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CONCENTRATION BOUNDS FOR STOCHASTIC APPROXIMATIONS

N. Frikha1 and S. Menozzi2

Abstract. We obtain non asymptotic concentration bounds for two kinds of stochastic approxima-
tions. We first consider the deviations between the expectation of a given function of the Euler scheme
of some diffusion process at a fixed deterministic time and its empirical mean obtained by the Monte-
Carlo procedure. We then give some estimates concerning the deviation between the value at a given
time-step of a stochastic approximation algorithm and its target. Under suitable assumptions both
concentration bounds turn out to be Gaussian. The key tool consists in exploiting accurately the con-
centration properties of the increments of the schemes. For the first case, as opposed to the previous
work [LM10], we do not have any systematic bias in our estimates. Also, no specific non-degeneracy
conditions are assumed.

1991 Mathematics Subject Classification. 60H35,65C30,65C05.

April 16, 2012.

1. Statement of the Problem

Let us consider a d-dimensional stochastic evolution scheme of the form

ξn+1 = ξn + γn+1F (n, ξn, Yn+1), n ≥ 0, ξ0 = x ∈ Rd, (1.1)

where the (Yi)i∈N∗ are i.i.d. Rq-valued random variables defined on some probability space (Ω,F ,P) whose
law µ satisfies a Logarithmic Sobolev Inequality with constant α > 0 (in short µ satisfies LSI(α)), (γn)n≥1 is
a deterministic positive sequence of time steps and F : N×Rd ×Rq → Rd is a measurable function satisfying
some assumptions that will be specified later on.

We are interested in giving non asymptotic concentration bounds for two specific problems related to evolu-
tions of type (1.1). Precisely, we want to control the deviations of the empirical mean associated to a function
of the Euler scheme of a diffusion process at a fixed deterministic time from the real mean and to give devi-
ation estimates between the value of a Robbins-Monro type stochastic algorithm taken at fixed time-step and
its target. Concerning stochastic algorithms, our deviation results are to our best knowledge the first of this
nature.
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1.1. Euler Scheme of a Diffusion Process

Let (Ω,F , (Ft)t≥0,P) be a filtered probability space satisfying the usual conditions and (Wt)t≥0 be a q-
dimensional (Ft)t≥0 Brownian motion. Let us consider a d-dimensional diffusion process (Xt)t≥0 with dynamics:

Xt = x+

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs, (1.2)

where the coefficients b, σ are assumed to be uniformly Lipschitz continuous in space and measurable in time.
For a given Lipschitz continuous function f and a fixed deterministic time horizon T , quantities like Ex[f(XT )]

appear in many applications. In mathematical finance, it represents the price of a European option with maturity
T when the dynamics of the underlying asset is given by (1.2). Under suitable assumptions on the function
f and the coefficients b, σ, namely smoothness or non degeneracy, it can also be related to the Feynman-Kac
representation of the heat equation associated to the generator of X . Two steps are needed to approximate
Ex[f(XT )]:

- The first one consists in approximating the dynamics by a discretization scheme that can be simulated. We will
consider in this work the Euler scheme with time step ∆ = T/N, N ∈ N∗. That is the process with dynamics:

X∆
t = x+

∫ t

0

b(φ(s), X∆
φ(s))ds+

∫ t

0

σ(φ(s), X∆
φ(s))dWs, (1.3)

where we introduced for all s ≥ 0 the notation φ(s) := sup{ti := i∆ : ti ≤ s < ti+1} so that the dynamics of
(Xt)t≥0 and (X∆

t )t≥0 have a similar form.
- The second one consists in approximating the expectation involving the Euler scheme, Ex[f(X

∆
T )] by a Monte-

Carlo estimator:

E∆
M (x, T, f) :=

1

M

M
∑

i=1

f((X∆,0,x
T )i),

where the ((X∆,0,x
T )i)i∈[[1,M ]] are independent copies of the Euler scheme (1.3) starting at x at time 0 and

evaluated at time T .

The global error between Ex[f(XT )], the quantity to estimate, and its implementable approximationE∆
M (x, T, f)

can be decomposed as follows:

E(∆,M, x, T, f) := (Ex[f(XT )]−Ex[f(X
∆
T )]) + (Ex[f(X

∆
T )]− E∆

M (x, T, f))

:= ED(∆, x, T, f) + ES(∆,M, x, T, f). (1.4)

The term ED(∆, x, T, f) corresponds to the discretization error and has been widely investigated in the
literature since the seminal work of Talay and Tubaro [TT90]. This contribution usually yields an error of order
∆, provided the coefficients b, σ and the function f are sufficiently smooth, [TT90], or that they satisfy some
non-degeneracy assumptions. For a bounded measurable f , when the diffusion coefficient is uniformly elliptic
and bounded, if b, σ are also assumed to be three times continuously differentiable, the control at order ∆ for
ED(∆, x, T, f) can be derived from Konakov and Mammen [KM02] (see also Bally and Talay [BT96] for an
extension of this result to the hypoelliptic setting).

The term ES(∆,M, x, T, f) corresponds to the statistical error. Under some usual integrability conditions,
i.e. f(X∆

T ) ∈ L2(P), it is asymptotically controlled by the central limit theorem. A first non-asymptotic
result is given by the Berry-Essen theorem provided f(X∆

T ) ∈ L3(P), but for practical purposes, the crucial
quantity to control non-asymptotically is the deviation bewteen the empirical mean E∆

M (x, T, f) and the real
one Ex[f(X

∆
T )]. Precisely, for a fixed M and a given threshold r > 0, one would like to give bounds on the

quantity P[|E∆
M (x, T, f)−Ex[f(X

∆
T )]| > r].

In the ergodic framework and for a constant diffusion coefficient such controls have been obtained by Malrieu
and Talay [MT06]. In the current context, a first attempt can be found in [LM10] where such a control is derived
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up to a systematic bias independent of M which is due to the fact that we use the Aronson Gaussian bounds
for the density of the Euler scheme. Also, to derive those density bounds some non-degeneracy conditions were
needed.

Introduce the following assumption (A):

(A.1) The coefficients b : R+ ×Rd → Rd and σ : R+ ×Rd → Rd ⊗Rq are bounded and Lipschitz continuous
in space.

(A.2) For q = d, the diffusion coefficient is uniformly elliptic, i.e. there exists Λ ∈ (0, 1] s.t. forall (t, x, ξ) ∈
R+ × (Rd)2, 〈a(t, x)ξ, ξ〉 ≥ Λ|ξ|2.
We show in [LM10] that there exist c := c((A)) ∈ (0, 1], C := C((A), T ) ≥ 1 s.t. denoting by p∆(T, x, .) the
density of the Euler scheme:

C−1

T d/2
exp

(

−c−1 |x− y|2
T

)

≤ p∆(T, x, y) ≤ C

T d/2
exp

(

−c
|x− y|2

T

)

. (1.5)

The main problem is that we have to handle a constant of the form CM with C ≥ 1 when tensorizing the density
estimates in order to control the difference E∆

M (x, T, f)−Ex[f(X
∆
T )]. This is what yields to an estimate of the

form P[E∆
M (x, T, f)−Ex[f(X

∆
T )] > r + δ] ≤ exp(−c̃Mr2/T ), c̃ := c̃((A)), with a systematic bias δ > 0.

In this work, under the sole assumption (A.1), we actually manage to remove the previous bias, see Theorem
2.1. The key tool consists in exploiting recursively that the increments of the Euler scheme (1.3) are Gaussian
and that as a process the Euler scheme enjoys a semi-Markov property, or equivalently that taken at the
discretization times it defines a Markov chain. We also need to control the Lipschitz constants in space of the
function v∆(ti, x) := E[f(X∆

T )|X∆
ti = x], (i, x) ∈ [[0, N ]]×Rd. This is done using standard stability arguments

and yields an additional exponential dependence in T for the concentration bound, i.e. with the above notation
c̃ := c̃(T, |σ|∞, [f ]1, [b]1, [σ]1) where c̃ depends exponentially on T and for a Lipschitz continuous function ϕ,
[ϕ]1 stands for its Lipschitz modulus of continuity.

1.2. Robbins-Monro Stochastic Approximation Algorithm

Besides our considerations for the Euler scheme, we derive non asymptotic bounds for stochastic approxima-
tion algorithms, namely recursive schemes defined by

θn+1 = θn − γn+1H(θn, Yn+1), n ≥ 0, θ0 ∈ R
d, (1.6)

where H : Rd × R
q → R

d is a Borel function, (Yn)n≥1 is an i.i.d. R
q-valued sequence of Fn-adapted random

variables with law µ defined on a filtered probability space (Ω,F , (Fn)n≥0,P) and (γn)n≥1 is a sequence of
non-negative deterministic steps satisfying the usual assumption

∑

n≥1

γn = +∞, and
∑

n≥1

γ2
n < +∞. (1.7)

In the sequel, we suppose that the mean function h(.) = E [H(., Y )] is continuous and the sequence defined by
(1.6) a.s. converges towards its unique target θ∗, that is {h = 0} = {θ∗}. We refer to [Duf96], [KY03] for some
general convergence results for (1.6) under the existence of a so-called Lyapunov function; see also [LP12] for a
convergence theorem under the existence of a pathwise Lyapunov function.

In the following, we assume the following conditions on the function H and the step sequence (γn)n≥1 in
(1.6) are in force:

(HL) The map (θ, y) ∈ Rd ×Rq 7→ H(θ, y) is uniformly Lipschitz continuous.
(HUA) The map h : θ ∈ Rd 7→ E[H(θ, Y )] is continuously differentiable in θ and there exists α > 0, α > 0 s.t.
∀θ ∈ Rd, ∀ξ ∈ Rd, α|ξ|2 ≤ 〈Dh(θ)ξ, ξ〉 ≤ α|ξ|2 (Uniform Attractivity).



4 N. FRIKHA AND S. MENOZZI

Note that under (HUA) and the linear growth assumption

∀θ ∈ Rd, E
[

|H(θ, Y )|2
]

≤ C(1 + |θ − θ∗|2),

(which is satisfied if (HL) holds and Y ∈ L2(P)) the function L : θ 7→ 1
2 |θ − θ∗|2 is a Lyapunov function for

the recursive procedure defined by (1.6) so that one easily deduces that θn → θ∗, a.s. as n → +∞.

2. Main Results

2.1. Deviations on the Euler Scheme

Theorem 2.1 (Concentration Bounds for the Euler scheme). Let f be a uniformly Lipschitz continuous function
and the coefficients b, σ of the diffusion (1.2) be also uniformly Lipschitz continuous in space uniformly in time.
Assume as well that σ is bounded. Denote by X∆

T the value at time T of the Euler scheme (1.3) associated to
the diffusion (1.2). For all M ∈ N∗ and all r ≥ 0, one has

Px[|
1

M

M
∑

i=1

f((X∆
T )i)−Ex[f(X

∆
T )]| ≥ r] ≤ 2 exp(− r2M

TΨ(T, f, b, σ, q)
),

Ψ(T, f, b, σ, q) := 8[f ]21|σ|2∞ exp (2([b]1 + c[σ]1(1 ∨ c[σ]1))T ) ,

where q is the dimension of the underlying Brownian motion in (1.2) and (1.3).

Note that in the above theorem, we do not need any non-degeneracy condition on the diffusion coefficient.

To handle the previous quantity we are going to rewrite D := f(X∆
T ) − Ex[f(X

∆
T )] :=

∑N
i=1 E[f(X∆

T )|Fti ] −
E[f(X∆

T )|Fti−1
]. The main idea then consists in controlling the local increments that can be interpreted as a dif-

ference between a function of the current Brownian increment and its mean. That is D :=
∑N

i=1 f
∆
i (X∆

ti−1
,Wti−

Wti−1
)−E[f∆

i (X∆
ti−1

,Wti −Wti−1
)|Fti−1

], with f∆
i (x,w) := E[f(X∆

T )|X∆
ti = x+ b(ti−1, x)∆ + σ(ti−1, x)w], for

all (i, x, w) ∈ [[1, N ]] × Rd × Rq. If at some point along the time-discretization the process has a degenerate
diffusion term, we can see that the term f∆

i (X∆
ti−1

,Wti −Wti−1
)−E[f∆

i (X∆
ti−1

,Wti −Wti−1
)|Fti−1

] will not give
any additional contribution in the global deviation.

With respect to the previous work [LM10], we got rid off the systematic bias. Anyhow, the concentration
constants now depend on the Lipschitz constant of the function v∆(0, x) := E[f(X∆

T )|X∆
0 = x] which has order

Ψ(T, f, b, σ, q)1/2. This magnitude corresponds to the product of the Lipschitz constant of the final function f
and the mean of the Lipschitz constant for the flow of the Euler scheme, which gives the exponential dependence
in time, see Proposition 4.1 and its proof for details.

2.2. Deviations for Robbins-Monro algorithms

Theorem 2.2 (Concentration Bounds for Robbins-Monro algorithms). Assume that the function H of the
recursive procedure (θn)n≥0 (with starting point θ0 ∈ Rd) defined by (1.6) satisfies (HL) and (HUA), and that
the step sequence (γn)n≥1 satisfies (1.7). Suppose that the law µ of the innovation satisfies LSI(α), α > 0.Then,
for all N ∈ N∗ and all r ≥ 0,

P (|θN − θ∗| ≥ r + δN ) ≤ exp

(

− r2

α[H ]21ΠN

∑N
k=1 γ

2
k/Πk

)

where ΠN :=
∏N−1

k=0

(

1− 2αγk+1 + [H ]21γ
2
k+1

)

and δN := E [|θN − θ∗|]. Moreover, the bias δN at step N satisfies

δN ≤ exp (−αΓN ) |θ0 − θ∗|+ [H ]1σY

(

γNN1/2 +

N−1
∑

k=1

e−α(ΓN−Γk+1)(γk − γk+1) +

N−1
∑

k=1

e−α(ΓN−Γk+1)γkγk+1α

)

,
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where ΓN :=
∑N

k=1 γk, σY := E
[

F 2(Y )
]1/2

< +∞, with F : y 7→ E [|y − Y |].
Concerning the choice of the step sequence (γn)n≥1 and its impact on the concentration rate and bias, we

obtain the following results:

• If we choose γn = c
n , with c > 0. Then δN → 0, N → +∞, ΓN = c log(N) + c′1 + rN , c′1 > 0 and

rN → 0, so that ΠN = O(N−2cα).

– If c < 1
2α , the series

∑N
k=1 γ

2
k/Πk converges so that we obtain ΠN

∑N
k=1 γ

2
k/Πk = O(N−2cα).

– If c > 1
2α , a comparison between the series and the integral yields ΠN

∑N
k=1 γ

2
k/Πk = O(N−1).

Let us notice that we find the same critical level for the constant c as in the Central Limit Theorem
for stochastic algorithms. Indeed, if c > 1

2Re(λmin) where λmin denotes the eigenvalue of Dh(θ∗) with

the smallest real part then we know that a Central Limit Theorem holds for (θn)n≥1 (see e.g. [Duf96]).
However, this local condition on the Jacobian matrix of h at the equilibrium is replaced by a uniform
assumption in our framework. This is quite natural since we want to derive non-asymptotic bounds for
the stochastic approximation (1.6).

Concerning the bias we have the following bound:

δN ≤ K

( |θ0 − θ∗|
Nαc

+
[H ]1σY (1 + α)

N

)

+ [H ]1σY
c

N1/2
, K := K(c).

• If we choose γn = c
nρ , c > 0, 1

2 < ρ < 1, then δN → 0, ΓN ∼ c
1−ρN

1−ρ as N → +∞ and elementary

computations show that there exists C > 0 s.t. for all N ≥ 1, ΠN ≤ C exp(−2α c
1−ρN

1−ρ). Hence, for

all ǫ ∈ (0, 1− ρ) we have:

ΠN

N
∑

k=1

γ2
kΠ

−1
k ≤ c2







ΠNΠ−1
N−Nρ+ǫ

N−Nρ+ǫ

∑

k=1

1

k2ρ
+

N
∑

k=N−Nρ+ǫ+1

1

k2ρ







≤ c2
{

C exp(−2α
c

1− ρ
(N1−ρ − (N −Nρ+ǫ)1−ρ)) +

Nρ+ǫ

(N −Nρ+ǫ + 1)2ρ

}

≤ c2
{

C exp(−2αcN ǫ) +
1

Nρ−ǫ

}

.

Up to a modification of ǫ, this yields ΠN

∑N
k=1 γ

2
kΠ

−1
k = o(N−ρ+ǫ), ǫ ∈ (0, 1− ρ).

Concerning the bias, from Kronecker’s Lemma, we have the following bound:

δN ≤ K exp

(

− αc

1− ρ
N1−ρ

)

|θ0 − θ∗|+ [H ]1σY o(1)(
1

Nρ−ǫ
+α

1

N2ρ−ǫ−1
) + [H ]1σY

c

Nρ−1/2
, K := K(c), ∀ǫ > 0.

Since each step is bigger compared to the case γn = c
n , the impact of the initial difference |θ0 − θ∗| is

exponentially small.

3. Abstract concentration properties for a general evolution scheme

In this section we assume that (Yi)i∈N∗ is a sequence of i.i.d. Rq-valued random variables whose law µ satisfies
LSI(α). We recall that µ satisfies LSI(α), α > 0 if for all f ∈ H1(dµ) := {g ∈ L2(dµ) :

∫

|∇g|2dµ < +∞}, we
have

Entµ(f
2) ≤ α

∫

|∇f |2dµ, (3.1)

where for all ϕ ≥ 0, Entµ(ϕ) :=
∫

ϕ log(ϕ)dµ −
∫

ϕdµ log
(∫

ϕdµ
)

. Also, for all i ∈ N∗, we denote by Fi :=
σ(Yj , j ≤ i) the natural σ-field associated to the (Yj)j∈[[1,i]].
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We first recall a basic property of measures satisfying a logarithmic Sobolev inequality, that is they enjoy
Gaussian concentration.

Proposition 3.1 (Gaussian concentration for a measure satisfying LSI(α)). Let µ be a measure on Rq satisfying
LSI(α), α > 0, and let f be a real valued 1-Lipschitz function on Rq then,

∀λ ≥ 0, Eµ[exp(λf)] ≤ exp(λEµ(f) +
αλ2

4
), ∀r ≥ 0, µ(f ≥ r +Eµ(f)) ≤ exp(−r2/α). (3.2)

The above Proposition is standard. It is usually proved using the so-called Herbst argument. For the sake of
completeness we provide a proof in Appendix A.1. We refer to Ledoux [Led99] for additional related properties.

Proposition 3.2 (Gaussian concentration for a stochastic evolution scheme). Fix N ∈ N∗. Let a ∈ R be a given
scalar. Define Di+1 := fi(Xi, Yi+1)−E[fi(Xi, Yi+1)|Fi] for some Fi-measurable random variables Xi where the
real-valued functions (fi)i∈[[1,N ]] are Lipschitz continuous in the y variable with constants ([fi]1)i∈[[1,N ]] > 0
uniformly in x. Let (γi)i∈[[1,N ]] be a given sequence of time steps. For all r ≥ a, we have:

P[a+

N
∑

i=1

γiDi ≥ r] ≤ exp

(

− (r − a)2

α
∑N

i=1([fi]1γi)
2

)

.

Proof. Set P(r) := P[a +
∑N

i=1 γiDi ≥ r]. We first do an exponential Tchebychev inequality. For λ ≥ 0 to
be specified later on, we get:

P(r) ≤ exp(−λ(r − a))E[exp

(

λ

[

N
∑

i=1

γiDi

])

]

≤ exp(−λ(r − a))E[exp

(

λ

N−1
∑

i=1

γiDi

)

E [exp(λγNDN )|FN−1]]. (3.3)

Observe now that working with regular conditional expectations, we have

E [exp(λγNDN )|FN−1]

= Eµ [exp (λγN (fN−1(x, Y )−Eµ[fN−1(x, Y )]))]|x=XN−1
,

where Y is a random variable with law µ. From Proposition 3.1, we derive

E [exp(λγNDN )|FN−1] ≤ exp(α([fN ]1γNλ)2/4).

Plugging this estimate in (3.3) and iterating the procedure we derive

P(r) ≤ exp(−λ(r − a)) exp

(

αλ2

4

N
∑

i=1

([fi]1γi)
2

)

,

and optimizing w.r.t λ, we obtain: P(r) ≤ exp
(

− (r−a)2

α
∑

N
i=1

([fi]1γi)2

)

.

4. Euler Scheme: Proof of the Main Results

We consider in this section the case of the Euler scheme of a non-degenerate diffusion process introduced in
(1.3). Observe that the Euler scheme (1.3) enters the framework of equation (1.1) setting for all i ∈ N∗, γi = ∆



CONCENTRATION BOUNDS FOR STOCHASTIC APPROXIMATIONS 7

and for all (i, x, y) ∈ [[1, N ]]×Rd ×Rq, F (i, x, y) = b(ti, x) + γ
−1/2
i+1 σ(ti, x)y. We suppose Assumption (A.1) of

Section 1.1 is in force.
In the following we denote by X∆,ti,x

T the value at time T of the Euler scheme starting from x ∈ Rd at

time ti := i∆, i ∈ [[1, N ]]. Thus Px[f(X
∆
T ) − Ex[f(X

∆
T )] ≥ r] = P[f(X∆,0,x

T ) − E[f(X∆,0,x
T )] ≥ r]. Let

us now rewrite the deviation f(X∆,0,x
T ) − E[f(X∆,0,x

T )] in order to apply Proposition 3.2. Recalling that for
t ∈ [0, T ], Ft := σ(Ws, s ≤ t) stands for the filtration of the Brownian motion, we get:

f(X∆,0,x
T )−E[f(X∆,0,x

T )] :=

N
∑

i=1

E[f(X∆,0,x
T )|Fti ]−E[f(X∆,0,x

T )|Fti−1
]

:=

N
∑

i=1

E[f(X∆,0,x
T )|X∆,0,x

ti ]−E[E[f(X∆,0,x
T )|X∆,0,x

ti ]|Fti−1
], (4.1)

using the Markov property for the last equality. Set now for all (i, x) ∈ [[0, N−1]]×Rd, v∆(ti, x) = E[f(X∆,ti,x
T )]

and v∆(T, x) = f(x). Equation (4.1) rewrites:

f(X∆,0,x
T )−E[f(X∆,0,x

T )] =
N
∑

i=1

v∆(ti, X
∆,0,x
ti )−E[v∆(ti, X

∆,0,x
ti )|Fti−1

]

=

N
∑

i=1

{

v∆(ti, X
∆,0,x
ti−1

+ b(ti−1, X
∆,0,x
ti−1

)∆ + σ(ti−1, X
∆,0,x
ti−1

)(Wti −Wti−1
))

−E[v∆(ti, X
∆,0,x
ti−1

+ b(ti−1, X
∆,0,x
ti−1

)∆ + σ(ti−1, X
∆,0,x
ti−1

)(Wti −Wti−1
))|Fti−1

]
}

:=

N
∑

i=1

f∆
i (X∆,0,x

ti−1
,Wti −Wti−1

)−E[f∆
i (X∆,0,x

ti−1
,Wti −Wti−1

)|Fti−1
]

where

∀(i, x, y) ∈ [[1, N ]]×Rd ×Rq, f∆
i (x, y) := v∆(ti, x+ b(ti−1, x)∆ + σ(ti−1, x)y). (4.2)

Remark 4.1. The above procedure is in some sense similar to what is usually done to analyze the weak
discretization error, see [TT90], [BT96]. The main difference is that we do not introduce a telescopic sum
involving the underlying PDE but the conditional expectations with functions of the Euler scheme (whereas for
the discretization error one considers conditional expectations involving functions of the diffusion that starts
from the current value of the Euler scheme). In order to proceed, all we need is to have a control on the
Lipschitz modulus in the variable y of the functions f∆

i (x, y) defined in (4.2), uniformly in x.

Under the current assumptions we have the following Proposition which is proved in Section A.2.

Proposition 4.1 (Control of the Lipschitz constants). Assume the coefficients b, σ in (1.3) are uniformly
Lipschitz continuous in space (uniformly in time) and denote their respective Lipschitz constants by [b]1, [σ]1.
We also suppose that σ is bounded and denote its supremum by |σ|∞. Then for all i ∈ [[1, N ]], the functions f∆

i

introduced in (4.2) are uniformly Lipschitz continuous in the space variable y uniformly in x and we have that
there exists c := c(q) (dimension of the underlying Brownian motion) s.t:

[f∆
i ]1 := sup

x∈Rd,y 6=y′

|f∆
i (x, y)− f∆

i (x, y′)|
|y − y′| ≤ 2[f ]1|σ|∞ exp ({[b]1 + c[σ]1(1 ∨ c[σ]1)} (T − ti)) .

where [f ]1 stands for the Lipschitz constants of the function f .
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Hence, we are now in position to apply Proposition 3.2. Taking a = 0, γi = ∆, Di = f∆
i (X∆

ti−1
,Wti −

Wti−1
)−E[f∆

i (X∆
ti−1

,Wti −Wti−1
)|Fti−1

], ∀i ∈ [[1, N ]], recalling that the random variable Wti −Wti−1
satisfies

a LSI(2/∆), and using Proposition 4.1 we obtain:

Px[f(X
∆
T )−Ex[f(X

∆
T )] ≥ r] ≤ exp(− r2

2
∆

∑N
i=1[f

∆
i ]21∆

2
) ≤ exp(− r2

8T [f ]21|σ|2∞ exp (2([b]1 + c[σ]1(1 ∨ c[σ]1))T )
)

:= exp(− r2

TΨ(T, f, b, σ, q)
). (4.3)

To derive the deviation bound between the empirical mean and the real one, the key idea is now to apply
for fixed M (total number of Monte-Carlo sample paths) the previous arguments to the real valued function

FM : x = (x1, · · · ,xM ) ∈ RMd 7→ FM (x) = 1√
M

∑M
i=1 f(xi). Denoting by |.| the Euclidean norm of RMd,

the Cauchy-Schwarz inequality directly gives that [FM ]1 := supx 6=x′

1√
M

∑
M
i=1

|f(xi)−f(x′
i)|

|x−x′| ≤ [f ]1. Setting for all

(i,x,y) ∈ [[1, N ]]× (RMd)2, F∆
M,i(x,y) :=

1√
M

∑M
j=1 v

∆(ti,xj + b(ti−1,xj)∆ + σ(ti−1,xj)yj), one derives from

Proposition 4.1 that ∀i ∈ [[1, N ]], [F∆
M,i]1 ≤ [f∆

i ]1. Observe now that for all r ≥ 0,

PM (r, x, T, f) := P[
1

M

M
∑

i=1

f((X∆,0,x
T )i)−Ex[f(X

∆,0,x
T )] ≥ r]

= P[
1√
M

M
∑

i=1

(f((X∆,0,x
T )i)−E[f((X∆,0,x

T )i)]) ≥ r
√
M ]

= P[FM (X∆
T )−E[FM (X∆,0,x

T )] ≥ r
√
M ],

where X∆,0,x
T := ((X∆,0,x

T )1, · · · , (X∆,0,x
T )M ). Thus,

PM (r, x, T, f) = P[

N
∑

i=1

F∆
M,i(X

∆
ti−1

,Wti −Wti−1
)−E[F∆

M,i(X
∆
ti−1

,Wti −Wti−1
)|Fti−1

] ≥ r
√
M ],

Wti −Wti−1
:= (W 1

ti −W 1
ti−1

, · · · ,WM
ti −WM

ti−1
),

where the
(

(W i
t )t≥0

)

i∈[[1,M ]]
are independent d-dimensional Brownian motions. Recalling that the random

variable Wti − Wti−1
satisfies a LSI(2/∆) (the logarithmic Sobolev inequality tensorizes) and that for all

i ∈ [[1, N ]], [F∆
i,M ]1 ≤ [f∆

i ]1, we derive from Proposition 3.2 (see also (4.3)) that

PM (r, x, T, f) := P[
1

M

M
∑

i=1

f((X∆,0,x
T )i)−Ex[f(X

∆,0,x
T )] ≥ r] ≤ exp(− Mr2

TΨ(T, f, b, σ, q)
),

which proves the Theorem.
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5. Robbins-Moro Algorithm: Proof of the Main Results

Set first for all n ∈ N, zn := θn − θ∗. As in the previous section, we want to control the deviations of |zn|.
We use the same strategy introducing a telescopic sum of conditional expectations. For all n ∈ N∗, write

|zn| −E[|zn|] =

n
∑

i=1

E[|zn||Fi]−E[|zn||Fi−1] =

n
∑

i=1

vi(θi)−E[vi(θi)|Fi−1],

=

n
∑

i=1

fγ
i (θi−1, Yi)−E[fγ

i (θi−1, Yi)|Fi−1],

where we used the Markov property for the second equality and we introduced the notations vi(θ) := E[|θn −
θ∗||θi = θ], ∀(i, θ) ∈ [[1, n]]×Rd, fγ

i (θ, y) = vi(θ − γiH(θ, y)).
Now we have the following control concerning the Lipschitz constant of fγ

i .

Proposition 5.1 (Controls of the Lipschitz constants). For all i ∈ [[1, n]], the function fγ
i satisfies:

[fγ
i ]1 := sup

θ∈Rd,y 6=y′

|fγ
i (θ, y)− fγ

i (θ, y
′)|

|y − y′| ≤
(

ΠnΠ
−1
i

)1/2
γi[H ]1.

where Πn :=
∏n−1

k=0

(

1− 2αγk+1 + [H ]21γ
2
k+1

)

, n ≥ 1.

The proof is postponed to Section A.3.
Hence, we are now in position to apply Proposition 3.2 to derive the non-asymptotic bound for stochastic
approximation algorithms. Taking a = δN , Di = fγ

i (θi−1, Yi)−E[fγ
i (θi−1, Yi)| Fi−1], recalling that the random

variable Y satisfies a LSI(α). We obtain for all r ≥ 0:

P (|θN − θ∗| ≥ r + δN ) ≤ exp

(

− r2

α[H ]21ΠN

∑N
k=1 γ

2
k/Πk

)

.

Contrary to the result concerning the Euler scheme, a bias appears in the non-asymptotic bound for the
stochastic approximation algorithm. Consequently, it is crucial to have a control on it. At step n of the
algorithm, it is equal to δn := E[|θn − θ∗|]. Under the current assumptions (HL) of Lipschitz continuity of H
and (HUA) of uniform attractivity, we have the following proposition.

Proposition 5.2 (Control of the bias). For all n ∈ N, we have

δn ≤ exp (−αΓn) |θ0 − θ∗|+ [H ]1σY

(

γnn
1/2 +

n−1
∑

k=1

e−α(Γn−Γk+1)(γk − γk+1) +

n−1
∑

k=1

e−α(Γn−Γk+1)γkγk+1α

)

,

where Γn :=
∑n

k=1 γk, σY := E
[

F 2(Y )
]1/2

< +∞, with F : y 7→ E [|y − Y |].
Proof. With the notations of Section 1.2, we define for all n ≥ 1, ∆Mn := h(θn−1) − H(θn−1, Yn) =
E[H(θn−1, Yn)| Fn−1]−H(θn, Yn). Recalling that (Yi)i∈N∗ is a sequence of i.i.d. random variables we have that
Sn :=

∑n
i=1 ∆Mi is a martingale w.r.t. the natural filtration Fn := σ(Yi, i ≤ n).

From the dynamics (1.6), write now for all n ∈ N,

zn+1 := θn+1 − θ∗ = θn − θ∗ − γn+1 {h(θn)−∆Mn+1}

= θn − θ∗ − γn+1

∫ 1

0

dλDh(θ∗ + λ(θn − θ∗))(θn − θ∗) + γn+1∆Mn+1,



10 N. FRIKHA AND S. MENOZZI

where we used that h(θ∗) = 0 for the last equality. Setting Jn :=
∫ 1

0 dλDh(θ∗+λ(θn−θ∗)), we derive inductively
that

zn+1 = (I − γn+1Jn)zn + γn+1∆Mn+1 =

n+1
∏

k=1

(I − γkJk−1)z0 +

n+1
∑

k=1

γk







n+1
∏

p=k+1

(I − γpJp−1)







∆Mk.

Hence, setting for all n ∈ N∗, Π̃nΠ̃
−1
k :=

∏n
p=k+1(I − γpJp−1), with the classic convention

∏

∅ = 1 and using an
Abel transform, we have:

zn = Π̃nz0 +

n
∑

k=1

γkΠ̃nΠ̃
−1
k ∆Mk = Π̃nz0 + γnSn −

n−1
∑

k=1

∆γ̃k+1Sk, (5.1)

where γ̃k := γkΠnΠ
−1
k and ∆γ̃k+1 := γ̃k+1 − γ̃k = (γk+1 − γk)ΠnΠ

−1
k+1 + γk(ΠnΠ

−1
k+1 −ΠnΠ

−1
k ).

Now, exploiting assumption (HUA) (uniform attractivity of the Jacobian matrix of h), and taking the
sequence of steps s.t. α supn≥1 γn < 1, we obtain:

‖ΠnΠ
−1
k ‖ ≤

n
∏

p=k+1

(1 − γpα) ≤ exp(−α(Γn − Γk)), Γn :=

n
∑

i=1

γi,

where ‖.‖ stands for the matrix norm Rd ⊗Rd. Finally, we obtain from (5.1),

E[|zn|] ≤ e−αΓn |z0|+ γnE[|Sn|] +
n−1
∑

k=1

e−α(Γn−Γk+1)|∆γk+1|E[|Sk|] +
n−1
∑

k=1

e−α(Γn−Γk+1)γkγk+1E[|Sk|]ᾱ.

Now we inspect the behavior of E[|Sn|] itself. Using the Cauchy-Schwarz inequality yields

E[|Sn|] ≤ E[|Sn|2]1/2 = E[|
n
∑

i=1

∆Mi|2]1/2 = E

[ n
∑

i=1

{

|∆Mi|2 + 2

n
∑

j=i+1

〈∆Mi,∆Mj〉
}]1/2

=

( n
∑

i=1

E[|∆Mi|2]
)1/2

=

(

n
∑

k=1

E[|H(θk−1, Yk)− h(θk−1)|2]
)1/2

.

Assumption (HL) implies ∀θ ∈ Rd, ∀y ∈ Rq, |H(θ, y) − h(θ)| = |E[H(θ, y) −H(θ, Y )]| ≤ [H ]1F (y). We thus
obtain

E[|Sn|] ≤ n1/2[H ]1E[F 2(Y )]1/2 = [H ]1n
1/2σY ,

which completes the proof.

Appendix A. Technical results

A.1. Herbst argument

In this Section, we prove Proposition 3.1. Recall we have assumed that µ satisfies LSI(α), α > 0. Let f be
a smooth and bounded function such that |∇f | ≤ 1. Define the function g2 := exp(λf), λ ∈ R. First, it is clear
that

Eµ[|∇g|2] = λ2

4
Eµ[|∇f |2eλf ] ≤ λ2

4
Eµ[exp(λf)].
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Define H(λ) := Eµ[exp(λf)], λ ∈ R, applying (3.1) to g, we obtain

λH ′(λ) −H(λ) logH(λ) ≤ α
λ2

4
H(λ),

so that the function K(λ) := 1
λ logH(λ) s.t. K(0) = H′(0)

H(0) = Eµ[f ] satisfies for every λ ∈ R,

K ′(λ) ≤ α

4

and K(λ) ≤ K(0) + α
4 λ = Eµ[f ] +

α
4 λ which yields

H(λ) = Eµ[exp(λf)] ≤ exp(λEµ[f ] +
α

4
λ2).

Now, one may replace f by a smooth convolution in order to extend the previous inequality to all Lipschitz
functions with Lipschitz constant less than 1. Using the Tchebychev exponential inequality, one has for every
λ ≥ 0 and r ≥ 0

µ (f ≥ Eµ[f ] + r) ≤ exp
(

−λr + αλ2/4
)

and optimizing in λ ≥ 0 (r being non-negative), we obtain

µ (f ≥ Eµ[f ] + r) ≤ exp(−r2/α).

A.2. Proof of Proposition 4.1

The proof follows from usual stochastic analysis arguments that we now recall for the sake of completeness.
For i = N we directly get from the definition of f∆

N (x, y) that [f∆
N ]1 ≤ [f ]1|σ|∞.

For i ∈ [[1, N − 1]], let us first observe that for y 6= y′ the quantity

D∆
ti (T, x, y, y

′) := sup
s∈[ti,T ]

|X∆,ti,G
∆
i−1(x,y)

s −X
∆,ti,G

∆
i−1(x,y

′)
s |

|y − y′| , ∀z ∈ Rd, G∆
i−1(x, z) := b(ti−1, x)∆ + σ(ti−1, x)z

belongs to L1(P) (because both quantities E[|X∆,ti,G
∆
i−1(x,y)

T |],E[|X∆,ti,G
∆
i−1(x,y

′)

T |] are finite, see e.g. [BT96]).
Write now:

D∆
ti (T, x, y, y

′) ≤







|G∆
i−1(x, y)−G∆

i−1(x, y
′)|

|y − y′| + [b]1





∫ T

ti

du
|X∆,ti,G

∆
i−1(x,y)

φ(u) −X
∆,ti,G

∆
i−1(x,y

′)

φ(u) |
|y − y′|





+ sup
s∈[ti,T ]

∣

∣

∣

∣

∣

∣

∫ s

ti





σ(φ(u), X
∆,ti,G

∆
i−1(x,y)

φ(u) )− σ(φ(u), X
∆,ti,G

∆
i−1(x,y

′)

φ(u) )

|y − y′|



 dWu

∣

∣

∣

∣

∣

∣







.
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Taking the expectation we derive:

E[D∆
ti (T, x, y, y

′)] ≤







|σ|∞ + [b]1

∫ T

ti

duE





|X∆,ti,G
∆
i−1(x,y)

φ(u) −X
∆,ti,G

∆
i−1(x,y

′)

φ(u) |
|y − y′|





+ E



 sup
s∈[ti,T ]

∣

∣

∣

∣

∣

∣

∫ s

ti

σ(φ(u), X
∆,ti,G

∆
i−1(x,y)

φ(u) )− σ(φ(u), X
∆,ti,G

∆
i−1(x,y

′)

φ(u) )

|y − y′| dWu

∣

∣

∣

∣

∣

∣











.

≤ |σ|∞ + [b]1

∫ T

ti

duE[
(

D∆
ti (u, x, y, y

′)
)2
]

+c[σ]1E











∫ T

ti

du
|X∆,ti,G

∆
i−1(x,y)

φ(u) −X
∆,ti,G

∆
i−1(x,y)

φ(u) |2

|y − y′|2





1/2





, c := c(q), (A.2)

using the the Burkholder-Davis-Gundy inequality for the last inequality. Observe now that

E











∫ T

ti

du
|X∆,ti,G

∆
i−1(x,y)

φ(u) −X
∆,ti,G

∆
i−1(x,y)

φ(u) |2

|y − y′|2





1/2





≤ E



D∆
ti (T, x, y, y

′)1/2
(

∫ T

ti

duD∆
ti (u, x, y, y

′)

)1/2




≤ ηE[D∆
ti (T, x, y, y

′)] + η−1

∫ T

ti

duE[D∆
ti (u, x, y, y

′)], ∀η ∈ (0, 1),

which plugged into (A.2) yields thanks to the Gronwall Lemma

(1− c[σ]1η)E[D∆
ti (T, x, y, y

′)] ≤ |σ|∞ exp
(

{[b]1 + c[σ]1η
−1}(T − ti)

)

, η ∈
(

0,
1

c[σ]1
∧ 1

)

.

Taking η := (c[σ]1)
−1∧1

2 we obtain

E[D∆
ti (T, x, y, y

′)] ≤ 2|σ|∞ exp ({[b]1 + 2c[σ]1(1 ∨ c[σ]1)}(T − ti)) ,

which recalling [f∆
i ]1 ≤ [f ]1 supy 6=y′ E[|D∆

ti (T, x, y, y
′)|] completes the proof.

A.3. Proof of Proposition 5.1

From the definitions in Section 5, it suffices to control the difference E[|θθ,in − θθ
′,i

n |], that is the sensitivity of
the algorithm w.r.t. the starting point at time i ∈ [[1, n]]. Write for all j ∈ [[i, n− 1]]:

|θθ,ij+1 − θθ
′,i

j+1|2 = |θθ,ij − θθ
′,i

j − γj+1

{

H(θθ,ij , Yj+1)−H(θθ
′,i

j , Yj+1)
}

|2

= |θθ,ij − θθ
′,i

j |2 − 2γj+1〈θθ,ij − θθ
′,i

j , H(θθ,ij , Yj+1)−H(θθ
′,i

j , Yj+1)〉

+γ2
j+1|H(θθ,ij , Yj+1)−H(θθ

′,i
j , Yj+1)|2

= |θθ,ij − θθ
′,i

j |2 − 2γj+1〈θθ,ij − θθ
′,i

j , h(θθ,ij )− h(θθ
′,i

j )〉
−2γj+1〈θθ,ij − θθ

′,i
j ,∆Mθ,i

j+1 −∆Mθ′,i
j+1〉+ γ2

j+1|H(θθ,ij , Yj+1)−H(θθ
′,i

j , Yj+1)|2
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where we introduced the martingale increments ∆Mθ,i
j+1 = H(θθ,ij , Yj+1)−h(θθ,ij ) and ∆Mθ′,i

j+1 = H(θθ
′,i

j , Yj+1)−
h(θθ

′,i
j ), j ≥ 0 in the last equality. Now, using (HL) and (HUA) yields:

|θθ,ij+1 − θθ
′,i

j+1|2 ≤ |θθ,ij − θθ
′,i

j |2
(

1− 2αγj+1 + [H ]21γ
2
j+1

)

− 2γj+1〈θθ,ij − θθ
′,i

j ,∆Mθ,i
j+1 −∆Mθ′,i

j+1〉,

and, by induction on j, we easily obtain:

|θθ,in − θθ
′,i

n |2 ≤ |θ − θ′|2
n−1
∏

j=i

(

1− 2αγj+1 + [H ]21γ
2
j+1

)

−2





n−1
∏

j=i

(

1− 2αγj+1 + [H ]21γ
2
j+1

)





n−1
∑

j=i

γ̃j+1〈θθ,ij − θθ
′,i

j ,∆Mθ,i
j+1 −∆Mθ′,i

j+1〉 (A.3)

where γ̃j+1 := γj+1/
∏j

k=i

(

1− 2αγk+1 + [H ]21γ
2
k+1

)

. Taking the expectation in (A.3), we derive:

E[|θi,θn − θi,θ
′

n |2]
|θ − θ′|2 ≤

n−1
∏

j=i

(

1− 2αγj+1 + [H ]21γ
2
j+1

)

.

Now:

|fγ
i (θ, y)− fγ

i (θ, y
′)| = |E[|θi,θ−γiH(θ,y)

n − θ∗|]−E[|θi,θ−γiH(θ,y′)
n − θ∗|]| ≤ E[|θi,θ−γiH(θ,y)

n − θi,θ−γiH(θ,y′)
n |]

≤





n−1
∏

j=i

(

1− 2αγj+1 + [H ]21γ
2
j+1

)





1/2

γi[H ]1|y − y′|

=
(

ΠnΠ
−1
i

)1/2
γi[H ]1|y − y′|,

which completes the proof of the Proposition.
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tions]. Springer-Verlag, Berlin, 1996.

[KM02] V. Konakov and E. Mammen. Edgeworth type expansions for euler schemes for stochastic differential equations. Monte
Carlo Methods Appl., 8–3:271–285, 2002.

[KY03] Harold J. Kushner and G. George Yin. Stochastic approximation and recursive algorithms and applications, volume 35
of Applications of Mathematics (New York). Springer-Verlag, New York, second edition, 2003. Stochastic Modelling and
Applied Probability.

[Led99] M. Ledoux. Concentration of measure and logarithmic sobolev inequalities. Séminaire de Probabilités XXXIII. LNM, 1709,
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