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Do fiscal variables affect fiscal expectations?

Experiments with real world and lab data∗

Michele Bernasconi‡ Oliver Kirchkamp† Paolo Paruolo‡

February 7, 2008

Abstract

We generate observable expectations about fiscal variables through

laboratory experiments using real world data from several European

countries as stimuli. We compare a VAR model of expectations for

data that is presented in a fiscal frame with one for neutrally presented

data. We test the validity of the setup and find that participants un-

derstand the meaning of the fiscal variables, but also that their ability

to perceive the correct characteristics of fiscal policy is limited. Expec-

tations are consistent neither with rational nor with purely adaptive

expectations, but instead follow an augmented-adaptive scheme.
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1 Introduction

Expectations on fiscal variables are crucial to understand the effect of fiscal

policy on the private sector. Little, however, is known about the way people

actually form expectations on fiscal variables. While many models are based

on the hypothesis of rational expectations, expectations themselves are not

easily observable. As a result, empirical tests of the rational expectations

hypothesis are often indirect, involving tests of predicted relations between

observables, such as relationships between fiscal variables and components of

output.

A problem in this approach is that factors that are not part of the model

may affect expectations and choices in real economies. This makes the iden-

tification of the effects of expectations difficult because “economists cannot

observe all the data that economic agents do” (Seater 1993, p. 164).

This limitation is also relevant for expectation measures derived from

opinion surveys1. Moreover surveys suffer from lack of economic incentives

to reveal true opinions, so that for various reasons respondents “may express

judgments that are different from the ones they choose to act upon” (Pesaran

1987, p. 209).

An alternative is to measure expectations in a controlled experiment. Ex-

pectations experiments have been conducted since as early as the sixties in

a wide range of economic contexts2. Many of these experiments ask par-

ticipants to form expectations for artificial time series that are based on an

abstract model. The advantage of using artifical time series is that the data

generating process is known to the experimenter and can immediately be

used as a benchmark. It is possible to find out in a straightforward way

under which conditions participants form which kinds of expectations for a

1For example, surveys conducted by Grun (1991) and Allers, de Haan, and de Kam

(1998) found widespread evidence of misinformation on the conduct of government fiscal

policy.
2Such experiments include expectations for prices (Fisher 1962 and Schmalensee 1976),

expectations about artificially constructed time series (Hey 1994), expectations in normal-

form games (e.g., Costa-Gomes and Crawford 2001), about the provision of public-goods

(Offerman, Sonnemans, and Schram 1996, and Croson 2000), expectations in the cobweb

economy (Hommes, Sonnemans, Tuinistra, and van de Velden 2007), on monetary policies

(e.g. Marimon and Sunder 1993 and Bernasconi and Kirchkamp 2000) or even fiscal policy

(Swenson 1997).

1
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given abstract model. This convenience comes at a cost: Within this frame-

work one can study expectations only for the given abstract model. First,

one has to assume that participants in an experiment understand the formal

description of the abstract model, and second, one has to assume that deci-

sion makers use similar procedures when they form expectations for different,

and not perfectly known, processes in the real world. To bridge the gap be-

tween abstract games in the laboratory and economic reality, experimenters

can calibrate a specific model with parameters from the real world. Experi-

ments on tax compliance (Alm and McKee 2004) or on decisions over mone-

tary policy (Lombardelli, Talbot, and Proudman 2002, Blinder and Morgan

2005) follow this approach.

In this paper we present a laboratory experiment that is not based on an

abstract model with parameters from the real world but on real time series.

Compared with experiments where participants forecast abstract time series,

the use of real world time series has advantages and disadvantages. An

advantage is that we can observe expectations in an economic context with

real economic data. If the process of expectation formation depends on the

economic context or on the type of the data, then the expectations we can

measure are closer to the ones that are relevant for real economic decisions. A

disadvantage is that with real world time series, it is no longer obvious what

rational expectations are. We no longer have the clean benchmark abstract

time series would provide. Instead, we have to construct a benchmark with

the help of an econometric model. To do that, we follow a standard approach

and assume that the DGP can be described as a VAR. The estimated VAR

of the field data will constitute our benchmark solution.

We use annual time series on taxes and public expenditures from 15

OECD countries. Given the novelty of the approach we carefully check the

internal validity of the experiment. We also study the impact of learning,

fatigue, gender, and field of study of the participants.

To understand and to structure the expectation formation process bet-

ter we assume that the joint DGP of stimuli and expectations data can be

described as a VAR. We find that participants fail to perceive the fiscal prop-

erties from the field, thus violating the ‘rational expectation hypothesis’. Ex-

pectations are rather in line with ‘augmented-adaptive models’, introduced

in the early eighties by various authors (see Pesaran).

The paper is organised as follows. Section 2 describes the setup of the ex-

2
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Figure 1: Tt and Gt treatment

periment. Section 3 provides descriptive statistics of the results and discusses

internal validity. Section 4.1 develops the econometric approach to analyse

both the stimulus and the expectations data. Inference results are presented

in Section 4.2. The last section summarises the external significance of the

approach and of the findings.

2 Experimental setup

In the experiment participants are exposed to graphic representations of time

series of annual fiscal variables taken from various European countries. Time

is denoted t, stimuli are gross total taxes Tt, total public expenditure Gt

(including interest payments), public debt Bt, and change in the debt level

∆Bt = Bt − Bt−1, all expressed as yearly percentage of GDP. We focus

on the relationship between taxes and expenditure, denoted by the vector

xt := (Tt, Gt)
′. Here and in the following ∆ is the time difference.

Participants know that they are facing European countries, but they do

not know which specific country and which period the series refer to. Par-

ticipants are paid in each period according to the precision of their expecta-

3
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tions. The better their expectations, the higher is their income. The payment

scheme can be motivated as a utility that a hypothetical agent derives from

consumption over the current and the previous period if this agent uses the

expectations of our participant and maximises the utility function:

ut =

t∏

i=t−1

(
3

4
Ci +

1

4
Gi

)
(1)

subject to the budget constraint

t∑

i=t−1

(1− Ci − Ti)︸ ︷︷ ︸
savings

· (1 + r)i = 0 with r = 0.1 (2)

(where 1 is the normalised total GDP). Agents receive initial informa-

tion on the first seven values of stimuli, which, for most countries, was

the period from 1970 to 1976. Let t − 1 be the last available year and

Xt−1 := (x1, . . . , xt−1)
′ the available information; then forecasts are made re-

peatedly for each subsequent year t until the end of the time series is reached

in 1998. Participants would then start with another, randomly selected coun-

try.

We compare three experimental treatments. In a baseline treatment par-

ticipants forecast both Tt and Gt (see figure 1). Forecasts for the next period

are made by clicking with the mouse directly into the diagrams.

To control whether participants understand the economic context of the

baseline treatment we also run a treatment where this context is removed.

The time series are the same as in the baseline treatment, but variables have

no economic significance. They are simply called A, B, and C. We call this

treatment the ‘neutral’ treatment.

A main aspect of this paper is to study how participants use informa-

tion about one variable (e.g. Tt) to forecast another (e.g. Gt). A natural

implementation would be to present two variables Tt and Gt and to ask par-

ticipants to forecast both. This is what we do in the above two treatments.

To check whether such a simultaneous forecast is too difficult, we also run a

control treatment where participants forecast Tt only3.

3In all three treatments subjects had information for past taxes and public expenditure.

The display for the Tt only treatment was similar to that of the Tt and Gt treatment in

4
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Forecasts are called T Ei

t and GEi

t , where i indicates agent i and E stands

for expectation. The forecasts of agent i that refer to time t are denoted

yi,t := (TEi

t , GEi

t )′ in the Tt and Gt treatment and yi,t := TEi

t in the Tt only

treatment.

The time series of the stimuli (see figure 1) are updated every period after

forecasts are made, so subjects learn about realizations of the stimuli as the

economy moves on. Participants also get feedback about their wage, which

reflects the accuracy of their forecast4.

Openly providing all payoff relevant information in economic experiments

is standard and essential. Hence, we explain in the instructions (see ap-

pendix) the above payment scheme in details with examples and also with a

short technical note. Subjects were not obliged to look at the technical note,

but were told that they could consult it and check everything if they wished

to control the experimenter.

Stimulus data were from 15 European countries: Austria, Belgium, Denmark,

Finland, France, Germany, Greece, Ireland, Italy, Netherlands, Norway, Por-

tugal, Spain, Sweden, and UK5. For the majority of countries the sample

period of stimulus data was 1970-98; a few exceptions (Denmark, France,

Greece, Ireland, and UK) are due to limits in the availability of the fiscal

time series. For all countries, expectations started after the seventh year of

the stimulus (which was 1977 for most countries). A graph of the stimulus

data for the different countries is shown in figure 2, with the basic statistics

figure 1, with the only difference that the values of taxes and public expenditure were both

displayed on the y-axis, with the period of the observations (not the year, which remained

unknown to subjects) on the x-axis.
4To reward participants, the computer constructs the optimal consumption level Ct−1

based on a subjects’ forecasts yi,t for year t and given eq. (1) and (2). When in the

next period xt := (Tt, Gt)
′ becomes available, we use equations (2) and (1) to calculate

Ct and the utility ut. The participant’s per minute wage is w = 0.66 · (ut/u∗
t )

η where

η = 12000 in the Tt and Gt treatment and 15000 in the Tt only treatment. u∗
t is the utility

the participant would obtain with forecasting the true values. This transformation from

utilities into wages is monotonic and, hence, does not affect the maximisation problem

of the individual, but creates steeper incentives to make good forecasts. Participants are

paid this wage up to two minutes for each forecast. Parameters of the payment scheme

have been developed in pilot studies previous to the experiment.
5All stimulus data used in the experiment were taken from the database “Fiscal Posi-

tions and Business Cycles” (OECD 2000).

5
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Figure 2: Stimulus data (T—, G - -)

of the two series (means, G and T ; standard deviations, σT and σG; and

standard deviations of the rates of change, σ∆T and σ∆G).

In total, 170 subjects participated in the experiment. Each subject could

participate only in one treatment: 76 took part in the baseline Tt and Gt

treatment, 69 in the neutral treatment, and 25 in the Tt only treatment.

Each participant made forecasts for a sequence of countries. Sequences

were determined randomly and independently for all participants. Table 1

summarises the number of participants playing the various countries in the

three treatments.

The experiment was run at the experimental laboratory of the SFB 504 in

Mannheim. Participants were students at the university: 116 were from eco-

nomics or business (we will call them economists), 38 from political science,

law and languages (in the following we will call these students in other hu-

manities), and 12 from natural sciences. 130 were male and 40 were female.

Sessions were conducted individually and lasted for about 2 hours. Partici-

pants made, on average, 136 forecasts (between 28 and 309) and completed

on average one forecast every 39 seconds.

6
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number of participants / country
Country Sample period Tt and Gt Tt only neutral

Austria 1970-1998 34 14 28
Belgium 1970-1998 52 20 48
Denmark 1971-1995 43 14 43
Finland 1970-1998 33 12 24
France 1977-1998 29 10 31
Germany 1970-1998 14 13 5
Greece 1975-1998 26 13 22
Ireland 1970-1995 45 21 44
Italy 1970-1998 35 16 29
Netherlands 1970-1998 32 9 23
Norway 1970-1998 32 14 26
Portugal 1970-1998 25 13 23
Spain 1970-1998 30 11 24
Sweden 1970-1998 53 16 41
United Kingdom 1970-1995 27 15 19

Total 510 211 430

Since participants made forecasts for more than one country, the total number is not the
sum of the number of participants in all countries.

Table 1: Countries played by participants across treatments

3 Descriptive analysis of the evidence and in-

ternal validity

Laboratory experiments are often inspired by the real world and often use in

their setup parameters that are based on field data. Using not only param-

eters, but datasets from the field in the laboratory is novel and, we believe,

innovative, but poses various questions. A first one is about the internal

validity of the experimental setup.

Learning and Fatigue The longer an experiment lasts, the more time

participants have to learn and to understand their task. However, during a

long experiment participants might have difficulties in concentrating; thus

the quality of observations might eventually decrease. Figure 3 shows the

development of absolute forecast errors over time. We see that forecast errors

decrease over the course of the experiment. The effect of learning seems to

dominate fatigue all the time. Though the change over time is rather small,

7
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errors during the experiment. Quantiles are taken over ten bands with the same number
of observations. The horizontal axis show the total time in minutes since the start of the
experiment.

Figure 3: Countries, learning and fatigue during the experiment

the decreasing trend is significant6.

Decision time The left graph in figure 4 shows the cumulative frequency

of time subjects take for individual decisions. The mean decision time (over

all decisions) is about 35 seconds for each forecast; the median (over all

participants) is 25 seconds. While risk loving participants might have a

preference to use the maximal forecast time of 2 minutes, our participants

seem to prefer to share their risk over different forecasts. The two remaining

graphs in figure 4 show the relation between forecast errors and decision time.

The relationship is, if at all, weak7. Harder decisions (characterised by their

larger forecast errors) seem to take only slightly more time.

Participants’ characteristics The left part of figure 5 shows the cumu-

lative distribution of median absolute forecasts errors |T −T E | and |G−GE |

per participant for male and female participants. The difference is small and

not significant8. The centre part of figure 5 shows the cumulative distribu-

6 Comparing average errors (per participant) in the first and second half of the exper-

iment with a pairwise Wilcoxon test rejects no or an increasing trend with a p-value of

0.0003 for T and 0.0015 for G. A linear robust model that allows for correlated errors

within the same participant rejects with a p-value < 10−7.
7Separating decision times at the median and comparing average errors as in footnote

6 shows only an insignificant change. A linear robust model yields a p-value of 0.098 for

T and 0.077 for G.
8Comparing median absolute errors with a Wilcoxon rank sum test yields a p-value of

0.8024 for T and of 0.1235 for G. A t-test yields a p-value of 0.8583 for T and of 0.2841 for

8
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Figure 5: Distribution of average individual forecast errors by characteris-
tics of participants and by treatment
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tion of median absolute forecasts errors per participant for different fields.

Students from natural sciences seem to make slightly better forecasts for G

than the other students. However, these are only 12 out of 170 participants,

and the differenc between the different fields is small and not signficant both

for G and for T 9.

Economic context To check whether participants understand the fiscal

frame, we compare the Tt and Gt treatment with the neutral treatment. If

participants understand and make use of the economic context, we should

observe smaller forecast errors in the Tt and Gt treatment than in the neutral

treatment. The right diagram in figure 5 shows cumulative distributions of

forecast errors for these treatments. We see that, as expected, forecast errors

are larger in the neutral treatment; adding economic context contributes

significantly to the understanding of the experiment10. We also see that a

simpler task that requires forecasts only for T makes forecasts more precise

for this variable.

Summary regression Figures 3, 4, and 5 should give a rough impression

of the determinants of sizes of forecast errors. To control for characteristics

of participants better and the random allocation of countries to participants,

table 2 presents estimates from linear regressions that explain the squared

forecast error as a function of various dummies. Model 1 includes a dummy

for the type of treatment (neutral / economic context) and a dummy for the

forecasted variables (T -only / T and G). Model 2 adds a dummy for gender

(female is the reference group) and two dummies for the subject of studies

(economics is the reference group). Model 3, finally, adds dummies for each

country.

Only two effects are significant. Both were already visible in figure 5.

First, reducing the number of variables to forecast in the Tt only treatment

G. Using mean squared errors instead of medians does not change the result considerably.
9Comparing median absolute errors with an F -test yields a p-value of 0.7549 for T and

0.3243 for G; a non-parametric Kruskal-Wallis test yields a p-value of 0.997 for T and

0.3110 for G.
10Comparing median absolute errors with a non-parametric Wilcoxon rank sum test

yields a p-value of 0.0000075 for T and 0.09715 for G. A t-test yields a p-value of 0.00001

for T and 0.0488 for G.

10
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(T − TE)2 (G−GE)2

model 1 model 2 model 3 model 1 model 2 model 3

β̂/(σ̂) β̂/(σ̂) β̂/(σ̂) β̂/(σ̂) β̂/(σ̂) β̂/(σ̂)
neutral 0.560* 0.604** 0.561** 1.071* 1.360** 1.054**

(0.219) (0.214) (0.207) (0.472) (0.469) (0.346)
Tt only -0.651*** -0.608*** -0.498***
treament (0.134) (0.138) (0.121)
male -0.080 -0.055 -0.950 -0.377

(0.169) (0.156) (0.543) (0.388)
other -0.175 -0.094 -0.251 0.129
humanities (0.181) (0.166) (0.627) (0.453)
natural 0.382 0.502 -1.106 0.028
sciences (0.480) (0.458) (0.693) (0.591)
country
dummies

not
shown

not
shown

constant 2.777*** 2.906*** 1.117*** 6.369*** 8.005*** 2.151*
(0.106) (0.325) (0.299) (0.311) (1.053) (0.827)

Standard deviations are shown in parentheses and are calculated using a robust regression
which takes into account correlations of observations for each participant. *, **, and ***
denote significance at 5%, 1%, and 0.1% level. Similar results can be obtained also for
median absolute errors.

Table 2: Estimation of squared forecast errors

also reduces the error. Second, withholding information about the economic

context increases the error. The latter shows that participants understand

the economic context of our experiment, at least when we present variables

with their economic meaning.

External significance Another important question about the experimen-

tal setup concerns its external significance. Consumers in the field form

expectations on fiscal policy not only on the basis of spending and taxes, but

also through the composition of the government, the date of the next election,

economic development, foreign policy, and natural disasters, to name only a

few. In the experimental laboratory we are able to neglect all these factors

and study T and G in isolation. Any systematic change of expectations that

we observe in the lab must be due to a change in T or G.

The choice of factors that we study here, T and G, is standard in the

empirical literature which studies fiscal conduct of countries. Below we refer

to an important stream of literature that, since at least the mid-1980s, has

used cointegration techniques and the econometrics of Granger causality to

11
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study the dynamics of the public budget intertemporal constraint11. In the

next section we develop an empirical model of stimuli and of expectation data

that coherently ties the present experiment to such econometric practice.

Through it we discuss the meaning and implication of general expectation

schemes (rational, adaptive, augmented adaptive), we consider and estimate

properties of field data, and we check how these features are perceived by

subjects in the experiment.

4 An econometric analysis of the field-lab

data: expectations

In this section we want to study the model of expectation formation used

by participants and the perceived relationships among fiscal variables. We

emphasize again that, unlike previous experiments of expectational models

that are based on an artificial data generating process, we are using here

data from the field. Using an artificial data generating process has the ad-

vantage of providing a clear benchmark solution. A disadvantage is that it

might be difficult to explain such a process to participants in an experiment.

Another problem is that one observes forecasts for abstract time series when

one wants to describe forecasting behaviour for real time series. Using data

from the field may make it more likely that the forecasting rules participants

use in the experiment are close to the rules they would use otherwise with

field data. Using data from the field also means that we lose the obvious

benchmark solution. With timeseries that are based on a known abstract

model, it would be clear what rational expectations have to be, but what are

rational expectations when we use real world data? We now no longer know

the benchmark solution; instead we have to estimate one. We acknowledge

that this is far from perfect since econometric techniques used to ascertain

properties of real data are often less than perfect. Our approach is based

on standard techniques used since at least the mid-1980s by economists and

econometricians to study the dynamics of fiscal policies. We assume that

the data generation processes for both the field and the lab can be taken

to be a Vector Autoregressive Process (VAR). We first review the approach

11See section 4.1 below for various references to the literature.
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and adapt it to this experiment12; then we present the evidence based on its

estimation.

4.1 The VAR model of the field-lab data

The VAR for the field data (stimuli) The field model concerns the

stimuli data, that is the vector xt := (Tt, Gt)
′, treated for each country

separately. A standard VAR representation of the field systems is given

by

∆xt = µx + αxβ
′

1xxt−1 +

k−1∑

ℓ=1

Γℓ,xx∆xt−ℓ + ǫxt . (3)

The expression takes the stimuli data xt := (Tt, Gt)
′ as integrated of order

1, I(1); µx is a vector of constants; β ′

1xxt−1 is an error correction term (coin-

tegrating relation CI) expressing the long run disequilibrium between taxes

and expenditure in the field; αx = (αT , αG)′ is the associated vector of the

adjustment coefficients; Γℓ,xx are the matrices of the coefficients of partial

adjustments; and ǫxt are error terms i.i.d. N(0, Ωxx).

Versions of this basic model have been analysed extensively in the liter-

ature (see, e.g. Trehan and Walsh 1991, Ahmed and Rogers 1995). An issue

considered is sustainability of fiscal policy which can be checked by way of

cointegration analysis between taxes and public expenditure. In short, coin-

tegration tests are based on the idea that solvency requires the budget deficit

to be stationary. Even when Tt and Gt are non-stationary, there may be lin-

ear combinations of the form Tt + γGt + ρ (where γ and ρ are constants)

which are stationary. In this case, Tt and Gt are said to be cointegrated of

order 1, with cointegrating vector (CI) (1, γ). Stationarity of the budget then

further requires γ = −1 (homogeneity condition).

A second empirical issue analysed within equation (3) concerns the di-

rection of causality between taxes and public expenditure13. In particular,

when the series in xt := (Tt, Gt)
′ are cointegrated, at least one of Tt and Gt

adjusts to disequilibrium with respect to the long run relation. Four cases

12See for example Johansen (1995) for a modern treatment of the literature on VAR. See

our technical report (Bernasconi, Kirchkamp, and Paruolo 2004) for a more detailed expo-

sition of how the field and lab VARs can be consistently derived in the present experiment.
13See Garcia and Henin (1999) and Payne (1998) for reviews and recent empirical evi-

dence on this classical theme of public finance.
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may then emerge: that taxes cause spending, that spending causes taxes,

bidirectional causality, and lack of causality. These cases can be represented

as a vector αx = (αT , αG)′ of the forms (0, ∗)′, (∗, 0)′, (∗, ∗)′ and (0, 0)′ (with

∗ indicating a non-zero coefficient), thus providing tests of Granger long-

run causality.14 Short run-causality can be similarly checked by looking for

significant off-diagonal coefficients in the matrices Γℓ,xx.

The VAR for the lab data (expectations) For the lab model, let m

indicate the number of individuals, i = 1, . . . , m, in a treatment. Recall that

expectations yi,t = (TEi

t , GEi

t )′ in the Tt and Gt treatment and yi,t = TEi

t in

the Tt only treatment. We now illustrate the model for yi,t := (TEi

t , GEi

t )′,

which is applied with the obvious modifications to the Tt only treatment.

For individual i the VAR has the following form:

(
∆TEi

t

∆GEi

t

)
= µi +αi




Tt−1 + γ̂Gt−1

TEi

t−1 − Tt−1

GEi

t−1 −Gt−1



+
k−1∑

ℓ=1

(Γℓ,ii, Γℓ,ix)

(
∆yi,t−ℓ

∆xt−ℓ

)
+ ε̂yt .

(4)

Equation (4) includes a vector of constant terms µi = (µiT E , µiGE)′; a ma-

trix (2 × 3) of adjustment coefficients αi, decomposed as αi := (αi1, αi2),

where αi1 = (αiT E , αiGE)′ shows how the expectation variables may react

to the disequilibrium vector estimated in the field, Tt−1 + γ̂Gt−1 (also la-

beled ECMTG); while vec(α′

i2)
′ = (αiT E(T ET ), αiT E(GEG), αiGE(T ET ), αiGE(GEG))

includes the responses to two further possible CI relations given by the errors

in expectations (T Ei

t−1−Tt−1, G
Ei

t−1−Gt−1)
′ (also called (ECMTET , ECMGEG)′);

Γℓ,ix captures causality from the field to the lab, and Γℓ,ii causality from past

expectations to present ones.

We should note that for participants who perceive the fiscal properties

from the field the lab system (4) collapses to the specification of the marginal

field system (3). We use the field system (3) as one reference point and say

that participants whose expectations follow (3) have rational expectations.

We will also investigate whether and how participants pick up the actual coin-

tegration by comparing αi1 = (αiT E , αiGE)′ from the lab with αx = (αT , αG)′

from the field. Also of interest is the inference on the vector of constant

14Lack of causality (i.e. αx = (0, 0)′) is incompatible with the presence of cointegration

in (3) (see Johansen 1995).
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terms µi, indicating subjects’ perception of trends in the data.

One alternative class of expectation formation processes is the adaptive

scheme, as originated in the 1950s by the works of different scholars (see

Pesaran 1987 for references). We emphasize the bivariate nature that can

take here the adaptive schemes. In particular, under univariate or purely

adaptive expectations, past values of the forecasted variable x1
t and of its fore-

cast y1
i,t enter the expectation process for y1

i,t, where a superscript 1 indicates

one stimulus variable and the corresponding forecast. If other variables enter

in the estimated equation for ∆y1
i,t, this is evidence against a purely adaptive

scheme and in favour of a more general class of models known as augmented-

adaptive (see again Pesaran 1987 for the many variations nested within this

definition)15. In augmented-adaptive schemes one can also address questions

of perceived causality between taxes and public expenditure16.

The individual lab sub-systems (4) may be estimated one at the time or

jointly. Joint estimation under some homogeneity restrictions allows us to

exploit the panel dimension of the data to increase efficiency. In the empirical

analysis we will first estimate for each country a model of a representative-

agent’s expectations. This model we will compare with the corresponding

country field model. In this comparison we will focus on the expectations

obtained from the experiment conducted under the fiscal frame. Then we will

compare results from different treatments, including experiments conducted

under the neutral frame. We will also reconsider the homogeneity condition

and we will present estimations at the individual level.

15In most previous expectation experiments, subjects had to forecast univariate time

series (as for example in Schmalensee 1976 or Hey 1994) or reduced-univariate schemes

arising from augmented-adaptive forms (as in experiments of price expectations in classical

cobweb economies, for example Hommes, Sonnemans, Tuinistra, and van de Velden 2007

or on inflation expectations in overlapping generation economies; see Duffy 1998 for a

review). They generally found support for adaptive expectations (though not necessarily

of the first order, see, e.g. Hey).
16In particular, by inspection of the parameters in (4) one should note the following: the

αi1 coefficients and the off-diagonal elements in the Γℓ,ix matrices determine the direction

of causality from the field to the lab, while the αi2 coefficients and the off-diagonal elements

in the Γℓ,ii matrices regulate the ones from the past expectations on present expectations.

15
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Country Cointegrating Vector Test of γ̂ = −1

(β ′

1x, ρ) homogeneity condition

Austria (1,−0.739,−10.385) −13.23∗∗∗

Finland (1,−0.565,−21.436) −28.29∗∗∗

Germany (1,−0.572,−17.863) −4.32∗∗

Italy (1,−0.892, 0) −1.72

Netherlands (1,−0.606,−17.630) −13.51∗∗∗

Norway (1,−1.051, 0) −3.52∗∗

Portugal (1,−1.177, 13.667) −2.09∗

Sweden (1,−0.950, 0) −2.13∗

UK (1,−0.922, 0) −9.18∗∗∗

Belgium, Denmark, France, Greece, Ireland, and Spain are not shown in
the table since they show no cointegration. ∗, ∗∗, ∗∗∗ denote 10%, 5%, 1%
significance levels.

Table 3: Cointegrating vectors estimated for stimulus data

4.2 Evidence

4.2.1 Comparison between the field and the lab VARs

Table 3 reports the results of the cointegration analysis on the stimulus

data17. For 9 countries (Austria, Finland, Germany, Italy, Netherlands, Nor-

way, Portugal, Sweden, and UK), we find that taxes and public expenditures

are cointegrated; for 6 (Belgium, Denmark, France, Greece, Ireland, and

Spain) we find that they are not. Among the former and consistently with

the evidence reported in the literature (see, e.g., Manasse 1996), the con-

dition for stationarity of the budget γ̂ = −1 is rejected for most countries.

The estimated CI vectors have the form (β ′

1x, ρ) with β ′

1xxt = Tt + γGt and

µx = αx · ρ, which exclude linear trends in the data (see Johansen 1995).

This feature of field data is intuitive18 and indeed passed for all countries in

17We follow a standard procedure to test for cointegration in system (3). We start

determining the lags order k of the field VAR (which was two for most countries) and then

use the Johansen procedure to test for the rank r of the system (that is, the number of CI

vectors). We use the LR trace test for H0 : r = 0 versus H1 : r = 1 and exclude the case

of a stationary system r = 2, where both taxes and expenditure are stationary in levels.
18Since xt contains the ratio of taxes and expenditure to total GDP, we expect the

system xt := (Tt, Gt)
′ not to contain a linear trend.

16



Page 18 of 28

Acc
ep

te
d 

M
an

us
cr

ip
t

the sample. Below we will check how subjects reflect this feature of the real

data in their expectations.

Table 4 summarises the main findings of the inference on both the field

and the lab systems in the two experimental treatments under the fiscal

frame. All parameters reported in the table are significant at least at a 5%

level19. In considering the results, recall that in the Tt only treatment, in

which agents forecast taxes, expectations on GEi

t are not available.

The leftmost part of the table reports, for the field and for the lab, the

coefficients of responses to the field error correction term ECMTG = Tt+γ̂Gt.

Consider first the field evidence (the first column in the table). Among

the nine countries for which cointegration between taxes and expenditure

was found, expenditure is long-run adjusting to taxes in four cases (Austria,

Norway, Sweden and UK); taxes are adjusting to expenditure in four others

(Finland, Germany, Italy and Netherlands); and in one country (Portugal)

adjustment is bidirectional.

Results from the experiments show that subjects do not follow the CI

characteristics of the field data. In both experimental treatments the lab

responses αi1 to ECMTG are often not significantly different from zero, and

even when they are, αi1 are in any case quite small. On the contrary, the

vectors of constants estimated in the lab show that, while subjects do not

follow the CI characteristics of the real-data, they perceive for most countries

a linear trend which is not found by the field VARs.

In the rightmost part of table 4 we show the results of tests on Granger

causality in the field and compare them with tests of perceived causality

in the lab. Results speak strongly against subjects correctly perceiving the

properties of field stimuli data. In the Tt and Gt treatment only in one case

(Portugal) the causality matches the causality from the field data; in the Tt

only treatment subjects perceive a good deal of causality from expenditure

to taxes, but in many cases it is not consistent with the causality in the field.

19Detailed parameter estimates, together with standard errors and level of statistical

significance, are available in Bernasconi, Kirchkamp, and Paruolo (2004). All models pre-

sented here have been selected performing a computerised strategy, which started to drop

coefficients with higher p-values. We have checked that the selected models are robust to

alternative procedures.

17



Page 19 of 28

Acc
ep

te
d 

M
an

us
cr

ip
t

Vectors of responses to

ECMTG: Tt+γ̂Gt

Vectors of lab constants

µi = (µiT E : µiGE)

Vectors of responses to

(ECMTET , ECMGEG)′: (TEi

t − Tt, G
Ei

t −Gt)
′

Direction of short run causality

inferred from Γl,xx and Γℓ,ix

Field

α′

x

Tt and Gt

treatment

α′

i1

Tt only

treatment

α′

i1

Tt and Gt

treatment

µ′

i

Tt only

treatment

µ′

i

Tt and Gt

treatment

αi2

Tt only

treatment

αi2

Field
Tt and Gt

treatment

Tt only

treatment

Austria ( 0,1.308) ( 0,0) ( 0,*) ( 0.264,0.146) ( 0.155,*) ((-0.921,0), ( 0.084,-0.695)) ((-0.863,*) ,*) T ↔ G T ← G

Belgium ( 0.285,0.138) ( 0.160,*) ((-0.838,0), ( 0,-0.656)) ((-0.810,*) ,*) T ← G T ↔ G T ← G

Denmark ( 0.273,0.172) ( 0,*) ((-0.885,0.138), ( 0.096,-0.622)) ((-0.872,*) ,*) T ↔ G T ← G

Finland (-0.953,0) (-0.145,0) (-0.164,*) ( 0,0) ( 0,*) ((-0.923,0.171), ( 0,-0.512)) ((-0.825,*) ,*) T ← G T ↔ G T ← G

France ( 0.175,0) ( 0,*) ((-0.709,-0.124), ( 0,-0.849)) ((-0.655,*) ,*) T ← G T ↔ G T ← G

Germany (-1.007,0) ( 0,0) ( 0.165,*) ( 0.199,0.329) ( 0.110,*) ((-0.842,0), ( 0,-0.695)) ((-0.961,*) ,*) T → G T ← G

Greece ( 0.606,0.199) ( 0.581,*) ((-0.915,0), ( 0,-0.717)) ((-1.058,*) ,*) T ← G T ← G

Ireland ( 0.435,0.561) ( 0.322,*) ((-0.739,0), (-0.141,-0.799)) ((-0.676,*) ,*) T → G T ← G

Italy (-0.155,0) (-0.072,-0.084) (-0.034,*) ( 0,0) ( 0,*) ((-0.771,0.074), ( 0,-0.744)) ((-0.864,*) ,*) T → G

Netherlands (-0.623,0) ( 0,0) ( 0,*) ( 0.280,0.301) ( 0.324,*) ((-0.736,0), ( 0,-0.800)) ((-0.809,*) ,*) T ← G T ← G

Norway ( 0,0.308) ( 0,0.083) ( 0,*) ( 0,0.314) ( 0,*) ((-0.732,0), ( 0.166,-0.751)) ((-0.731,*) ,*) T → G T → G T ← G

Portugal ( 0.290,0.670) ( 0,0.175) ( 0,*) ( 0.711,0) ( 0.175,*) ((-0.744,0), ( 0.240,-0.633)) ((-0.758,*) ,*) T ↔ G T ↔ G T ← G

Spain ( 0.276,0.141) ( 0.202,*) ((-0.732,0), ( 0,-0.657)) ((-0.548,*) ,*) T → G T ← G

Sweden ( 0,0.280) (-0.034,0.086) ( 0,*) ( 0.239,0.138) ( 0.112,*) ((-0.692,0), ( 0.111,-0.743)) ((-0.670,*) ,*) T → G T ← G T ← G

United-Kingdom ( 0,0.435) ( 0,0) ( 0,*) ( 0.249,0.176) ( 0.172,*) ((-0.883,0), ( 0.175,-0.780)) ((-0.675,*) ,*) T → G T ← G

Table 4: Summary of inference results
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4.2.2 Expectation schemes

The comparisons between the field and the lab VARs clearly reject the hy-

pothesis of subjects following rational expectations. Looking at the middle

part of table 4 we find instead support for adaptive expectations. Estimates

of the vector αi2 describe how individuals react in the long run to errors in

their expectations (T Ei

t−1 − Tt−1, G
Ei

t−1 − Gt−1)
′. In the Tt and Gt treatment

the coefficients for ECMTET in the equation for ∆T Ei

t and the coefficients on

ECMGEG in the equation for ∆GEi

t are positive and close to 1. The same

holds in the Tt only treatment for the coefficients for ECMTET in the equa-

tion for ∆T Ei

t . In both experimental treatments the estimated parameters

are typically less than 1. (This is also confirmed by formal t-tests conducted

on the parameters.) Conversely, in the Tt and Gt treatment, the off-diagonal

diagonal of αi2 are in most cases equal to or very close to zero. In other words,

subjects do not adjust expectations for taxes to errors in the expectations on

expenditure, and vice versa.

To obtain further evidence on the process subjects use to form expec-

tations, we estimate equation (4) separately for each individual20. Figure

6 presents distributions of the coefficients for the two fiscal treatments as

well as for the neutral treatment. Results confirm what we learned from the

aggregate model. Coefficients of responses to the field error correction term

ECMTG are zero or close to zero for all treatments and for both equations.

Positive liner trends (µi) in the data are perceived by several participants.

The coefficients of matrices Γℓ,ix summed over lags show that, in both equa-

tions, the diagonal coefficients (hence the own-effects of ∆Tt−ℓ on ∆TEi

t and

of ∆Gt−ℓ on ∆GEi

t ) are larger than the off-diagonal terms, but the latter

don’t necessarily vanish. The coefficients for Γℓ,ii, summed-up over lags, re-

fer to the short run effects of past expectations on present expectations and

show a moderate tendency of subjects to smooth out peaks in past expec-

tations. The distributions of the adjustment coefficients to the error terms

(ECMTET, ECMGEG)′ confirm that in all treatments subjects adjust to past

forecast errors.

As a whole, we take the above results to support the hypothesis of subjects

following adaptive expectations, but not quite a purely univariate model.

While the results suggest that participants assume some interaction between

20To select the model we use the same procedure as in the aggregate model (footnote 19).
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Graphs show the distribution of the estimated coefficients of equation (4). We impose
the restriction that each individual uses the same model for all countries.

Figure 6: Results of estimating equation (4) for each individual

fiscal variables, we can conclude from table 4 that this interaction changes

over countries21. We take this to be evidence in favor of models of augmented-

adaptive expectations.

In section 3 we have compared different treatment frames. In our baseline

frame the variables shown on the sceen have their original economic labels.

In the alternative ‘neutral’ frame these labels are just letters from A to D. We

suspected that forecasts in the ‘neutral’ frame are less precise and, indeed,

confirmed this hypothesis in figure 5 and in table 2. In the same section

we compared different participant groups. Several of our participants are

students in economics or business administration. We found, however, that

forecasts of these participants are not better than those of other participants.

Can one use the estimates of equation (4) in order to learn more about

why economic labels help participants to make forecasts? If participants from

21This can be confirmed be estimating equation (4) separately for individuals and

countries.
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data Tt and Gt treatment Tt and Gt treatment and economic frame
comparison frame: neutral ↔ economic labels participants from economics ↔ other fields
dep. var. ∆T E ∆GE ∆TE ∆GE

coefficient econ neutral p econ neutral p other econ p other econ p

ECMTG -0.021 -0.008 0.543 0.026 0.052 0.390 -0.021 -0.021 1.000 0.030 0.025 0.879
µi 0.268 0.199 0.109 0.170 0.271 0.136 0.274 0.266 0.888 0.198 0.159 0.642
∆T : Γℓ,ix 0.395 0.442 0.478 0.082 0.077 0.961 0.500 0.350 0.068 0.144 0.055 0.324
∆G : Γℓ,ix 0.069 0.036 0.315 0.425 0.306 0.114 0.057 0.074 0.630 0.582 0.357 0.013
∆T : Γℓ,ii -0.049 -0.002 0.149 -0.063 -0.091 0.561 -0.076 -0.037 0.375 -0.095 -0.050 0.335
∆G : Γℓ,ii -0.009 0.008 0.352 0.018 0.062 0.226 -0.008 -0.009 0.987 -0.044 0.045 0.052
∆T :ECM ·

E· -0.881 -0.918 0.437 0.038 0.062 0.623 -0.805 -0.914 0.098 0.101 0.010 0.083
∆G :ECM ·

E· 0.016 -0.005 0.319 -0.910 -1.021 0.035 0.028 0.011 0.504 -0.813 -0.953 0.057
The table reports average estimated coefficients of equation (4). The left part compares
the neutral and the economic frame. The right part compares the average coefficients for
participants with a background in economics with those from other disciplines. Next to
the two means (for ‘other’ and ‘econ’) the table reports a p-value for a Welch two sample
t-test.

Table 5: Impact of treatment frame and participants on equation (4)

economics are not systematically better in their forecasts, are they at least

systematically different? Unfortunately, the answer to both questions is No.

Table 5 compares average coefficients of equation (4) for the treatment

with neutral and economic labels and for the participants with different back-

grounds. Most differences between coefficients are not significant.

5 Conclusions

Experimental economics has grown substantially over the last two or three

decades, as it is now a well-acknowledged method through which decision

theorists, game theorists and microeconomists have tested and refined theo-

retical models in their respective fields of interest.

Relatively few experiments have been conducted in the field of macroe-

conomics. The reason, probably, is that macroeconomists, dealing with real

world questions to a much greater degree than other economists, are con-

victed that laboratory experiments cannot really answer such type of ques-

tions. The approach pursued in this paper follows the idea that using real

world data as stimuli for subjects in the experiments might be a step in un-

derstanding which variables and forces are more relevant when individuals

take actions of macroeconomic relevance.
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We propose our experiment as an alternative to experiments that are

based on entirely artificial time series or time series whose parameters are

based on field data. In our experiment participants receive as stimuli real

world data on fiscal variables and form expectations on the basis of that

information. Such an extension has advantages as well as disadvantages.

Constructing a rational reference point is harder than with artificial time

series. However, we have seen in our experiment that using economically

meaningful data is important as it affects expectations of participants in our

experiment.
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A Instructions to the experiment

The experiment was conducted in German. In this section you find a trans-
lation of the instructions for the economic frame. The instructions for the
neutral frame are almost indentical, except that we dropped any reference to
the economic context:

1. Please read the instructions carefully. Only if you have understood
them well you can successfully participate in the experiment and gain
money.

2. Thereafter fill in the questionnaire at the screen.

Welcome to the strategy experiment

Welcome to the strategy experiment
This strategy experiment is financed by the University of Mannheim and

the German research council.
The instructions are simple, and if you pay attention to them and decide

carefully, you will win a considerable amount of money, which is disbursed
to you at the end of the game.

The payment is dependent on your success. In the experiment you fore-
cast the development of public expenditures and taxation in several European
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countries. For that purpose there are past data about budget debt, annual
change of budget debt, government expenditure and taxes made available for
you. Dependent on the quality of your forecast you receive a payment for
each period.

Please note that we do not have any interest in paying less money than
you are entitled to receive. We must return all the money which we do not
disburse to the German research council.

Please note that we will not deceive you in this experiment. Everything
you read in these instructions is correct. You may take this for granted, but
actually there are occasionally experiments in psychology, where participants
of experiments are deceived about parts of the experiment. This is not the
case in economic experiments like this. In the beginning we explain exactly
the rules to you, and we will also adhere to them.

Rules

You will play several rounds in turns. In each round it is your task to forecast
the development of two variables. These variables refer to the development of
government expenditure and taxes in several European states between 1950
and 2000. Which states you play in each case will be specified randomly and
is not made known to you. These data are shown graphically.

Top of the screen

[[ the figure shown here is similar to figure 1, except that only the first
seven periods of UK are shown ]]

On the left you can see the development of the budget debt and annual
change of budget debt, each in per cent of the gross national product. The
horizontal axis shows time in years. You may use this data to obtain a
reference point how government expenditure and taxes will change in the
future. Current periods are shown in black, past periods are shown in gray.

On the right you can see the government expenditure and taxes, again
as percentage share of the gross national product. The vertical axis shows
government expenditure, the horizontal axis shows taxes. Above the red
diagonal government expenditure is higher than taxes; below the red diagonal
government expenditure is lower than taxes. Past periods are shown in a
lighter shade of gray than current periods.

Partial representation of the past development You can present your-
self also only one part of the past periods to get a better overview.

In order to do so click on the diagrams budget debt and annual change of
budget debt. In these diagrams the area to the right of your click is covered
with a black rectangle. Also in the diagram of government expenditure and
taxes the covered periods are not shown. Each click into the black area of
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the diagrams for budget debt and annual change of budget debt uncovers
one period after another. A click into the blue area uncovers all periods.

[[ the figure shown here is similar to figure 1, except that only the first
five periods of UK are shown. In the two graphs on the left of the screen the
area for periods six and seven is black. The area for period eight is blue.]]

Forecasts In order to make a forecast about the development of govern-
ment expenditure and taxes, click onto the white area. Your forecast is shown
in blue.

[[ the figure shown here is similar to figure 1, except that only the first
seven periods of UK are shown. These first seven periods are extended by a
short blue line, i.e. an example forecast for one period.]]

If you are content with your forecast, please confirm it by clicking on
confirm forecast . If you want to correct your forecast, please click on

delete forecast .

Payment Given your forecast the computer determines a consumption de-
cision which would be optimal for a person who lives in the period. From
your consumption-decisions you derive a certain utility. This utility is com-
pared with the utility you would have obtained if you had forecasted the true
future development of taxes and government expenditure.

You receive a wage of 0.45¤ per minute for a correct forecast. Worse
forecasts result in smaller wages.

It is worth to spend some time to make a good forecast. Example: You
need 2 minutes in order to make a very good forecast and therefore receive
wages of 0.45¤ per minute. Your income in the 2 minutes is thus 0.90¤.

Another person, who makes forecasts for e.g. 4 periods in these 2 minutes,
which are not so good, may only receive a wage of 0.10¤ per minute for each
forecast. The income of this person in the 2 minutes is thus only 0.20¤.

You should settle your forecast within 2 minutes. If you need more time
for a forecast, you are paid only for the first 2 minutes.

A warning on the left side will remind you, as soon as you need more
than 2 minutes.

Furthermore, you see a list with the income from your past forecasts on
the left side.

Duration of the experiment The experiment takes 90 minutes, regard-
less whether you made many or few forecasts in this time. That requires,
however, that on average you spend at least 20 seconds for each forecast. If
you spend less time for each forecast, you are finished with the experiment
sooner, but earn fewer money, accordingly.

Should you have any questions, you now have the opportunity to ask
them. In addition, you can ask questions at any time during the experiment.
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Appendix to the instructions

To determine your payoff we use the following model. It is not necessary
to understand this model to participate successfully in the experi-
ment. The model is shown only in case you want to control us.

In two subsequent periods you consume c0 and c1 and pay taxes t0, t1.
You save the remaining part:

si = 1− ci − ti (5)

Your total income in each period is Y = 1 (note that all values are relative
to the gross domestic product Y ).

We call government expenditure gi. Then your utility in two subsequent
periods is

u =
1∏

i=0

(γci + (1− γ)gi) (6)

In your case γ = 0.75.
Your budget restriction is

1∑

i=0

si · (1 + r)i = 0 (7)

with an interest rate r = 0.1.
Based on your forecast for t1 and g1 we determine your optimal consump-

tion c0.
In the next period t1 and g1 are realised. Your actual consumption c1,

and, hence, your utility u, follows from the budget restriction. This utility is
compared with the utility u∗ that you could have obtained with the correct
forecast for t1 and g1. Your wage is (u/u∗)η. In your case η = 12000. This
normalisation does not change your utility maximisation problem.
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