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Calibration of accelerometers aboard GRACE satellites
by comparison with POD-based nongravitational

accelerations

Aleš Bezděk∗

Astronomical Institute, Academy of Sciences of the Czech Republic, Fričova 298, 251 65
Ondřejov, Czech Republic

Abstract

The proposed calibration method uses the precise kinematicpositions derived1

from the data of the GPS receivers aboard the twin GRACE satellites (POD, Pre-2

cise Orbit Determination). The total satellite accelerations are obtained numeri-3

cally as a second derivative of the kinematic positions, from these the modelled4

forces of gravitational origin are subtracted. The resulting nongravitational ac-5

celerations then serve as a calibration standard for the uncalibrated accelerometer6

data. The calibration parameters for the GRACE accelerometers have already7

been published using other methods. The aim of our study was to obtain not only8

the calibrated accelerometer measurements, but also a statistically correct estimate9

of their uncertainty.10

The main problem in the application of a numerical derivative to observational11

data is the amplification of noise, especially at high frequencies. Besides, the12

filter of the numerical derivative introduces the correlation structure in the noise,13

which complicates the uncertainty estimates using the ordinary least squares. We14

succeeded in solving both of these problems by using the generalized least squares15

(GLS) method.16
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Using the proposed procedure, the calibration parameters for all three ac-17

celerometer data components were obtained. To remove the serial correlation in18

the POD positions, we used the GLS method together with a fitted autoregressive19

process. In this way, a realistic estimate of accuracy of thecalibrated accelerom-20

eter data was obtained for the along-track component. The time evolution of the21

calibration parameters over a 1.5-year period (08/2002–03/2004) display approx-22

imately constant scale factors and slowly changing biases for both GRACE A and23

B satellites, which is in accordance with the results in the references.24

Key words: Space accelerometers, Nongravitational forces, Generalized least

squares, Autoregressive processes

1. Introduction25

The wealth of quality data from the two GRACE satellites (launched in 2002),26

and also from its predecessor satellite CHAMP (launched in 2000), has substan-27

tially contributed to the improved modelling of the global Earth’s gravity field, its28

static part as well as its temporal variations (Reigber et al., 2006; Schmidt et al.,29

2006). As the orbital altitude of these satellites is very low (below 550 km), they30

are equipped with space accelerometers, whose purpose is tomeasure the non-31

gravitational accelerations. When processing the measurements from the CHAMP32

and GRACE missions to produce the gravity field models, the measurements from33

the onboard accelerometers have to be calibrated. The gravity on the ground is so34

much larger than the nongravitational accelerations measured in space that the35

electronic properties of a space accelerometer do not allowit to be calibrated be-36

fore the launch. Many scientific teams using the CHAMP and GRACE data for37

the gravity field modelling therefore calibrated the accelerometer measurements38
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(Flury et al., 2006; Reigber et al., 2003, 2005a). Ideally, the calibrated accelerom-39

eter measurements should be accompanied with correct uncertainty estimates, but40

this is usually impossible, because the accelerometer calibration parameters con-41

stitute only a tiny part of the fitted parameters. Moreover, to stabilize the solution42

of large regression equations in the gravity field studies, one must usually use43

some regularization scheme, but then the regularized solution is biased and the44

bias could be much larger than the computed confidence intervals (Aster et al.,45

2005). Over the years it was found that the accelerometer calibration parameters46

can vary a lot depending on the analysis methods and the context of data usage47

(Bettadpur, 2004a).48

Besides the gravity field modelling, the accelerometer measurements may also49

be used for the analysis of sources of the nongravitational forces themselves, espe-50

cially for studying problems related to thermospheric density and winds (Doorn-51

bos et al., 2009; Flury et al., 2008). Specific for the attitude stabilized satellites52

CHAMP and GRACE are the firings of the attitude control thrusters, which show53

up in the linear accelerometer measurements, mainly because of thruster misalign-54

ments (Frommknecht et al., 2006). As real forces, the thruster firings are properly55

registered by the onboard accelerometers so that the full nongravitational signal56

can later be eliminated in the gravity field determination; this is one of the reasons57

why space accelerometers are useful in geodetic missions. However, from the58

point of view of aeronomy studies, the magnitude of the thruster events is often at59

the same order as that of the external nongravitational accelerations themselves,60

especially in the cross-track and radial directions. On theother hand, thermo-61

spheric density is derived from air drag, which is the dominant nongravitational62

acceleration in the along-track direction. The use of the properly calibrated ac-63
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celerometer data for aeronomy studies was the main motive for writing this paper.64

From the several calibration methods currently in use, we chose the satellite65

acceleration approach. The basic idea of the acceleration approach is to derive66

satellite accelerations by double numerical differentiation of the satellite positions67

along the precise orbit. Newton’s second law of motion then links the resulting ac-68

celeration vectors to the forces acting upon the satellite.The successful implemen-69

tation of this technique with results comparable to the classical, dynamic approach70

was enabled by the fact that kinematic orbits can nowadays bedetermined at a few71

cm accuracy. The satellite acceleration approach has been used by several scien-72

tific teams for the modelling of the geopotential (e.g., Ditmar et al., 2006; Reubelt73

et al., 2006;Švehla and Földváry, 2006). Numerically, the accelerometer cali-74

bration is much simpler compared to the gravity field determination, where one75

needs an inversion of normal matrix with tens of thousands unknowns and mil-76

lions of measurements, a difficult computational problem, which requires special77

techniques to be applied. In this study, the calibration standard, the vector of the78

POD-based nongravitational acceleration, is projected into the accelerometer ref-79

erence frame, where each component is directly compared with the uncalibrated80

accelerometer data and the linear least-squares calibration model may be used. In81

the ideal case, the residuals should be approximately independent and normally82

distributed to enable statistical inference concerning the regression results. On the83

other hand, the acceleration approach has the problem with the amplified noise.84

The double numerical differentiation increases the noise in the positions propor-85

tionally to the squared frequency, and, therefore, the high-frequency noise will be86

amplified very significantly.87

The prime motivation of this paper is that for a proper use of the accelerometer88
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measurements, and more generally of any observational data, one needs not only89

the measurement result, a point estimate of the true value, but also an estimate of90

the uncertainty of the result, a realistic error bar, which is a quantitative statement91

about where the true value ‘really’ is, with a given probability (cf., Taylor and92

Kuyatt, 1994). Without error bars it is not possible to assess the quality of obser-93

vations in question, to compare two competing theories using the observational94

data, to properly combine measurements from different sources, or to correctly95

combine the measurements even from the same experiment, if they have noncon-96

stant variance.97

2. Gravitational and nongravitational accelerations98

2.1. GRACE project and SuperSTAR accelerometer99

The Gravity Recovery And Climate Experiment (GRACE) is a joint US/German100

satellite mission (Tapley et al., 2004) designed to very accurately map variations101

in the Earth’s gravity field. The two almost identical GRACE satellites were102

launched in March 2002 into a near polar orbit at about 500-kmaltitude, separated103

by approximately 200 km. Each spacecraft carries a science payload consisting of104

microwave ranging system, GPS receiver, star cameras and accelerometer. Based105

on data from this mission, the most recent global Earth gravitational field models106

were published (Förste et al., 2008; Pavlis et al., 2008; Tapley et al., 2007).107

The SuperSTAR accelerometer on board of the GRACE satellites is a three108

axis capacitive accelerometer with two sensitive and one less sensitive axes. The109

sensitive axes point in the flight and radial directions, theless sensitive axis points110

in the cross-track direction. The precision of the sensitive axes is specified to be111

10−10 m s−2, and that of the less sensitive axis 10−9 m s−2, within the bandwidth112
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of 2×10−4–10−1 Hz (Flury et al., 2008). Compared to the CHAMP accelerome-113

ter, the GRACE accelerometers have thermally controlled environment with the114

temperature variations below 0.1 K/orbit (Tapley and Reigber, 2002).115

2.2. Nongravitational accelerations116

Figure B.1 shows the simulated nongravitational accelerations acting on the117

GRACE A satellite during one orbital revolution. The projection of the accelera-118

tion vectors refers to the satellite local reference frame;the three components are119

the along-track (A-T; projected to the velocity direction), the cross-track (C-T;120

direction of angular momentum) and the radial one (RAD; completes the right-121

handed system). The figure is typical for satellites in low Earth orbits (LEO,122

altitudes 100–2000 km, mainly 150–800 km): the dominant nongravitational ac-123

celerations change with the satellite local reference frame directions; the close-124

Earth motion makes the satellite to pass through the Earth’sshadow, which is125

visualized by the characteristic jumps. In the along-trackcomponent, the main126

nongravitational driver is theatmospheric drag(DRAG), pointing always in the127

direction opposite to the satellite’s motion. Even in the along-track component,128

there may appear jumps in the smooth waveform of the drag acceleration caused129

by thedirect solar radiation pressure(DSRP), whose action is dominant in the130

sunlit part of the cross-track and radial components. In theshadow of Earth, the131

terrestrial infrared radiation(IR) dominates the radial component. Sometimes,132

when the satellite passes directly below the Sun, also the signal from thereflected133

solar radiation(ALB) may be recognizable in the graphs of the nongravitational134

accelerations. In each panel, there is also the sum of the individual simulated non-135

gravitational accelerations,aSIM
NG . The magnitude of the nongravitational forces in136

each local reference frame direction depends on the satellite shape and its phys-137
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ical properties; in this study, for the GRACE satellites we used the macro model138

and surface properties from Bettadpur (2007) and the mass from ISDC/GFZ data139

centre (http://isdc.gfz-potsdam.de/grace/). General formulae for computing the140

nongravitational accelerations may be found e.g. in Montenbruck and Gill (2001)141

or Milani et al. (1987), in this study we used the model of neutral thermospheric142

density DTM-2000 (Bruinsma et al., 2003) and the zonal and seasonal models of143

the Earth’s albedo and emissivity (Knocke et al., 1988).144

Figure 1 should be positioned here.145

Figure 2 should be positioned here.146

Figure B.2 displays the Level-1B accelerometer data of GRACE A during147

the same period as in Figure B.1. There is an apparent similarity between the148

waveforms of the sum of the simulated nongravitational accelerations (Fig. B.1)149

and the uncalibrated accelerometer readouts (Fig. B.2). This is typical for all150

GRACE Level-1B accelerometer data and provides evidence that the smoother151

simulated nongravitational accelerations and the accelerometer measurements are152

consistent with each other. On the other hand, if we compare the units on vertical153

axes of graphs in Figures B.1 and B.2, it is clear that the accelerometer data are154

not calibrated; for example, it follows from the geometry ofthe GRACE A motion155

during the revolution in question that in the radial component the nongravitational156

acceleration must pass through zero. In the cross-track andradial components, the157

7
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sudden spikes in the waveform correspond to the cold-gas thruster firings, which158

are activated on average every 2.3 minutes by the attitude control system in order159

to satisfy the pointing requirements of the microwave ranging system (Flury et al.,160

2008).161

Figure 3 should be positioned here.162

2.3. Gravitational vs. nongravitational accelerations163

The histograms in Figure B.3 show the magnitude of the individual acceler-164

ations in the satellite local reference frame components. We simulated the or-165

bital evolution of the GRACE A satellite during 1.5 years, every 60 minutes we166

recorded the magnitudes of the accelerations acting on the satellite and then draw167

a histogram for each acceleration. We do not show the specificnumbers for the168

histogram counts on the vertical axis, which is linear, as these are only formal169

depending on the sampling period and would add complexity tothe graphs.170

The dominant acceleration is due to the static gravitational field; the accel-171

eration caused by the central term (GRAVµ/r; 8.5 m s−2) is projected mainly172

in the radial direction because of the almost circular orbitof the GRACE satel-173

lites. Then follows the acceleration due to the Earth flattening (GRAV J2) and to174

the remaining terms of the geopotential (GRAV rest). Considering the range of175

the nongravitational accelerations (DRAG, DSRP, ALB, IR: 1–500 nm s−2), it is176

clear that for a successful accelerometer calibration alsothe other accelerations177

of gravitational origin must be taken into account: direct lunisolar perturbations178

(LUNISOL), solid Earth tides (SETID), ocean tides (OTID), and relativistic cor-179

8
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rection (REL).180

2.4. Geopotential – acceleration with respect to its degree181

The graphs in Figure B.4 show the accelerations produced by the spherical182

harmonic terms of the geopotential model EGM96 summed over the orders for a183

given degree. The individual curves correspond to the altitude of a satellite in a184

circular orbit around the Earth.185

The histograms in Figure B.3 set the upper limit of the nongravitational ac-186

celerations acting on the GRACE satellites to be 500/30/70 nm s−2 for the along-187

track/cross-track/radial components, while the altitude of the satellites decreased188

from 510 km to 450 km. From Figure B.4 we infer that the geopotential-induced189

accelerations approximately equal in magnitude to the upper limit must start at de-190

gree 50–60/80–100/70–90 and go up to degree 125–150 to cover 1 nm s−2 lower191

limit of the nongravitational acceleration level, or up to degree 150–180 to reach192

0.1 nm s−2. In this study, we used the geopotential harmonic expansionup to193

degree and order 180 (or the maximum allowable value of a given model).194

Figure 4 should be positioned here.195

3. Method of calibration – a general look196

In this section, we will explain the proposed method of calibration using the197

simulated positions and accelerations. To the simulated satellite positions we will198

add white noise of a known variance, to have an approximate representation of199

the POD positions. The uncalibrated accelerometer data will be represented by200

9



Page 10 of 64

Acc
ep

te
d 

M
an

us
cr

ip
t

the simulated nongravitational accelerations, shifted and scaled by given values.201

We will look for a linear filter that would realize the second derivative of positions,202

taking into account the character of the waveforms in question (Figs. B.1 and B.2).203

Filtering the positions yields the estimated second derivatives, the POD-based to-204

tal acceleration vectors, from which the modelled gravitational accelerations are205

subtracted. In this way, the POD-based nongravitational acceleration vector is206

obtained, which serves as the calibration standard (etalon). The calibration equa-207

tion then connects the mean curve, given here by the simulated nongravitational208

accelerations, with the calibration standard as the observation vector containing a209

random component. From this simple linear regression model, we find the bias210

and scale factor as the calibration parameters for each accelerometer component.211

When filtering the positions, the filter of the second derivative introduces serial212

correlation into the random component of the POD-based nongravitational accel-213

erations. While the mean values of the fitted calibration parameters are not much214

affected, the standard fit error and all the confidence intervalsare not correct. The215

generalized least squares method (GLS) is used to find the correct estimates of the216

uncertainty in the calibrated nongravitational accelerations.217

An important aspect of the presented calibration method is that we use the218

kinematic orbits, i.e. those determined directly from GPS measurements and not219

influenced by any force models (cf. Ditmar et al., 2006). Thisis of concern es-220

pecially for modelling the accelerations due to the geopotential, where different221

geopotential models might give different POD-based nongravitational signals. It is222

an assumption of the presented method that the noise in the modelled gravitational223

accelerations is negligible compared to that of the POD-based total acceleration224

(more on this point in Sec. 5.4).225

10
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3.1. Simulated POD positions226

Simulated positions are computed by the numerical integration of the satellite227

motion using the simulated gravitationalaSIM
GRAV and nongravitationalaSIM

NG accel-228

erations (SIM stands for ‘simulated’ or ‘modelled’). The time step of positions229

and other quantities used in this study is 10 seconds. To these approximately230

error-free positions, which are given in the celestial reference frame, we added a231

normally distributed white noiseZ, with a variance ofσ2=1 cm in each position232

component. The resulting sequence of random vectorsr represents the kinematic233

positions from the POD.234

3.2. Filter of the second derivative235

We obtain the POD-based total accelerationsaPOD
TOTAL by double differentiation236

of the positionsr. For this purpose we used theSavitzky-Golayor polynomial237

smoothing filters(e.g., Press et al., 2001). A polynomial of a chosen order is238

least-squares fitted to the data points within a running window of a chosen length;239

the approximate numerical derivative at the central point is obtained by the differ-240

entiation of the fitted polynomial.241

We looked for the best agreement between the simulated and POD-based non-242

gravitational accelerations, when no noise in positions isintroduced. We started243

with the first approximation to the numerical second derivative, the simple three-244

-point formula, but we found that such low order derivativesproduce too high a245

bias (10−6 m s−2 with the time step of 1 sec, 10−4 m s−2 with 10 sec) between the246

simulated and POD-based nongravitational accelerations.We then systematically247

tested many combinations of the polynomial orders and window lengths to find a248

suitable pair with low values of both parameters that would produce a satisfactory249

agreement between the simulated and POD-based nongravitational accelerations.250

11
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Finally, we have chosen the combination of the polynomial order 6 with the win-251

dow length 9; other combinations, e.g. 8/13, 9/11, 9/21 yielded similar results.252

The tested combinations comprised also the case with no smoothing, where the253

window length equals the polynomial order plus one, but again, the bias was too254

high for our purposes. For later reference, we will symbolically write the filtering255

of positions as the convolution of the second-derivative filter F and the radius-256

vectorr,257

aPOD
TOTAL = F ∗ r. (1)

3.3. POD-based nongravitational accelerations258

The calibration standard, the POD-based nongravitationalacceleration vec-259

tor aPOD
NG , is obtained from the POD-based vector of total accelerations aPOD

TOTAL by260

subtracting the modelled accelerations of gravitational origin aSIM
GRAV,261

aPOD
NG = aPOD

TOTAL − aSIM
GRAV , (2)

where the vectoraSIM
GRAV is the sum of the acceleration vectors caused by the Earth262

static gravitational field, direct lunisolar perturbations, solid Earth and ocean tides,263

and relativistic effects (Sec. 2.3). The relatively high degree and order of the264

geopotential model, which is necessary for the generation of gravitational accel-265

erations of low enough magnitude comparable to that of the calibrated accelerom-266

eter measurements, was discussed in Section 2.4.267

While the numerical differentiation of the positions is most easily done in the268

(inertial) celestial reference frame, the POD-based nongravitational accelerations269

obtained in Eq. (2) must be projected into the science reference frame, in which270

all GRACE Level-1B data products are specified (Case et al., 2004). The axes271

of the science reference frame are close to those of the satellite local reference272

12
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frame (Sec. 2.2) to within a few degrees, except for the sign.In this section,273

we use the exact satellite local reference frame, in Section4, where the attitude274

information of the GRACE satellites is used, we perform a simple sign change275

to have all our calculations and figures in an approximate satellite local reference276

frame. The motivation for using the satellite local reference frame lies in its clear277

physical meaning, e.g. the air drag vector always points in the negative along-278

track direction, the terrestrial infrared radiation in thepositive radial direction.279

In Figure B.5 the components of the POD-based nongravitational acceleration280

vector aPOD
NG in the satellite local reference frame are shown. Using the second-281

derivative filter, the 1-cm noise in positions is amplified tohigh-frequency noise282

in accelerations with oscillations on the order of 10−4 m s−2. The “true” signal283

aSIM
NG of amplitudes 10–500 nm s−2 is buried in noise.284

Figure 5 should be positioned here.285

3.4. Calibration equation286

The calibration equation is given by the linear model287

aPOD
NG = B+ S aUNCAL

ACC + ǫ, (3)

whereB is bias,S scale factor,aUNCAL
ACC uncalibrated accelerometer data,ǫ statisti-288

cal error. On the assumption that the accelerometer measures independently in its289

three axes, we have one independent calibration equation (3) for each accelerom-290

eter axis.291

In this section, the uncalibrated dataaUNCAL
ACC are represented by the simulated292

13
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nongravitational accelerationsaSIM
NG , which were scaled byS=1.1 and shifted by293

B=1.2×10−6m s−2.294

3.5. Problem of autocorrelated noise295

The probability model,y = b0 + b1x+ ǫ, for which the ordinary least squares296

(OLS) method of estimation is best suited, relates the error-free predictor variable297

x and the random variabley (see Appendix A). In this respect, the calibration298

equation (3) matches well the OLS model: the noise in the simulated nongravita-299

tional accelerationsaSIM
NG ≡x is several orders of magnitude lower than that of the300

response variableaPOD
NG ≡y (Fig. B.5). Also the noise in the accelerometer readouts301

should be, according to the specifications (Sec. 2.1), much lower than that ofaPOD
NG .302

The OLS provide correct uncertainty estimates, if the errors ǫ are independent303

and normally distributed. If the random errors are positively correlated, the uncer-304

tainty in the fitted parameters is usually underestimated, thus giving a false sense305

of accuracy (e.g., Chatterjee and Hadi, 2006; Rawlings et al., 1998).306

When a digital filter is applied to a data sequence containinga random compo-307

nent, the random errors within the filter window are linearlycombined to the new308

output value; hence the newly formed random vector has components, which are309

correlated. This happens to the POD-based nongravitational accelerationsaPOD
NG310

obtained from the positions by applying the second-derivative filter (1) and after311

subtracting the modelled accelerations of gravitational origin in Eq. (2); the noise312

in positions, which in this section is supposed to be white (Sec. 3.1), after filtering313

becomes a correlated random component ofaPOD
NG . The OLS applied to the calibra-314

tion equation (3) now enables one to calculate acceptable estimates ofB andS, as315

the point estimates of the regression parameters are usually not much affected by316

the autocorrelated errors, but it is not possible to correctly estimate the uncertainty317

14
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of the calibrated accelerations. For a correct estimation of the uncertainties inB318

andS, we will use the generalized least squares method; see Appendix B for a319

short review.320

3.6. Use of GLS to remove autocorrelation321

In fact, the non-diagonal covariance matrix of the random component inaPOD
NG322

was created by the action of the second-derivative filterF from the covariance323

matrix of the white noiseVar(Zi)=σ2
1. Namely,324

Var(ǫ) = FVar(Z)F′ = σ2FF′, (4)

whereF is a square matrix, generated from the coefficients of the filterF and325

whose multiplication is equivalent to the action of the filter (e.g., Gray, 2006).326

But the situation, where weknowthe covariance matrix of the random errors in a327

linear model, is exactly what the GLS method is suited for. Inour case, finding the328

GLS transformation matrix is straightforward,W=F−1. After applyingW to the329

calibration equation (3), and solving the transformed equation (Eq. B.3) through330

the OLS, the residuals become again uncorrelated and the originalσ2 should be331

recovered. As regards the implementation of the filtering, we throw away the first332

and last few acceleration points during the filter warm-up phase, and we find the333

transformation matrixW through the Cholesky decomposition of the covariance334

matrix FF′ (cf. Eq. B.2).335

3.7. Decorrelation of the observations336

The results of the GLS transformation of the POD-based nongravitational ac-337

celerationsaPOD
NG are in Figure B.6; only the solution in the along-track compo-338

nent is shown. As the GLS transformation matrixW=F−1 is actually the inverse339
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to the second-derivative filter, which produces accelerations from positions, the340

“nongravitational positions” are obtained as a sort of double integral ofaPOD
NG . Ef-341

fectively, we got back into the positions, but now with the gravitational signal342

removed.343

In the upper panel of Figure B.6, the nongravitational positions are shown344

(yOLS1) as the observations for the OLS estimates, and the fitted function (ŷOLS1),345

which is the simulated nongravitational accelerationaSIM
NG transformed to positions346

by W. Several statistics shown in the lower panels confirm the fact that the OLS347

residuals in the middle panel are uncorrelated normal: autocorrelation function348

(ACF), partial autocorrelation function (PACF; more aboutit in Sec. 4.2), normal349

probability plot and Jarque-Bera test (e.g., Brockwell andDavis, 2002). Through350

the OLS applied to the transformed linear model (Eq. B.3), apart from the es-351

timates of the calibration parametersb̂0 andb̂1, the original error variance of the352

nongravitational positions (Sec. 3.1) is estimated by the OLS residual mean square353

σ̂2 (labelled asσiid,est in Fig. B.6).354

Figure 6 should be positioned here.355

3.8. Very high correlation between the calibration parameters356

In Figure B.6 the reader may have noticed that the coefficient of correlation357

between the fitted calibration parametersb̂0 andb̂1 is very close to one, typically,358

when calibrating the simulated or real accelerometer data,we getρ(b̂0, b̂1)≃0.999. . .359

Of course, such a high correlation is not good for the stability of the fitted param-360

eters. The cause of this situation lies in the collinearity of the predictor variables,361

16



Page 17 of 64

Acc
ep

te
d 

M
an

us
cr

ip
t

one of the standard problems encountered in multiple regression (e.g., Chatterjee362

and Hadi, 2006; Rawlings et al., 1998; Weisberg, 2005).363

For simplicity, let us use for the calibration equation (3) the notation of the364

OLS from Appendix A and calibrate the accelerometer measurements against365

the simulated nongravitational accelerations, so in this subsectionx≡aUNCAL
ACC and366

y≡aSIM
NG . We may approximately take bothx (Fig. B.2) andy (Fig. B.1) as signals367

made up by two components, by a constant signal plus an oscillatory component368

(sum of sinusoids). This is not very far from the truth, as thepatterns of one369

revolution in Figures B.1 and B.2 repeat themselves relatively regularly during a370

period of weeks or so. From the point of view of Fourier analysis, the constant371

component ¯x and the oscillatory component (x − x̄) are orthogonal to each other,372

the same applies to ¯y and (y− ȳ), so comparing the constants ¯x, ȳ would produce373

an estimate of an ‘intuitive’ bias, i.e. a distance between the mean values ¯x and374

ȳ, and fitting the oscillations (x− x̄) and (y− ȳ) would estimate the ‘scale factor’,375

i.e. a mean ratio of the oscillatory amplitudes (provided that x andy are in phase,376

which is true here). But this is not the case of the calibration equation (3); here377

the parameterb1 multiplies the predictorx, which is a sum of the constant ¯x and378

oscillations (x − x̄), but the predictor connected withb0 is also a constant, hence379

the collinearity. What makes the correlation betweenb̂0 andb̂1 so high is the very380

large value of the offset x̄ in the accelerometer readouts compared to the ampli-381

tude of the oscillations (x − x̄). For large sample sizes and ¯x2≫σ̂2
x, whereσ̂2

x is382

the sample variance ofx, we may approximate the expression for the coefficient383

of correlation (Eq. A.6) by384

ρ(b̂0, b̂1) =
−x̄

√

σ̂2
x + x̄2

≃ −x̄
|x̄|

(

1− 1
2

σ̂2
x

x̄2

)

. (5)

Taking the along-track component ofaUNCAL
ACC in Figure B.2 as a quantitative ex-385
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ample, the power of the constant component ¯x2≃(10−6)2 m2 s−4 and that of the386

oscillatory component ˆσ2
x≃(5.10−8)2/2 m2 s−4 giveρ(b̂0, b̂1) ≃ 0.9995.387

The extremely high correlation between the parametersb̂0 and b̂1 may be388

avoided by changing the calibration model (3). From Eq. (5),the correlation be-389

tween the parameters in the simple linear regression is zero, if the predictorx has390

zero mean. In the notation of Appendix A, a modified calibration model might be391

y− x̄ = b⋆0 + b⋆1 (x− x̄) + ǫ, (6)

together with the definitionsy⋆=y − x̄ and x⋆=x − x̄. The modified model has392

perfectly uncorrelated parametersb⋆0 andb⋆1 , moreover, one can easily show that393

b⋆0=ȳ–x̄ is the ‘intuitive’ bias mentioned above. The scale factorsb1, b⋆1 of both394

models have the same fitted value,b̂⋆1=b̂1, and, perhaps surprisingly, also the same395

standard error, ˆσ(b̂1)=σ̂(b̂⋆1 ). Only the modified interceptb⋆0 has a substantially396

smaller standard error, from (A.4), ˆσ(b̂⋆0 )=σ̂/
√

n. Indeed, the calculated values of397

the modified intercept̂b⋆0 are much less noisy compared to those ofb̂0. But on398

rearranging the terms in (6),y = x̄+ b⋆0 − b⋆1 x̄+ b⋆1 x+ ǫ, one can express the ‘old’399

calibration parametersb0 andb1 by means of the modified ones,400

b0 = b⋆0 + x̄(1− b⋆1 ), b1 = b⋆1 . (7)

We might believe that the ‘statistically better’, completely uncorrelated parame-401

tersb⋆0 , b⋆1 and their uncertainties would somehow helpb0, b1 to have less correla-402

tion – but this does not happen; starting from (7) and using the rules for variances403

of the linear functions of random variables (e.g., Rawlingset al., 1998), we arrive404

at exactly the same formulae (A.4), (A.6) as before.405

In this study, for the regression calculations themselves we used the modified406

model (6). During the inversion of the normal equations, MATLAB (2007) indi-407
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cated a bad condition number, which was caused by a difference of several orders408

between the magnitudes of the two predictors; a simple solution was to multiply409

the interceptb⋆0 by 10−7. In fact, both these computational modifications are anal-410

ogous to standardizing the predictor variables in multipleregression or using the411

MATLAB option ‘center and scale X data’. For the sake of comparison of our412

calibration parameters with those computed by other groups, and because, after413

all, the calibration models (3) and (6) are equivalent, the final results are given in414

terms of the original parametersb0 andb1.415

4. Calibration of the accelerometer data over several revolutions416

In this section we will apply the calibration method to the real GRACE data417

covering several orbital revolutions in order to analyze the calibration results in418

more detail. As the POD positions, we used the high-quality 10-second kinematic419

orbits of the GRACE satellites, kindly provided by D.Švehla (TU Munich). The420

orbits were computed using the zero-difference ionosphere-free phase measure-421

ments, the 10-sec orbits are based on the interpolated 30-sec POD satellite clocks422

(Švehla and Rothacher, 2005).423

The simulated gravitational accelerations, needed for obtaining the POD-based424

nongravitational accelerations (Sec. 3.3), the coordinate transformations and the425

simulated nongravitational accelerations were calculated by our own orbital prop-426

agator NUMINTSAT (Bezděk et al., 2009). When working with the real-world427

data, it has become clear that in contrast to simulations theuse of the most up-to-428

date physical models is crucial for obtaining meaningful calibration results. We429

used: coordinate transformations between ICRF and ITRF systems (McCarthy430

and Petit, 2003), the model of static gravitational field EIGEN-5C to order and431
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degree 180 (Förste et al., 2008), lunar and solar ephemerides JPL DE405, the432

model of solid Earth tides (anelastic Earth; McCarthy, 1996), the model of ocean433

tides CSR 4.0 (Bettadpur, 2004b).434

We obtain the POD-based nongravitational accelerationsaPOD
NG in Eq. (2) using435

the second-derivative filter (1) and the modelled accelerations of gravitational ori-436

gin. Figure B.7 shows a typical result for the three accelerometer axes, the ampli-437

fied noise from the POD positions being roughly of the same order of magnitude438

as that for the simulated case in Figure B.5. The components shown in Figure B.7439

are not exactly ‘along-track’, ‘cross-track’ and ‘radial’, as the accelerometer read-440

outs are now given in the science reference frame (Sec. 3.3).441

Figure 7 should be positioned here.442

4.1. Correlated noise in the POD positions443

We apply the GLS transformW to the calibration equation (3), which now444

relates the observations given byaPOD
NG and the regressor equal to the uncalibrated445

accelerometer readoutsaUNCAL
ACC . The acquired “nongravitational positions” are in446

Figure B.8; clearly, the OLS residuals from the real POD positions are correlated447

(middle panel), which is confirmed by the graph of the estimated autocorrelation448

function (ACF; in blue, bottom left panel). This is not surprising, the kinematic449

orbits are reported to be correlated (Švehla and Földváry, 2006). On the other450

hand, the standard error of the OLS fit ˆσ of a few centimetres as an estimate of451

the noise in the real kinematic POD positions is a plausible value.452
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Figure 8 should be positioned here.453

4.2. Removing the autocorrelation with an AR model454

In this subsection, we will use a general approach for drawing statistical in-455

ferences from time series (Brockwell and Davis, 2002; Chatfield, 1995). In most456

practical problems involving time series we see only one realization, but we imag-457

ine it to be one of the many sequences that might have occurred. It is necessary458

to setup a hypothetical probability model to represent the data; after an appropri-459

ate family of models has been chosen, it is then possible to estimate parameters,460

check for goodness of fit to the data, and possibly to use the fitted model.461

We suppose that the correlated OLS residuals (middle panel of Fig. B.8) are a462

realization of a stationary process and we want to representits correlation structure463

by fitting an appropriate autoregressive moving-average (ARMA) model. This464

class of linear time series models has the property that any autocovariance func-465

tion that asymptotically tends to zero can be approximated arbitrarily well by the466

autocovariance function of some ARMA process. The fact thatthe sample au-467

tocorrelation function (ACF) is negligible for some finite lag q suggests that a468

moving-average model MA(q) might provide a good representation of the data.469

Analogously, thepartial autocorrelation function(PACF; in cyan, bottom left470

panel of Fig. B.8) of a causal autoregressive process AR(p) is zero for lags greater471

thanp. Both the ACF and PACF of the OLS residuals are in the bottom left panel472

of Figure B.8. The sample PACF clearly falling off, we chose the pure AR(7)473

process to be fitted to the residuals using the Yule-Walker estimation. The ACF474

of the fitted AR process of order 7 (in green, bottom left panelof Fig. B.8) agrees475
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well with the sample ACF for lags less than 100; in our experience, the order 7 is476

sufficient to match the correlation structure of the OLS residuals.477

We suppose that the OLS residuals may be viewed as a realization of the fitted478

AR(7) process, in other words, as an output to filtering a white noise input by479

the corresponding AR filter. Therefore, the covariance matrix of the correlated480

residuals in Fig. B.8 is now given as that of the fitted AR process. This new481

covariance matrix replaces the matrixVar(Z) in Eq. (4) and the GLS method482

is applied in the same way as in Section 3.6. We will use the subscript 2 to483

distinguish the new GLS transformation. The GLS2 transformation matrixW2484

is obtained numerically by the Cholesky decomposition of the new covariance485

matrix (Eq. B.2). After transforming the calibration equation (3) usingW2, and486

using the OLS2 estimation to find the calibration parameters, we finally obtain an487

approximately uncorrelated series of residuals, in the middle panel of Figure B.9.488

Indeed, the ACF and PACF (bottom left panel) are negligible except at zero lag.489

Figure 9 should be positioned here.490

4.3. Calibrated accelerometer measurements491

On solving the calibration equation (3) by the GLS2 method described in the492

previous section, we obtained the calibrated accelerometer measurementsaCAL
ACC493

and their estimated uncertainty band ˆσ(aCAL
ACC) given by the confidence interval (B.5).494

The fact that the GLS2 residuals appear to be approximately uncorrelated and nor-495

mal (bottom panels of Fig. B.9) for the along-track component permits us to use496

statistical inference and to assert that the ‘true’ signal measured by the accelerom-497
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eter should be located with a high level of confidence within the±3σ̂(aCAL
ACC) band498

aroundaCAL
ACC. This is in accordance with the usual definition of the99.7-percent con-499

fidence interval, within which we expect the ‘true’ value of the estimated param-500

eter to be located with the coverage probability of 99.7 %, when the normal dis-501

tribution is sampled (‘three-sigma rule’). For the statement of uncertainties in this502

study, we used the coverage factor (CF) of 1 (‘one-sigma’ uncertainty, coverage503

probability 68.3 %) or that of 3 (coverage probability 99.7 %).504

The calibrated accelerometer measurementsaCAL
ACC together with the 3 ˆσ(aCAL

ACC)505

uncertainty band for two orbital revolutions are in Figure B.10. The uncertainty506

band is wider when the fitted value is farther from the mean, similarly to the usual507

OLS model (A.7). The sample mean〈3σ̂(aCAL
ACC)〉, which we can use to characterize508

the obtained uncertainty band in the along-track component, is around 25 nm s−2.509

In the same way, we can use the calibration equation to fit the simulated non-510

gravitational accelerations and obtainaSIM,CAL
NG . As is apparent from Figure B.10,511

the uncertainty bands of both ˆσ(aCAL
ACC) andσ̂(aSIM,CAL

NG ) are of similar size. But the512

calibration equation (3) was used in a usual OLS sense, however, after the GLS2513

transformationW2 was applied. In the bottom panel of Figure B.10 there are the514

calibrated accelerometer and simulated nongravitationalaccelerations with their515

means subtracted and then projected to the W2 space. It is evident that the W2516

transformation matrix is an integrator, which, inversely to the second-derivative517

filter (1), effectively filters out the high frequencies from bothaCAL
ACC andaSIM,CAL

NG .518

Indeed, the estimated frequency response of the filterW2 shows that only sinu-519

soids of periods longer than 30 minutes are retained. Although the accelerometer520

waveform give more details in the ‘acceleration domain’ than the modelled non-521

gravitational accelerations, the calibration in the GLS-induced nongravitational522
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positions effectively smoothes these differences out, and the final uncertainties523

〈σ̂(aCAL
ACC)〉 and〈σ̂(aSIM,CAL

NG )〉 are very close.524

Figure 10 should be positioned here.525

Similar calibration results have been obtained also for theradial component;526

the mean uncertainty〈σ̂(aCAL
ACC)〉 is around three times larger, but the normality of527

the GLS2 residuals is questionable. In the cross-track direction, we have not suc-528

ceeded to find a suitable AR process to decorrelate the GLS1 calibration residuals.529

So, in the cross-track and radial directions, we found the calibration parameters530

b̂0 and b̂1, but we are not able to calculate a reliable estimate of the uncertainty531

of aCAL
ACC. From the point of view of the atmospheric density modelling, this is532

not a problem, by far the strongest signal from the atmospheric drag is in the533

along-track component and besides, the cross-track and radial components of the534

accelerometer readouts contain the disturbing signal fromthe attitude thrusters.535

5. Evolution of calibration parameters over 1.5 years536

The presented calibration method has been applied to the accelerometer data537

of both GRACE satellites within a period of 1.5 years (08/2002–03/2004), for538

which the 10-sec kinematic orbits were available to us. The following calibration539

scheme is based on the assumption that the calibration parameters vary slowly540

in time. As the accelerometer data as well the POD positions contain relatively541

frequent portions of outliers (cf. Flury et al., 2008), we used a running window542

covering several satellite revolutions, within which we calibrated the accelerome-543

ter readouts. From these calibration results we selected the non-overlapping seg-544
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ments with the best statistical properties. Simple long-term expressions for the545

calibration parameters may be obtained by fitting the linear(or quadratic) regres-546

sion models to the selected calibration results. The long-term statistical results547

are better suited for a comparison of different gravitational models and calibration548

algorithms than a few days studies, where chance may play a role.549

5.1. Long-term values of the obtained uncertainties550

In the regression analysis, the squared standard error of the fit σ̂2 (A.5) is an551

estimate of the constant variance of the observations, provided the assumptions of552

the OLS are met. As a factor, ˆσ then enters the uncertainty estimates (A.4, A.7, A.8).553

Although the correlated noise in the POD positions preventsthe usual 3-σ in-554

terpretation of the OLS1 residuals (in the middle panel of Fig. B.8), in physics555

and engineering this ‘RMS value’ ˆσ is widely used to characterize the power of556

the residual signal. The upper panel of Figure B.11 shows thestandard error of557

the fit σ̂OLS1 for the 1.5-year period. The label OLS1 refers to the case, where the558

GLS transformation is based only on the inverse second derivative filterW=F−1,559

and thus the accelerationsaUNCAL
ACC andaSIM

NG are ‘integrated’ to give the ‘nongrav-560

itational positions’ (Sec. 3.6). This is interesting, because on supposing that the561

modelled gravitational accelerations have negligible errors, σ̂OLS1 then estimates562

the RMS value of the POD positions when compared with the independently mea-563

sured accelerometer data. The figure shows that the empirical distributions of564

σ̂OLS1 for both aCAL
ACC andaSIM,CAL

NG are very close, with no statistically significant565

difference, their mean values being equal to around 3 cm with an approximate566

uncertainty of 1–2 cm.567

The aim of this paper is to obtain the calibrated accelerometer data together568

with a realistic error bar. As mentioned in Section 4.3, thiscan be achieved in569
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the along-track component only. The uncertainty estimatesof the calibrated ac-570

celerometer and simulated nongravitational accelerationsσ̂(aCAL
ACC) andσ̂(aSIM,CAL

NG )571

in the lower panel of Figure B.11 are again statistically equivalent, the mean un-572

certainty being 8.5±3.0 nm s−2. This is due to the severe smoothing, when the573

accelerationsaCAL
ACC andaSIM,CAL

NG are calibrated against the POD positions, as ex-574

plained in Section 4.3.575

Figure 11 should be positioned here.576

The results in Figure B.11 come from the calibrating the accelerometer data577

within a running window of 2 revolutions. We processed the accelerometer data578

from both GRACE satellites using the window of 2–4 orbital revolutions. The579

long-term results for both satellites were statistically equivalent. The estimated580

RMS valueσ̂OLS1 of the POD positions compared to the integrated accelerometer581

signal is: 3–4 cm in the along-track, 4–7 cm in the cross-track, and 6–12 cm582

in the radial components, the values are increasing with thelength of the fitting583

window. At the same time, the mean uncertainty of the calibrated accelerometer584

measurements〈σ̂(aCAL
ACC)〉 in the along-track component decreased from 8.5 nm s−2

585

to 6.5 nm s−2.586

Let us note here that we also calibrated the accelerometer data without a spe-587

cial treatment of the autocorrelation present in the POD residuals (Sec. 4.2). Then,588

in the along-track component we obtained the long-term meanof the uncertainty589

〈σ̂(aCAL
ACC)〉=1.0 nm s−2, which is approximately 7 times “better” than that stated590

above (window of 3-revs. used). This illustrates the overlyoptimistic accuracy591

estimates, when the autocorrelated errors are ignored in the linear regression prob-592
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lems (Sec. 3.5, Appendix B).593

5.2. Long-term evolution of scale factors and biases594

In the long term, the scale factorb̂1 of the accelerometer data is approxi-595

mately constant (upper panel of Figure B.12), with the mean value near 1 for596

both GRACE satellites, with the 3-σ uncertainty of a few percent. Using the fitted597

value of b̂1 and Eq. (7), the biaseŝb0 are obtained, which we can subsequently598

fit with a straight line regression model to obtain simple long-term expressions599

(lower panel of Fig. B.12), similarly to Bettadpur (2004a).600

In Figure B.13, there are the results of the same procedure applied to the mod-601

elled nongravitational accelerations. While the long-term statistical results of the602

scale factorb̂1 are comparable for both accelerometer-based and simulatedac-603

celerations, the biases are different: on average, the simulated nongravitational604

accelerations are very close to the calibration standardaPOD
NG , the fitted mean value605

of b̂0 is less than 0.01 nm s−2; but the variation in the straight-line model of the606

bias is 3–8 times greater in the simulated accelerations than in the accelerometer-607

based accelerations. In other words, the long-term accelerometer bias is more608

stable with respect to the calibration standard than the bias of the simulated non-609

gravitational accelerations. This may be attributed to thefluctuating errors in the610

nongravitational acceleration models, which depend on theorbital conditions.611

Figure 12 should be positioned here.612

Figure 13 should be positioned here.613
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In a technical note, Bettadpur (2004a) states the constant scale factors and615

simple linear (or quadratic) models of the changes in bias for each accelerometer616

axis of the GRACE A/B satellites. These estimates were obtained in the GRACE617

data processing for the precise orbit and gravity field determination, and their limit618

of applicability is from the launch until 1 November 2003.619

Considering the very high correlation between the fitted calibration parameters620

(Sec. 3.8), we can set the scale factorsb̂1 equal to the values specified in Bettadpur621

(2004a) and expect that the biases will ‘adapt’ their valuesaccordingly. Indeed,622

in the three accelerometer axes of GRACE A, Figure B.14 showsa similar time623

evolution of our biases and those from the report. In this case, the fixed values624

of the scale factors were 0.961 (along-track), 0.98 (cross-track), 0.94 (radial). We625

obtained similar results for GRACE B, Figure B.15, for the fixed scale factors626

0.947 (along-track), 0.97 (cross-track), 0.92 (radial).627

Figure 14 should be positioned here.628

Figure 15 should be positioned here.629
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5.4. Uncertainties for different gravity field models630

In Table B.1, there are the long-term means of the estimated RMS of noise631

in the POD positions〈σ̂OLS1〉 and of the uncertainty in the calibrated accelerom-632

eter measurements〈σ̂(aCAL
ACC)〉 obtained using selected models of the static gravity633

field. We calculated the accelerations for degree/order 180 or less, according to634

the definition of the model (indicated by superscripts).635

In the first group, there are the most recent models based alsoon the data636

from the GRACE mission: EIGEN-5C (Förste et al., 2008), EGM08 (Pavlis et637

al., 2008), GGM03C/S (Tapley et al., 2007). These models provided the best re-638

sults; the accelerometer calibration also does not indicate any statistical difference639

between the results from the combination and satellite-only gravity field models640

GGM03C and GGM03S.641

The second group in Table B.1 are models computed using the CHAMP data,642

but not those from GRACE: EIGEN-CHAMP03S (Reigber et al., 2005b), DEOSCHAMP-643

01C 70 (Ditmar et al., 2006). To test the influence of including the higher degree644

terms of the static geopotential models on the proposed accelerometer calibration,645

we also used the EIGEN-5C model limited to degree/order 70 (Sec. 2.4). From the646

statistical point of view, the results of this group of models are equivalent to the647

GRACE models. While there is no visible change in the resultspertaining to the648

along-track component, those of the cross-track and radialcomponents display a649

slight systematic decrease in the precision for the models with the maximum de-650

gree/order 70, which might be attributed to the lower magnitude ofthe nongravi-651

tational accelerations in these directions (Fig. B.3). So for a precise accelerometer652

calibration it is better to include the higher degree/order gravity terms.653

The results based on the pre-CHAMP gravity models EGM96 (Lemoine et al.,654
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1998) and GRIM5C (Gruber et al., 2000) are worse by a factor ofabout 4 in the655

cross-track and radial components. Thus the proposed accelerometer calibration656

provides an indirect evidence that the gravity missions CHAMP and GRACE have657

appreciably contributed to improve the higher degree/order terms of the current658

global static gravity field models.659

Table 1 should be positioned here.660

The main purpose of including this section was to show that the calibration661

method does not depend upon a particular gravity model used,in other words662

that it is plausible to suppose that the errors in the accelerations derived from the663

gravity field model are negligible compared to those of the accelerations derived664

from kinematic positions. This is clearly demonstrated by the long-term results in665

Table 1, where the four most recent gravity models, derived by different groups666

using different processing schemes, give statistically equivalent results in all three667

accelerometer components. Besides, if nowadays the best available gravitational668

model EGM08 goes up to degree/order 2159, and the new EIGEN or GGM mod-669

els go up to degree/order 360, then we may expect that they are consistent in670

predicting the geopotential functionals with a relativelylow limit of degree/order671

less than 150 and that they should generate rather close vectors of the gravitational672

acceleration.673

6. Discussion674

As mentioned in Section 1, many scientific teams have calculated the cali-675

bration coefficients of the GRACE accelerometers for periods of differing length,676
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from days to years. The question of the accuracy of the calibrated accelerometer677

measurements, however, seems not to be discussed very much,as either the pri-678

mary research objective in other studies is the gravity fieldmodelling, or the com-679

plexity of the calibration process prevents the uncertainty estimates from quanti-680

fying, e.g. due to regularization.681

Van den Ijssel and Visser (2007) estimated the nongravitational accelerations682

for the CHAMP and GRACE A satellites as piecewise constant empirical accel-683

erations via the reduced-dynamic POD approach. To obtain a solution, regular-684

ization was necessary. Only the longer wavelengths were recovered, at best in685

the along-track direction, with a bias in the cross-track direction. The authors686

concluded that no meaningful solution could be obtained in the radial direction.687

Van Helleputte et al. (2009) used the reduced-dynamic POD technique to de-688

termine the calibration parameters of the CHAMP and GRACE A/B satellites over689

a 5-year period. The method needs strong constraints to be set on the a priori bias690

values in the cross-track and radial direction.691

For the derivation of the satellite accelerations from kinematic positions, Reubelt692

et al. (2006) used the second derivative of the Gregory-Newton interpolation scheme;693

the explicitly stated coefficients of the 9-point filter are the same as those from the694

second derivative of a 9-point polynomial filter of order 8 (i.e. with no smoothing,695

cf. Sec. 3.2). The choice of this filter was driven by the aim ofthe study, which696

was the determination of the gravity field parameters from 2 years of the CHAMP697

kinematic orbits without a regularization to guarantee an unbiased solution.698

There are several scientific groups, which used the fitted ARMA models when699

solving the inverse problem of the gravity field determination, but with different700

aims and details of implementation compared to our method. In the context of701
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processing the future GOCE gradiometer data, Schuh (2003) used the discrete702

linear filters and the GLS method for handling the correlatedmeasurements in the703

frequency domain. The target was to obtain decorrelated observational equations704

and to distribute the computational effort to a cluster of computers. A need to treat705

the huge least-squares problems in the gravity field determination motivated Klees706

et al. (2003) and Ditmar et al. (2007) to study how the coloured noise represented707

by the ARMA processes might be used as a fast method to solve a Toeplitz system708

of linear equations.709

Ditmar et al. (2007) points out that the assumption about thestationarity of710

the noise in the kinematic POD positions may not be realisticin many cases, due711

to a quickly changing constellation of visible GPS satellites for a LEO satellite,712

and therefore, the orbit accuracy may vary considerably in time. This might be713

the reason for the increase in the estimated RMS of the POD positions with longer714

length of the fitting windows (Sec. 5.1).715

The fact that the RMS of noise in the cross-track and radial components of716

the POD positions is several times worse, when comparing theaccelerometer cal-717

ibration statistics based on the pre-CHAMP gravity field models with those using718

the recent models including the CHAMP and GRACE data (Sec. 5.4), is in accor-719

dance with a similar improvement in the accuracy of the radial orbit component720

of the altimeter satellites (Klokočnı́k et al., 2005, 2008).721

7. Conclusions722

In this study it was demonstrated that the proposed method ofcalibration723

of the linear accelerometer measurements is capable of finding the point esti-724

mates of the calibration parameters in all three accelerometer components for725
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both GRACE A/B satellites. A statistically correct estimate of the accuracy of726

the calibrated accelerometer measurements have been obtained for the along-track727

component of the accelerometer data.728

The calibration procedure makes use of the generalized least squares method,729

which might be useful in other linear regression problems, where one has to deal730

with the correlated residuals. In the case of the accelerometer calibration, the sit-731

uation is particularly convenient for the application of the GLS method, as we732

know exactly the regression mean function, equal to the uncalibrated accelerom-733

eter measurements, and we need to shift it to the “right place” determined by the734

calibration standard.735

From the point of view of aeronomy and atmosphere research, the most im-736

portant is the along-track component of the accelerometer data, where the signal737

from the atmospheric drag is dominant; moreover, the cross-track and radial com-738

ponents of the accelerometer data contain the relatively strong disturbing signal739

due to the action of the attitude control thrusters.740

Throughout the study, we have also used the modelled nongravitational ac-741

celerations, whose waveform matches well that of the accelerometer readouts but742

is generally smoother, and in the cross-track and radial components it does not743

contain the spikes caused by the attitude thrusters. After the calibration of the744

along-track component, the accelerometer data and the modelled nongravitational745

accelerations have approximately the same mean uncertainty; this is due to the746

fact that the GLS calibration effectively integrates the acceleration signal, so in747

the calibration only the longer period waves are actually used. This is closely748

connected with the fact that the calibration standard is calculated from the orbital749

positions.750
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We applied the calibration method to the accelerometer datacovering a 1.5-751

year period in 2002–2004. Taking into account the previous experience, we sup-752

posed that the calibration parameters, i.e. the scale factors and biases for each753

accelerometer axis, evolve slowly in time. We used the running window of 2–4754

orbital revolutions, within which we calibrated the accelerometer data and finally755

selected the non-overlapping segments with the best statistical results. The time756

evolution of the calibration parameters agrees well with that published in an inde-757

pendent report.758

On the assumption that the errors in the modelled accelerations of gravitational759

origin are very small, the GLS calibration method defines a transformation of the760

accelerometer data, which may be used to estimate the RMS of noise in the kine-761

matic positions. Based on this comparison between the POD kinematic positions762

with the independently measured accelerometer data set, wefound plausible mean763

values of (3–4; 4–7; 6–12) cm in the (along-track; cross-track; radial) directions.764

We compared the long-term calibration results for several models of the Earth765

static gravity field. The recent models EIGEN-5, EGM08 and GGM03, which are766

based also on the data from the CHAMP and GRACE missions, gavestatistically767

equivalent results, the mean uncertainty in the along-track component of the cali-768

brated accelerometer data being 6.5–8.5 nm s−2 (one sigma). The same long-term769

results were also obtained using the EIGEN-CHAMP03 model, which does not770

contain the GRACE data. The estimated statistical errors produced using the pre-771

CHAMP gravity models were several times worse in the cross-track and radial772

components.773

34



Page 35 of 64

Acc
ep

te
d 

M
an

us
cr

ip
t

8. Acknowledgements774

The author would like to thank DraženŠvehla from TU Munich for providing775

the GRACE kinematic orbits. The ISDC online data centre of the GFZ is acknowl-776

edged for the GRACE data products used in this study (http://isdc.gfz-potsdam.de/777

grace/), the ICGEM centre of the IAG for the coefficients of the global gravity field778

models (http://icgem.gfz-potsdam.de/ICGEM/). Thanks are also due to Jaroslav779
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Appendix A. Ordinary least squares (OLS)782

In the ordinary least squareswe suppose that the vector of observationsy783

is given as the sum of a deterministic mean functionE(y) to which a vector of784

random errorsǫ with constant variance is added. The probability model of the785

simple linear regressionis786

y = b0 + b1x+ ǫ, (A.1)

wherey is the vector ofn observations,b0 intercept,b1 slope,x predictor,ǫ statis-787

tical error. The OLS estimatesb̂0 andb̂1 are given by788

b̂1 = SXY/SXX, b̂0 = ȳ− b̂1x̄, (A.2)

whereSXY=
∑

(xi − x̄)(yi − ȳ), SXX=
∑

(xi − x̄)2. Usingb̂0 andb̂1 we form the fitted789

functionŷ as the estimate of the mean functionE(y)790

ŷ = b̂0 + b̂1x. (A.3)

Under the assumption that the errorsǫi are independent and normal with constant791

varianceσ2, the OLS estimateŝb0, b̂1 are also normally distributed with the stan-792
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dard errors793

σ̂(b̂1) =
σ̂
√

SXX
, σ̂(b̂0) = σ̂

√

1
n
+

x̄2

SXX
, (A.4)

where the standard error of the OLS fit is794

σ̂ =

√

√

n
∑

i=1

(yi − ŷ)2/(n− 2). (A.5)

In general, the estimated parameters are correlated with the coefficient of correla-795

tion (Weisberg, 2005)796

ρ(b̂0, b̂1) =
−x̄

√

SXX/n+ x̄2
. (A.6)

We can calculate the uncertainty band around the fitted function ŷ, which is797

called theconfidence interval,798

σ̂(ŷi) = σ̂

√

1
n
+

(xi − x̄)2

SXX
, (A.7)

and theprediction interval, the uncertainty of a single (possibly future) observa-799

tion yF,800

σ̂(yF) = σ̂

√

1+
1
n
+

(xF − x̄)2

SXX
. (A.8)

Appendix B. Generalized least squares (GLS)801

DefiningX as the matrix of predictors andb as the vector of parameters, let802

y = Xb+ ǫ (B.1)

be an OLS problem, where the post-fit tests showed that the random errorsǫi are803

correlated or have a nonconstant variance, i.e. the covariance matrix of the random804

errors is not equal to the scaled identity matrix,Var(ǫ)≡σ2V,σ2
1. Thegeneral-805

ized least squares(GLS) then define a linear transformation (e.g., Rawlings etal.,806
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1998)807

W = T−1, where V = TT′, (B.2)

which maps the original linear model into a new one,808

y∗ = X∗b+ ǫ∗, (B.3)

such that the covariance matrix of the transformed errorsǫ∗ is again a scaled iden-809

tity matrix. Indeed,810

Var(ǫ∗) =WVar(ǫ)W′ = σ2T−1TT′T−1′ = σ2
1. (B.4)

In the transformed variables,y∗=Wy, X∗=WX, the usual OLS are then used to811

find the regression parametersb of the original problem with correct estimates812

of their uncertainties. The thus obtained GLS estimatorb̂ is also known as the813

Aitken estimator. By using the inverse transformation matrix T=W−1, we may814

obtain the confidence and prediction intervals of theoriginal fitted functionŷ=Tŷ∗815

from (A.7) and (A.8). Namely, the estimated confidence interval of ŷ is expressed816

in matrix notation as the square root of the diagonal of the covariance matrix817

Var(ŷ) = σ̂2TP∗T′, (B.5)

whereP∗≡X∗(X∗′X∗)−1X∗′ is the ‘hat matrix’ of the transformed model.818

Figure 16 should be positioned here.819

Figure 17 should be positioned here.820
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we generated the random errorsǫ as a realization of an autoregressive model of822

order 7 with coefficients found in Section 4.2. In Figure B.16 we directly used823

the OLS to find ˆy as an estimate of the true valueE(y)=10. The standardized824

residuals and the estimated autocorrelation function of the residuals (middle and825

bottom panels) show clearly that the residuals are correlated. The confidence826

interval with the coverage factor of 3 locates the estimatedtrue value within the827

interval ŷ±3σ̂(ŷ)=9.02±0.21; this interval is too narrow, it does not contain the828

actualE(y); using the OLS will not give correct uncertainty estimates.829

When the GLS method is used to solve the problem with the same data (Fig. B.17),830

the confidence interval of ˆy is 9.07±3.8 and does indeed cover the true value. In831

this example, the GLS confidence interval is approximately ten times larger than832

that of the OLS estimate. Also the autocorrelation functionof the OLS residuals833

in the transformed variables,y∗i –ŷ∗i , is now that of a white noise (bottom panel of834

Fig. B.17).835
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Figure captions954

Figure B.1: Simulated nongravitational accelerations during one orbital revolution of the

GRACE A satellite (11 Aug 2003). Shown are the components in the satellite local reference

frame, namely the accelerations in the along-track (A-T; upper panel), cross-track (C-T; middle

panel) and the radial direction (RAD; lower panel). The total acceleration (in black) is a superposi-

tion of the accelerations due to atmospheric drag (DRAG), direct solar radiation pressure (DSRP),

reflected solar radiation pressure (ALB) and terrestrial infrared radiation (IR).

Figure B.2: Uncalibrated accelerometer dataaUNCAL
ACC (the same arc as in Fig. B.1).

Figure B.3: Histograms of gravitational and nongravitational accelerations in the satellite local

reference frame components (GRACE A, 08/2002–03/2004).

Figure B.4: Acceleration due to the spherical harmonic terms of the gravitational model EGM96

grouped according to the degree.

Figure B.5: The POD-based nongravitational accelerationsaPOD
NG in the satellite local reference

frame (derived from the simulated POD positions). Also shown are the simulated nongravitational

accelerationsaSIM
NG .

Figure B.6: The ordinary least squares applied to “nongravitational positions”: observations and

the fitted function (upper panel), residuals and numerical results of the fit (middle panel), several

indicators that the residuals are uncorrelated and normal (lower panels). Simulated data were used,

only along-track component is shown.

44



Page 45 of 64

Acc
ep

te
d 

M
an

us
cr

ip
tFigure B.7: The POD-based nongravitational accelerationsaPOD

NG in the satellite local reference

frame (derived from the kinematic positions, GRACE A, 25 Nov2003).

Figure B.8: The ordinary least squares applied to “nongravitational positions” (panels as in

Fig. B.6). Real data used (GRACE A, 25 Nov 2003, along-track).

Figure B.9: The ordinary least squares applied to the transformed residuals from Fig. B.8, the

transformation matrix is based on the fitted AR(7) process.

Figure B.10: Calibrated accelerometer readouts and simulated nongravitational accelerations (up-

per panel), after centring and the transformation given by W2 (bottom panel) (GRACE A, 25 Nov

2003, along-track).

Figure B.11: Time evolution of the standard fit error for the nongravitational positions (up-

per panels) and the uncertainty of the calibrated accelerations (lower panels) compared for the

accelerometer-based and simulated nongravitational accelerations (GRACE A, along-track, win-

dow of 2 revs., approx. 2000 values).

Figure B.12: Long-term fit of the calibration parameters forthe accelerometer measurements

(GRACE A, along-track, window of 2 revolutions).

Figure B.13: Long-term fit of the calibration parameters forthe simulated nongravitational accel-

erations (GRACE A, along-track, window of 2 revolutions).

Figure B.14: Comparison of the computed bias for GRACE A withthat derived independently by

Bettadpur (2004a).

Figure B.15: Comparison of the computed bias for GRACE B withthat derived independently by

Bettadpur (2004a).

45



Page 46 of 64

Acc
ep

te
d 

M
an

us
cr

ip
t

Figure B.16: Example of a linear model with the errors generated by a stationary AR(7) process:

the direct ordinary least squares solution. Upper panel: ˆyCI define the confidence interval around

ŷ, ŷPI the prediction interval; middle panel: standardized residuals and the fit results; lower panel:

autocorrelation function of residuals.

Figure B.17: Data as in Fig. B.16: the generalized least squares solution.
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ŶOLS1

20 40 60 80 100 120 140 160 180

−2

0

2

4

O
LS

1 r
es

. (
cm

)

Estim. param.: b
0
=1.22e−006, b

1
=1.02, Cor(b

0
,b

1
)=0.999886, σ

iid,est
=1.89 cm

−200 −100 0 100 200

0

0.5

1

lag

ACF(blue), PACF(cyan),
 ACF of estimated AR(7) process (green)

−4 −2 0 2 4
0.001

0.50 

0.999

data

Normal probability plot
(JB p−value=0.001)

969

Figure 8970

54



Page 55 of 64

Acc
ep

te
d 

M
an

us
cr

ip
t

0

20

40
O

LS
2 p

os
. (

cm
)

 

 
YOLS2
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gravity 〈σ̂OLS1〉 (cm) 〈σ̂(aCAL
ACC)〉 (nm.s−2)

model A-T C-T RAD A-T C-T RAD

EIGEN-5C(180) 3.4 5.3 9.0 7.4 – 20.9

EGM08(180) 3.5 5.1 9.1 7.5 – 21.1

GGM03C(180) 3.5 5.3 9.9 7.7 – 22.6

GGM03S(180) 3.5 5.3 9.8 7.7 – 22.5

EIG-CH03S(140) 3.5 4.9 9.8 7.6 – 22.1

DEOS-CH(70) 3.5 6.2 10.7 7.7 – 23.1

EIGEN-5C(70) 3.5 6.1 10.7 7.7 – 23.5

EGM96(180) 4.2 20.1 46.3 8.4 – 47.2

GRIM5C(120) 3.9 18.8 40.5 8.8 – 46.4

Table B.1: Statistical results of selected gravity field models for GRACE A over the period of 1.5

years. The numbers in superscript indicate the degree/order of the model used in our calculations

(window of 3 revs., mean of approx. 1000–1400 values).
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