2/)x(1x  and then to the same value again) one finds that )(xzn  is different at the 297 

first and the second steps. All this is in good agreement with the results of the numerical 298 

modelling of Govers and Wortel [1999]. Note that, in the particular case of a horizontally 299 

homogeneous plate, )(),( zEzxE  ; thus (equation (B6c) of the Appendix B)  x a1  const . 300 

In this specific case, when a  0 (extension), equation (5) has the solution:  1n dz const. 301 

When a  0 (compression), in addition to  1n dz const, a periodic solution corresponding 302 

to a loss in stability exists as well (if the compressional force is big enough). In this particular 303 

case the necking level does not exist.  304 

Our solution allows calculating the necking surface depth (equation 5) as well as the 305 

position of the top and the base of the lithosphere when the distribution of strength (apparent 306 

Young’s modulus) and intraplate force 
x

)x(U
)x(e

3

4
F 1

pl



 , where dz)z,x(E)x(e

)x(z

)x(z

l

a

 , 307 

(equation B6c of Appendix B) are known.  308 

For applications of the model to actual observations it is important that, instead of Fpl  and 309 

the distribution of )x(e  (which are difficult to assign a priori), the horizontal component of 310 

the strain tensor )(1 xx  can be assigned. This function is related to the final topographies of 311 

the lithospheric interfaces and can be found by modelling real data. Moreover, when assigning 312 
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)(1 xx , in addition to the deformation by in-plane forces, our solution also describes the 313 

deformation by force applied to the base of the lithosphere (by mantle drag). See Appendix B 314 

for more details.  315 

Let us consider now the isostatic response stage (problem (b)). If at t  0  the lithosphere 316 

was in local isostatic equilibrium, then the disturbance of the equilibrium state due to a 317 

deformation by external forces (referred below as a load) at time t is 318 

q x t g x z t dz z x t z

z x t

z x t

x z dz
z

z

a a a

a

l

a

l

( , ) [ ( , , ) ( ( , ) )

( , )

( , )

( , , ) ]       0

0

0

0 ,  (6) 319 

where g is the gravity acceleration, a  is the asthenosphere density, 0lz , 0az , )(xzl and )(xza  320 

are the topography of the top of the lithosphere and the asthenosphere before and after 321 

deformation. Using the definition of the free mantle (floating) level (A2) and considering that, 322 

under assumed conditions,  x1  is independent from the coordinate z, one obtains: 323 

 )1/())((),( 11 xxfmna zxzgtxq   .     (7) 324 

This means that the load due to an extensional or compressional deformation varies in 325 

direct proportion with the spacing between the necking and the floating (free mantle) levels 326 

and does not depend on the density distribution within the lithosphere.  327 

To describe the isostatic response we use a model of a thin homogeneous elastic plate [e.g. 328 

Turcotte and Schubert, 2002]: 329 

 )x(qg
dx

d
D a4

4

s  


       (8), 330 

where sD  is the flexural rigidity of the lithosphere, (x) - the magnitude of elastic flexure 331 

under the load q x( ) calculated from equation (7). For dependence of the flexural rigidity on 332 

the rheology of the lithosphere see Burov and Diament [1995, 1996]. 333 

 334 
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4. Results and discussion. 335 

Now we present and discuss some results of our model. As mentioned above, in order to 336 

arrive at our analytical solution we assumed for stage (a) that the distribution of the apparent 337 

Young’s modulus at t=0 can be approximated as )z(F)x(E)z,x(E 11  where )z(F1  is a 338 

non-dimensional function, which can be associated with the yield strength profile. In this case 339 

the depth to the centre of rigidity 1d  and all central moments nc  are constant. 340 

 341 

4.1. The necking surface z xn ( )  is almost flat in the area of main deformation; thus z xn ( )  can 342 

be replaced by an equivalent flat necking level zn

eqv .  343 

According to equations (4)-(5), the depth to the necking surface as well as the 344 

disturbance of the isostatic equilibrium (specified by value of load q) depend on the relative 345 

depth distribution of the mechanical properties of the lithosphere, but not on their absolute 346 

values. The yield stress envelopes (Fig. 1) characterize the distribution of rigid and compliant 347 

layers and can be used to assign thicknesses and relative strengths of rigid layers at the top of 348 

the crust and below the Moho (i.e. function )z(F1 ) within the lithosphere. We computed the 349 

depth to the necking surface shown in Fig. 2 for the five types of lithosphere (Fig.1) with the 350 

horizontal component of strain tensor specified as  351 

)xbexp(a 2

001x   x
0
,       (9) 352 

where parameter a0  governs the amplitude of extension or compression; b0  determines the 353 

final width of the tectonic structures as well as (through equation B6c) the horizontal 354 

gradients of mechanical properties of the lithosphere at the periphery of the tectonic structure. 355 

The coordinate origin is at the centre of the model. Fig. 2A and 2B show the position of the 356 

necking surface for narrow (b0=3.2 km
-2

) and wide (b0=0.8 km
-2

) areas of extension, 357 

respectively, when the asymptotic value for z xn ( )  is assigned as the centre of rigidity d1. (The 358 



Page 16 of 47

Acc
ep

te
d 

M
an

us
cr

ip
t

 

 16 

choice of asymptotic value does not affect the final result after isostatic rebound, as explained 359 

above). All curves z xn ( )  are nearly flat beneath the area of main deformations. Their forms 360 

become more complicated only at the periphery of the tectonic structure where 1x  is close to 361 

its asymptotic value x
0  (the same behaviour was obtained by Govers and Wortel, 1999). As a 362 

consequence, the solution of the elastic problem with the necking surface )x(zn  provided by 363 

(2)-(8) can be closely approximated by a solution with an equivalent flat necking level 364 

z constn

eqv  . Replacement of )x(zn  by a constant value affects both the vertical component 365 

of displacement W1 (equation 2) and the load (7). Therefore, the depth of this equivalent level 366 

is close to but not equal to the depth of the necking surface at the centre of the considered 367 

structure.  368 

It is important to emphasise that the complex geometry of )x(zn  and of all 369 

lithospheric boundaries at the periphery of the area of main deformation almost completely 370 

vanish after isostatic adjustment. Therefore, the model with a flat necking level approximates 371 

considerably better the final geometry after isostatic rebound than after the extension of the 372 

first stage. This can be understood in terms of the main deformation occurring in a weaker 373 

zone (pre-existing or formed during deformation), while the surrounding non-deformed areas 374 

are stronger. Deformation in the transition zone, where the mechanical properties of the 375 

lithosphere rapidly change, is actually more complicated than predicted by the model with a 376 

flat necking level. The solid curve on Fig. 3A shows the topography of the top of the 377 

lithosphere having an ―Alpine‖ yield strength profile and extended around the exact necking 378 

level calculated from equation (5). The graph marked by filled circles corresponds to a flat 379 

necking level at 19.8 km depth, which provides the best fit for the final result after isostatic 380 

rebound. Basin shoulders, during extension, relative to )x(zn  move upward and, therefore, it 381 
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is more difficult to match the results of the first stage (before isostatic rebound) by the model 382 

with a flat necking level.  383 

The more complicated necking )x(zn  manifested in the geometry of all other 384 

interfaces produces a more complicated perturbation of isostatic equilibrium in comparison to 385 

the model with flat necking level (Figure 3 B). Finally, after isostatic rebound, the 386 

topographies of the top of the lithosphere as well as all other boundaries (not shown) become 387 

almost identical (Figure 3 C).  388 

Note that at the borders of the extensional basin, all of the lithosphere moves upward 389 

and, accordingly, the necking surface )x(zn  for the ―Alpine‖ lithosphere is situated above the 390 

top of the model (curve A1 on Fig. 2). The same behaviour was found in Govers and Wortel 391 

[1999]  even on their figures when necking level came out of the limits of the crust, it was 392 

fixed at the nearest crustal boundary.  393 

 Thus we conclude that even if the topography of the necking surface significantly 394 

changes close to the edges of the tectonic structure (where x  approaches zero on Fig. 2 A, B), 395 

the equivalent constant necking level provides a close final solution everywhere. For all tested 396 

cases, the difference in topography of all boundaries calculated for )x(zn  and 
eqv

nz  after 397 

isostatic rebound never exceeds 1% of displacement in the centre of the structure.  398 

 399 

4.2. The depth to the necking level mainly depends on the relative thickness of the rigid layers 400 

in the upper crust and below the Moho.  401 

According to formulae (3)-(4), when a depth distribution of mechanical properties in 402 

the lithosphere has odd symmetry about the centre of rigidity 1d , parameter 3c  is equal to 403 

zero. In this particular case the necking surface is flat and situated at the depth 1n dz  . Hence, 404 

the topography of the necking surface depends on asymmetry of the function ),( zxE  about 405 
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the centre of rigidity 1d , i.e. it mainly depends on the relative thickness and ―strength‖ of rigid 406 

layers in the upper crust and below the Moho and only slightly depends on the mechanical 407 

properties of the middle part of the crust. As a result, the necking levels for a one-layered and 408 

a two-layered crustal model are very close, especially within the region of main deformation.  409 

Fig.2 A, B presents the shape of the necking surface for the five different yield strength 410 

profiles shown in Fig. 1. This figure reveals the dependence of this shape with the crustal 411 

thickness and the thermal state of the lithosphere. Comparison of these curves with the 412 

corresponding strength diagrams suggests that the thicker and deeper the ―strong‖ layer is 413 

below the Moho - the deeper the centre of rigidity is. As a consequence, the deeper the 414 

equivalent flat necking level 
egv

nz  is.  415 

It is easy to calculate the position of the centre of rigidity when the lithosphere consists 416 

of n-layers each having a constant strength iF)z(F  , when i1i zzz  . It is equal to: 417 





i str

iimid

i
T

zF
zd1 ,  418 

where 1iii zzz   is the thickness of the i-th layer, 2/)zz(z 1ii

mid

i   is the depth to its 419 

central part and  
k

kkstr zFT  is total (integrated) strength of the lithosphere. In other words, 420 

the depth to 1d  and consequently to 
egv

nz , is equal to the weighted average of all layer’s 
mid

iz . 421 

In particular, when the lithosphere contains two equally rigid layers with a negligibly small 422 

strength for all other layers the necking level is situated just in between them. If one of these 423 

layers is thicker and stronger than the others, the necking level shifts closer to the stronger 424 

layer. This result coincides with the guess of Spadini et al [1995] and with the numerical 425 

calculations of Govers and Wortel [1999].  426 

The depth to the necking surface slightly depends on the amount of strain. If parameter 427 

0a  in equation (9) varies within two orders of magnitude, the depth to the necking surface 428 
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beneath the area of main deformation moves less than 10%. Probably, the strong dependence 429 

of the depth to the necking surface with the extensional ratio )(x  found for very small 430 

values of )(x  in Govers and Wortel (1999) can be explained by the difficulty to numerically 431 

integrate a finite element solution for a very small extensional ratio. In their calculations for 432 

05.1)( x  the depth to the necking surface was more stable and changed in the same range 433 

of 10%. 434 

 435 

4.3 The depth to the equivalent necking level 
egv

nz  depends on the horizontal gradients of 436 

mechanical properties of the lithosphere and falls in the range from 1d  to 231 c2cd   (see 437 

equations (3)-(4)).  438 

Parameter b0  in equation (9) controls the horizontal gradients of strain x , which 439 

through equation (B6c) is related to the horizontal gradients of the vertically averaged 440 

apparent Young’s modulus )x(e . The smaller is b0  the smaller are these gradients. 441 

Fig. 2B shows the necking surface for the same previously studied five models, but for 442 

smaller b0  value. Under the assumed mode of deformation (9) it results in a wider area of 443 

extension and smaller gradients of x  and )x(e  (the horizontal component of the strain tensor 444 

x  is shown at the top of the plots). As follows from equation (5), when the width of a 445 

structure tends to infinity (i.e. 00 b  in equation (9)) the second derivatives in equation (5) 446 

tend to zero, in turn, tending to move z xn ( )  to the centre of rigidity 1d . On the contrary, when 447 

a width of a structure tends to zero, the term in brackets in equation (5) tends to zero faster 448 

than the second derivatives and z xn ( )  becomes flat and equal to 231 2ccd  . As a result, the 449 

depth to the equivalent necking level 
egv

nz  depends on the horizontal gradients of mechanical 450 
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parameters and falls in the interval [ 1d , 231 c2cd  ]. These intervals are shown in Fig. 1 by 451 

arrows starting at 1d  and ending at 231 c2cd  .  452 

It is important to note that, although the equivalent necking depth can be located 453 

anywhere within these depth intervals since these intervals are quite narrow (see Fig. 1), the 454 

necking level depth can be used to characterize the rheological properties of the 455 

lithosphere.Fig. 4 shows the shape of the lithosphere upper and lower boundaries, as well as 456 

crustal thickness and depth to the necking surface computed for the ―Normal‖ lithosphere 457 

model (Fig. 1). As a result of extension and consequent isostatic rebound, uplifts (shoulders) 458 

are formed at the both sides of an extensional basin. The height of shoulders depends on 459 

horizontal gradient of mechanical properties at the periphery of tectonic structure. For the 460 

same maximum extension ratio, the lower gradient results in the wider structure and both the 461 

depth to the necking level and the amplitude of the elastic flexure depend on the width of this 462 

gradient zone.  463 

 464 

4.4. The simultaneous estimation of the strain distribution )(xx , depth to the equivalent 465 

necking level zn

eqv  and effective flexural rigidity of the lithosphere Ds  is an ill-posed inverse 466 

problem. 467 

Let us now investigate how to determine simultaneously the strain distribution, depth 468 

to the equivalent necking level and effective elastic rigidity. If it is assumed that the shape of 469 

the upper and lower crustal boundaries )(xzl  and )(xzMoho after deformation are known from 470 

geophysical data, then we get: 471 

)1()()( 00 xx

eqv

nlll zzzxz   ; )1()()( 0,0, xx

eqv

nMohoMohoMoho zzzxz    (10), 472 

where functions with index ―0‖ denote the topography before deformation and )(xx  is the 473 

horizontal component of the strain tensor. The crustal thickness )()()( xzxzxH lMoho   does 474 
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not depend on the depth to zn

eqv , thus the function )1( xx    can be estimated from crustal 475 

thickness before and after deformation. For sedimentary basins an alternative approach is to 476 

use subsidence curves to estimate the extensional ratio  ( ) ( )x xx 1  [McKenzie, 1978]. 477 

Thus, since )(xx  is known (probably with some error), the problem reduces to a 478 

simultaneous estimate of zn

eqv  and the flexural rigidity Ds  from the topography of z xl ( )  and 479 

)(xzMoho . Equations (7)-(8) reveal that this problem has a unique solution. However, the 480 

problem is ill-posed. Solid lines in Fig. 5 show the topographies of the top of the crust and of 481 

the Moho in the area of extension (the horizontal component of the strain x  is shown at the 482 

top of the figure) for the ―Shield‖ model (Fig. 1) when Ds  is equal to 1022 N m . A very close 483 

estimate with slightly different strain (shown by crosses) was obtained for Ds  5 1022  N m . 484 

In this case zn

eqv =21 km, while for the first solution zn

eqv =50 km. In both cases z xl ( )  and the 485 

Moho topography are almost identical and would not be distinguishable with seismic imagery.  486 

This example suggests that there is a trade-off between zn

eqv and Ds  and, as a result 487 

they cannot be simultaneously estimated. To resolve the problem, independent data must be 488 

used. Probably this explains why no clear dependence of the necking level depth on thermal 489 

age and thickness of the lithosphere was previously inferred [Cloetingh et al., 1995].  490 

 491 

4.5. The depth to zn

eqv  can be estimated from seismic, seismological or geothermal data.  492 

Let us now investigate how to estimate zn

eqv . For this, we assume that the lithosphere 493 

has two uniform rigid layers: in the upper crust and below the Moho with thicknesses H1  and 494 

H2  respectively. We note A , the strength ratio (expressed as effective Young’s modulus) of 495 

the two rigid layers. Fig. 6 shows the computed depth to zn

eqv
 versus the thickness of the rigid 496 

layer below the Moho for three different values of A (line 1-3 on Fig.6). In addition, Fig. 6 497 
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also shows two curves: curve 4 corresponds to the necking depth computed as the distance 498 

between the middle of the upper and lower rigid layers ( / / ) /H H HMoho1 22 2 2   and 499 

curve 5 shows the half depth to the base of the lower rigid layer - ( ) /H HMoho  2 2 . As soon 500 

as A is not too large (e.g. less then 5) the depth to zn

eqv  can be reasonably approximated with 501 

these simple relationships. However, in the presence of a very stiff and thick layer in the upper 502 

mantle (see curve 3 for A=10) this does not hold. This approximation can be applied to almost 503 

all extensional and compressional structures since values of A>3, and H H2 1 4  seem 504 

unrealistic for the lithosphere of any tectonically active region (see Fig. 1).  505 

Estimates of the relative thicknesses of the rigid layers H1  and 2H and of their relative 506 

strengths A depend on the assumed geotherm and the composition and rheological parameters 507 

of lithospheric rocks.  508 

 509 

4.6. The load resulting from lithospheric extension or compression does not equal the 510 

topographic weight;  511 

To estimate the flexural rigidity Ds  from equations (7)-(8) one has to specify the load 512 

that causes the flexure. Where Ds  is estimated from gravity data it is generally assumed that 513 

this load is equal to the weight of topography after tectonic deformation but before isostatic 514 

adjustment ( )(xzl ) [see e.g. Forsyth, 1985]. According to equations (7), (10) the load can be 515 

expressed as: q x( )  )])(([ 0llc zxzgK  , where )]()([ 00,0

eqv

nlMohol zzzzK   516 

/)zz( eqv

nfm   )zz( 0,Mohofm  , c  is the average density of the crust, g is the acceleration of 517 

gravity, z fm  is the free mantle level, zl ,0  and zMoho,0  are the topographies of the top of the 518 

crust and of the Moho before deformation (supposed to be flat for the sake of simplicity). 519 

Thus, the load is equal to the weight of the topography only in the specific case zn

eqv
= zMoho,0 . 520 
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Fig. 1 shows the depth interval in which the equivalent necking level is situated. For all types 521 

of strength profiles except ―Shield‖ this interval is situated within the crust; hence, 1K . 522 

Accordingly, all estimates made under the assumption K=1 underestimate the flexural rigidity. 523 

This is consistent with Forsyth [1985] who explained abnormally low values of Ds  estimated 524 

for orogenic belts using topography only (through isostatic admittance) in terms of neglected 525 

subsurface loads.  526 

When the necking surface is situated within the crust, then, during extension or 527 

compression, the topographies of the upper surface and of the Moho and other density 528 

interfaces increase in amplitude simultaneously but in opposite directions, thus partly 529 

isostatically compensating each other. When necking depth coincides with free mantle depth 530 

(which can occur for the lithosphere having ―Hot‖ or ―Alpine‖ yield strength profiles), the 531 

weight of the topography is completely compensated by displacement of the subsurface 532 

density interfaces. In this case, the tectonic structure keeps its initial local isostatic equilibrium 533 

state independent of the flexural rigidity of the lithosphere. Fernandez and Ranalli [1997] 534 

named this depth as ―neutral necking‖.  535 

Fig. 7 demonstrates the topography of lithospheric interfaces formed as a result of 536 

compression of the lithosphere having the ―Normal‖ yield strength profile (Fig. 1). The 537 

zoomed in area shows flexural subsidence at the periphery of the compressional belt. In this 538 

specific case the load (7) is 20% less than the weight of the topography before isostatic 539 

adjustment. This presumably changes the morphology of admittance and coherence functions 540 

routinely used to estimate the flexural rigidity of the lithosphere in such areas. It may also be 541 

relevant to the geodynamics of foreland basin formation [e.g. Mikhailov et al., 1999].  542 

Our study suggests that for structures formed by extension or compression (for 543 

example post-rift basins and foredeeps) the ratio between subsurface and surface loads (equal 544 
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to K-1) can be found a priori using the estimate of the depth to the necking level we discussed 545 

above.  546 

 547 

5. Conclusions.  548 

We investigated the deformation of the continental lithosphere using a model 549 

incorporating small deformations of a thin inhomogeneous plate by boundary forces: in-plane 550 

forces applied to its side boundaries and/or mantle forces applied to its base. Our results 551 

demonstrate that the necking level model is valid at least for a first order description of the 552 

geodynamics of regional tectonic structures such as sedimentary basins, continental rifts, 553 

orogenic belts and passive continental margins. According to this model: 554 

1. The vertical component of displacement W can be expressed as 555 

xn ))x(zz(W  ; where x  is the horizontal component of strain, which does not depend 556 

on the vertical coordinate z; and z xn ( ) is the necking surface, where there is no vertical 557 

displacement before isostatic response takes place.  558 

2. Beneath the area of the most significant deformation, the necking surface is almost 559 

flat. Thus z xn ( )  can be replaced by a constant zn

eqv
. The depth to this constant equivalent 560 

necking level depends on the strength distribution within the lithosphere.  561 

3. The depth to zn

eqv  depends mainly on the relative thickness and strength of the rigid 562 

layers in the uppermost crust and below the Moho.  563 

4. The simultaneous estimation of distribution of strain, equivalent depth to the 564 

necking level and effective flexural rigidity is an ill-posed problem. It may be solved when 565 

eqv

nz  is estimated a priori from independent data on the structure, composition and thermal 566 

state of the lithosphere (e.g., yield strength diagrams), seismic or seismological data. 567 
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5. The load on the lithosphere in extensional or compressional areas must include both 568 

topographic weight and subsurface loads. In the absence of ―geological loads‖ due to lateral 569 

heterogeneity in the lithosphere the total load can be evaluated using estimates of the depth to 570 

the necking level. 571 

 572 

Acknowledgments.  573 

We are grateful to two anonymous reviewers for their thoughtful and provocative comments, 574 

which helped us improve the presentation of our results. VM was supported by grants 09-05-575 

00258 and 09-05-91056 of Russian foundation for Basic Research. This paper is IPGP 576 

contribution XXX. 577 

 578 

579 



Page 26 of 47

Acc
ep

te
d 

M
an

us
cr

ip
t

 

 26 

Appendix A: 580 

More general considerations. 581 

Let us consider a general model of the formation of regional tectonic structures under 582 

extension or compression. We assume that the lithosphere deforms by in-plane (far field) 583 

forces and/or forces applied to its base resulting from mantle dynamics. We introduce the 584 

Cartesian coordinates xOz  with the axis Oz directed upwards and denote the horizontal and 585 

vertical components of the velocity field initiated within the lithosphere by tectonic forces as 586 

U and W respectively. We suppose that U slightly depends upon the vertical coordinate z, so 587 

that in a first approximation  U U x tlith  ( , )  (the assumption is valid for a thin plate, see 588 

Appendix B). We then assume that within the lithosphere and sedimentary cover, the density 589 

( ) depends upon x  and z coordinates and temperature (T), neglecting density/pressure 590 

dependency: 591 

 
d x z t

dt
x z

dT x z t

dt


 

( , , )
( , , )

( , , )
   0      (A1) 592 

where α is the thermal expansion coefficient. We assume also that the following initial 593 

conditions are known at t=0: spatial distribution of temperature - )0,,( zxT , density which 594 

corresponds to this temperature - )0,,( zx , and initial topographies of the top of the 595 

sedimentary cover - )0,(xzs , the lithosphere - )0,(xzl  and the asthenosphere - )0,(xza . To 596 

reduce the length of the formulas we consider initial topographies to be constants: 597 

z z xs s0 0 ( , ),  zl0  z xl ( , )0  and za0  )0,x(za . Let us finally assume that before being 598 

deformed, the lithosphere was in a state of local isostatic equilibrium: 599 

  ( , , ) ( ( , )),
( , )

( , )

x z t dz z z x ta fm a

z x t

z x t

a

s

      when t=0.  (A2) 600 
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Here z fm  corresponds to the so-called floating or free mantle level. Equation (A2) can be used 601 

as a mathematical definition of z fm . Its physical meaning is as follows: it is a level to which 602 

the top of the asthenosphere would rise if rocks of every vertical column were compressed to 603 

the density of the asthenosphere a . 604 

The topography of any material boundary z x tp ( , )  can be determined from the equation: 605 

 








z

t
U x t

z

x
W x z t

p p

p  ( , ) ( , , ) ,     (A3) 606 

assuming that at each instant of time this boundary marks the same material points. For the 607 

top of the sedimentary cover ( z zs ) the term ( , )x t  should be added to the right side of the 608 

equation (A3) to account for material brought by sedimentation or removed by erosion [e.g. 609 

Mikhailov, 1983].  610 

The temperature distribution (T) is given by: 611 

 
dT

dt
T Q x z trad   ( ) ( , , )  ,     (A4) 612 

where ( , )x z  is thermal diffusivity and Qrad  is radioactive heat generation per mass rock 613 

unit.  614 

Combining equations (A1) and (A4) with the equation of continuity yields: 615 

 0
),,(),(

),,(
),,(











z

tzxW

x

txU
tzx

dt

tzxd











.   (A5)  616 

The vertical component of the velocity vector -W x z t( , , )  can be expressed as: 617 

)t,x(f)t,x(

dz)Q)T((
)TT(1x

U
)zz()t,z,x(W

a

s

z

)x(z

rad
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


 















 (A6) 618 

where f x t( , )  is an unknown function that depends on a number of factors including the 619 

mode of deformation and physical properties of the constituent lithospheric rocks. Thus, in 620 



Page 28 of 47

Acc
ep

te
d 

M
an

us
cr

ip
t

 

 28 

general, equations (A4) and (A6) can be used to determine the vertical component of the 621 

velocity vector and the topography of the boundaries if the following functions are available: 622 

(a) horizontal component of velocity vector U x t( , ) , (b) rate of sedimentation and/or erosion 623 

( , )x t , (c) thermal diffusivity ( , )x z , (d) initial conditions, including temperature 624 

T x z( , , )0 , density ( , , )x z 0 , and initial topographies zs0 , zl0  and za0 , and (e) a 625 

supplementary condition to define the unknown function f x t( , ) . 626 

For many tectonic processes one can assume, as McKenzie [1978] did, that the duration of 627 

lithospheric deformation by external forces is considerably shorter than the time required to 628 

re-establish the thermal equilibrium in the lithosphere. If so, two stages of structure formation 629 

can be recognized. Rather short stage I, with a duration of several My, includes two substages 630 

introduced by [Braun and Beaumont, 1989b]: I.1 - deformation by external forces and I.2 - 631 

isostatic rebound (if the equilibrium had been disturbed at stage 1a ). Thus, for stage I equation 632 

(A6) takes a following form: 633 

),()(),,( 1 txf
x

U
zztzxW fm 




 (A7.1) 634 

Stage II, that lasts up to 100 My, besides restoring thermal equilibrium, comprises 635 

sedimentation and erosion and the isostatic movements associated with them: 636 

),(),())((
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txftxdzQT
TT
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  








. (A7.2) 637 

Unknown functions are encountered at both stages. In stage II, the function ),(2 txf  accounts 638 

for the contribution of the material reloading by sedimentation / erosion and into movements 639 

within the lithosphere and asthenosphere related to their intrinsic stress relaxation [e.g. 640 

Mikhailov et al, 1996]. Consideration of 2D or 3D dynamics at the second stage is beyond the 641 

scope of this paper. Below we consider only the first stage of the process – the initial 642 

deformation by external forces (stage I.1) and the consequent isostatic rebound (stage I.2). 643 
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To investigate the role of the function ),(1 txf  in equation (A7.1), let us suppose that at 644 

stage I the deformation rate was small and resulting tectonic structures wide enough to neglect 645 

the contribution of elasticity in the isostatic balance. Hence, the condition of the local isostatic 646 

equilibrium (equation 3 in the main text) can be used as the supplementary equation at any 647 

t 0 . Then, applying the operator 








( )
( , )

( )




t
U x t

x
 to the equation (A2) and combining 648 

the equations (A1)-(A6), one founds 0),(1 txf  and yields to a 2D analogue of the McKenzie 649 

[1978] model.  650 

When the isostatic equilibrium is not local, the function ),(1 txf  does not vanish and 651 

has to be determined or defined. For example, based on results of numerical modelling, Braun 652 

and Beaumont [1989] postulated that under extension the lithosphere deforms about a 653 

horizontal necking level nz  (in the absence of gravity, before the stage of the isostatic 654 

rebound, i.e. at stage I.1); thus actually they assigned ),(1 txf  ( )z z U xn fm    plus 655 

isostatic rebound at stage I.2 (see problem (b) in Section 3.2 for detailed consideration). 656 

Another way to determine this function is to consider the actual mechanism of the lithosphere 657 

deformation.  658 

 659 

Appendix B:  660 

Effective elastic model. 661 

For the elastic problem, we used the following notations: E x z( , )  - apparent (effective) 662 

Young's modulus,   - Poisson's ratio assumed to be equal to 1/2 to obtain formulas similar to 663 

(1 or A6), U x z( , )  and W x z( , )  - the horizontal and vertical components of the displacement 664 

vector. As above, we consider that at t  0  the lithosphere was in local isostatic equilibrium 665 
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(A1) and the initial topographies of all density interfaces including the top of the lithosphere 666 

( 0lz ) and of the asthenosphere ( 0az ) were flat. 667 

To find a solution of any elastic problem, functions of displacements have to obey 668 

Hooke's Law, which under our assumptions can be written as follows: 669 

 xx zxE  ),(
3

2
)(  ,  x z  ,  

E x z
xz xz

( , )

3
  , 670 

where:  671 
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 , 



z

W

z
 , 







xz

U

z

W

x
   are the components of strain tensor, 672 

 x ,  z ,  xz  - components of stress tensor,  673 

   ( ) /x z 2  - mean normal stress,  674 

Equilibrium equations must also be included: 675 

 







x xz

x z
  0 ,  








xz z

x z
  0 .    (B1) 676 

To describe lithospheric deformation by in-plane forces we set the following boundary 677 

conditions: 678 

(a) free - surface condition at the top at z z xl ( )  and at the base at z z xa ( ) of the 679 

lithosphere: 680 

  x xznx nzcos( ) cos( )  0 ,   xz znx nzcos( ) cos( )  0 .   (B2) 681 

(b) compressive or extensive external force  at the side boundaries,  682 

 F dzpl x

z x

z x

a

l

 
( )

( )

.        (B3) 683 

The problem was solved suggesting that deformations are small and the plate is thin. 684 

Then, using the assumptions listed in the section 3.2, introducing dimensionless values as 685 

follows: x L  , z H  , U x z Lu( , ) ( , )   2
, W x z Hw( , ) ( , )   2

, ),(),( 0 eEzxE  , 686 
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)z,x(  ),(sE0

2   and replacing components of displacement by the components of 687 

strain tensor, one can rearrange equations (B1)-(B2) as:  688 
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     (B1´) 689 

 








u w
  0          (B2´) 690 

with the boundary conditions accounting for 







 w

x

z 2  at the top and the bottom of the 691 

lithosphere being: 692 
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    (B3´) 693 

Let us expand the components of displacement and the mean normal stress in a power 694 

series of the squared small parameter (
2 ). For example for the non-dimensional mean normal 695 

stress s: 696 

 ...),(),(),(),( 3

4

2

2

1   ssss  697 

Substitute the expansion in terms of the small parameter in ( A 1 )-( A 3 ) and set equal to 698 

each other the terms of the same power of  . As a result for the zero and second power of   699 

one obtains: 700 
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Boundary conditions at    l ( )  and    a ( )  are as follows: 705 

 s e
u

1

12

3
0 




  (B5a), 706 

 




u1
0 ,  (B5b)  707 
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



u w2 1
0  ,  (B5c) 708 

 s e
u
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3
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


,  (B5d) 709 

The solution of the system (B4) with the boundary conditions (B5) takes the form: 710 

 u u1 1 ( ) ,  (B6a) 711 
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u

1

12

3





,  (B6b) 712 
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  (B6e) 715 

where 





dEe
l

a

z

z



)(

)(

),()( . Equations (B6 a-c) are valid for arbitrary function ),(e  , but to 716 

arrive at the solution (B6 d,e) it is necessary to suggest that the distribution of Young’s 717 

modulus can be presented in the form: )(f)(e),(e   , where )(f   is a non-718 

dimensional function that can be associated with the normalized yield strength profile  719 
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Integrating (B6d) taking into account the following relationship, which follows from the 720 

equation of continuity (B2´): 721 

w
u

f
u
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


   




( ) ( ( )) ,     (B7)  722 

gives the equation:  723 

u
u f
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22
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 






   .  724 

Equation (B7) is presented in the form containing  n ( ) , which specifies the position of the 725 

necking surface. The functions f 1  and f 2  can be determined from the following equations for 726 

the zero and the first moments (n  01, ) which under the adopted boundary conditions can be 727 

written in the form:  728 
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  .   (B8) 729 

This expression was obtained integrating the first equation in (B1´) and accounting for 730 

the fact that when u u1 1 ( )  an in-plane force (B2) can be presented as follows: 731 
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   o( ) 4 . The function f 2  can be expressed from 732 

the equation for the zero moment (equation (B8) when 0n ). Substituting f 2  in the equation 733 

for the first moment (equation (B8) when 1n ) one obtains the following equation for the 734 

function f 1  (here we return to dimensional values): 735 
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),(),()(  and 0p  is an unknown parameter that provides a 738 
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vertical shift of the model as a whole. This shift is compensated at the isostatic rebound stage; 739 

thus one can assign 0p =0 which yields an asymptotic value equal to 1d . 740 
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 834 

Figure captions 835 

 836 

Fig.1. Strength diagrams for different types of lithosphere based on rock mechanics data 837 

[Ranalli and Murphy, 1987]. The crust has a quartzite rheology, except in the model of 838 

―Normal‖ lithosphere where the lower part of the crust has a diorite rheology (shown in 839 

light gray). The underlying mantle has an olivine rheology. Thicknesses of the crust and 840 

the lithosphere are listed in Table 1. 841 

 842 

Fig.2. a. Topography of the necking surface for a relatively narrow area of extension (the 843 

horizontal component of the strain tensor is shown at the top of the figure) for the five 844 

different models of the lithosphere shown in Fig. 1. All models are one-layered. Letter 845 

index corresponds to the first letter in the name of the model in Fig. 1 (for example N1 846 

stays for a one-layered ―Normal‖ lithosphere). Asymtotic value for the necking level is 847 

fixed at the centre of rigidity (equation (3)). b. The same for a relatively wide area of 848 

extension. 849 

 850 

Fig.3. Comparison of extension relative to the necking level )x(zn  calculated from our model 851 

(solid line) and relative to the best fitting constant necking level (solid lines marked by 852 

filled circles). A – topography of the top of the lithosphere after extension but before 853 

isostatic rebound. B – the total disturbance of isostatic equilibrium (equation (7)) as a 854 

result of deformation. C - – topography of the top of the lithosphere after extension and 855 

consequent isostatic rebound. 856 

 857 
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 39 

Fig.4. Topography of the top ( Zlith ) and the bottom ( aZ ) of the lithosphere and the crustal 858 

base ( ZMoho ) after extension and the isostatic rebound. The topography of the left half of 859 

an extensional basin and of a shoulder is shown in more detail. Solid line with circles 860 

shows position of the necking level.  861 

 862 

Fig.5. Close solutions for two different values of effective elastic rigidity of the lithosphere. 863 

Solid lines show the topographies of the top of the crust and the Moho for extensional 864 

area when effective flexural rigidity sD  is equal to 1022 N m . Lines with crosses are 865 

the solutions for equal to sD =5 1022 N m , extension for the both examples is shown at 866 

the top of the figure. 867 

 868 

Fig.6. Depth to the equivalent necking level versus thickness of the rigid layer below the 869 

Moho. Model of the lithosphere has two rigid layers: in the upper crust (of the constant 870 

thickness H1  5 km) and below the Moho (of the thickness H2  which changes from 0 871 

to 25 km, shown on horizontal axis). The ratio of the ―strength‖ of the lower rigid layer 872 

to the upper one A is 0.1 for the line 1, 1 for the line 2 and 10 for the line 3. Line 4 873 

shows the depth equidistant to the middle lines of the upper and lower layers 874 

( ) /H H HMoho1 22 2 2  . Line 5 shows the half-depth to the middle line of the lower 875 

layer ( ) /H HMoho  2 2 . 876 

 877 

Fig.7. Topography of the top ( Zlith ) and the bottom ( aZ ) of the lithosphere and the crustal 878 

base ( ZMoho ) after compression and the isostatic rebound. The topography of the left half 879 

of the compressional belt is shown in more detail. Solid line with circles shows position 880 

of the necking level. 881 



Page 40 of 47

Acc
ep

te
d 

M
an

us
cr

ip
t

Table 1 

Parameters of the lithosphere used to calculate strength diagrams (Fig.1).  

 Thickness of  

the crust, (km) 

Thickness of the 

lithosphere, (km) 

Heat flow at the base of 

the lithosphere, 2mmW  

“Normal” 40 100 41.9 

“Alpine” 40 75 55.9 

“Hot” 30 50 85.4 

“Shield” 40 150 27.8 

“Collisional” 60 150 27.8 

 

 

Table
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Figure

http://ees.elsevier.com/geod/download.aspx?id=15266&guid=77c2d912-17e7-4b64-bdd1-bb8794bb2d03&scheme=1
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Figure

http://ees.elsevier.com/geod/download.aspx?id=15267&guid=3d31fc8b-55fd-44fe-84bf-587bc229bdc7&scheme=1
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Figure

http://ees.elsevier.com/geod/download.aspx?id=15268&guid=4d2a63d4-6712-4016-b3a2-2bf5b4a36d77&scheme=1
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Figure

http://ees.elsevier.com/geod/download.aspx?id=15269&guid=72901b04-d92e-4a05-b93e-665a955e54ed&scheme=1
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Figure

http://ees.elsevier.com/geod/download.aspx?id=15270&guid=db082053-2eb7-4ade-bb92-f264141a35d9&scheme=1
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Figure
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