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Abstract—In this paper, we study the performance of filter
bank based multicarrier (FBMC) transmission systems over
doubly-dispersive channels. FBMC generalizes traditional or-
thogonal frequency-division multiplexing (OFDM) schemes, al-
lowing a non-rectangular sub-channel pulse shape in the time
domain. This approach leads to a better spectral containment
that improves interference mitigation in several time-variant
environments. A general analysis describes the transmultiplexer
structure and the time-variant multipath channel model. We
specify rectangular filters and short perfect reconstruction (PR)
filters that give rise to two families of FBMC transceivers. A
performance comparison between these schemes is performed
in terms of bit-error-rate using a single-tap per sub-channel
equalizer. This study emphasizes the low complexity of the FBMC
transceivers in the case of short filters and discusses its usefulness
through simulation results in two mobility scenarios.

I. INTRODUCTION

Cyclic-prefix orthogonal frequency-division multiplexing

(CP-OFDM) diagonalizes time-invariant multipath channels

provided a guard interval longer than the channel impulse

response. Perfect reconstruction may be obtained with one-

tap equalization per sub-channel [1]. Furthermore, an efficient

implementation using fast Fourier transform (FFT) makes CP-

OFDM an attractive modulation scheme, widely used for both

wired and wireless communications (e.g. IEEE 802.11a, DVB-

T, xDSL).

However, when transmitting a CP-OFDM signal over a

time-variant multipath channel, the Doppler spread induces

inter-carrier interference (ICI) and increases error probability.

The lack of frequency localization of the rectangular waveform

is no longer compensated by the cyclic prefix in presence of

Doppler spread [2, p. 753].

A more general transmission framework is carried out

by filter bank based multicarrier modulations (FBMC), also

known as filtered multitone (FMT) or oversampled OFDM [3],

[4]. The key idea behind this technique is to perform a non-

rectangular pulse-shaping as compliant as possible with the

channel characteristics (time and frequency dispersion). The

design of pulse-shaping filters is an active area of research

[5]–[9].

In this work, we focus on non-rectangular (NR) perfect

reconstruction short filters, introduced in [10]. The subsequent

multicarrier transmission system is referred to as NR-OFDM.

In opposition to arbitrary long pulses, the extra implementation

cost compared to CP-OFDM becomes negligible with this

particular class of prototype filters [11]. Furthermore, the

design method leads to closed-form expressions.

Our contributions include bit-error-rate comparison of CP-

OFDM and NR-OFDM over a realistic time-frequency disper-

sive channel, extending the work developed in [12] over NR

short filters (through simulation results).

This paper is organized as follows. Section 2 presents

the general transmultiplexer structure and the channel model

used for performance measurement. Section 3 focuses on the

mean signal-to-noise-plus-interference ratio (SINR). Section 4

defines rectangular and perfect reconstruction filters. Section

5 compares the performances of CP-OFDM and NR-OFDM

through simulation results. Finally, conclusions and perspec-

tives are presented in section 6.

II. SYSTEM MODEL

We briefly introduce a generalized multicarrier transmission

system through a discrete-time formulation, in order to under-

line digital implementation.

A. FBMC Transmitter

Let {cm,n}(m,n)∈Λ denote a complex symbol sequence

where Λ = {0, . . . ,M − 1} × Z. We assume independent

and identically distributed symbols. Their average power is

given by σ2
c = E{|cm,n|2}.

Each cm,n is distributed in the time-frequency plane at

coordinates (nN,m/M) where N is the number of samples

per sub-channel symbol period and M represents the number

of sub-channels. We call N/M the oversampling ratio. The

output of the discrete-time transmitter writes

s[k] =
∑

(m,n)∈Λ

cm,nγm,n[k], k ∈ Z (1)

where γm,n[k] is a time-frequency shifted prototype pulse

defined as

γm,n[k] = γ[k − nN ]ej2π
m
M

k, γ[k] ∈ R. (2)

A necessary condition for perfect reconstruction of the trans-

mitted symbols is that the functions {γm,n}(m,n)∈Λ are lin-

early independent. This implies N/M ≥ 1, as proven by the
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Fig. 1: Discrete-time representation of a FBMC transmission system

with γm[k] = γ[k] exp(j2πmk/M) and γ̌m[k] = γ̌[k] exp(−j2πmk/M).

Weyl-Heisenberg (or Gabor) frame theory [13]. We note that

orthogonality and completeness are not mandatory conditions

for perfect reconstruction [3].

B. Channel model

Let us assume a bandlimited version of s[k], the Whittaker-

Shannon interpolation implies

s(t) =
∑

k∈Z

s[k]sinc (Bt− k) , t ∈ R (3)

where sinc(x) = sin(πx)/πx and B is the overall transmis-

sion bandwidth.

In a mobile radio context, we consider a time-frequency

dispersive channel H, with I resolvable paths. Assuming a

baseband equivalent model, the continuous-time input-output

relation is given by

r(t) = (Hs)(t) + n(t) (4)

=

I∑

i=1

αi(t)s(t− τi) + n(t) (5)

where αi(t) is a complex gain associated to the ith path with

delay τi. The complex bandlimited Gaussian noise n(t) is

characterized by its power spectral density equal to σ2
n/B for

|f | ≤ B/2 and 0 otherwise:

n(t) =
∑

k∈Z

n[k]sinc(Bt− k), t ∈ R. (6)

A statistical channel model is introduced in [14] and relies

on wide sense stationarity and uncorrelated scatterers assump-

tions (WSSUS), this implies

E{α∗
i (t)αi′(t

′)} = Γi(t− t′)δi,i′ (7)

where Γi represents the autocorrelation function of the ith
group of scatterers and δi,i′ is the Kronecker delta. For

example, using Clarke’s isotropic dense scattering model [15],

αi(t) are complex Gaussian processes with

Γi(t− t′) = J0(2πfd(t− t′)) (8)

where J0 denotes the zeroth order Bessel function of the

first kind and fd represents the maximum Doppler shift. The

well known Jakes Doppler spectrum is obtained by a Fourier

transform of (8) and is equal to

Ci(f) =

{
1

πfd
√

1−(f/fd)2
, if |f | < fd

0, otherwise.
(9)

For simulation purpose, we derive a discrete-time version

of the channel model denoted H̃. Using (3) and (4), the input-

output relation becomes

r[k] =
(

H̃s
)

[k] + n[k] (10)

=
∑

l∈Z

α̃l[k]s[k − l] + n[k] (11)

with

α̃l[k] =

I∑

i=1

αi

(
k

B

)

sinc (Bτi − l) . (12)

We notice that correlation among the 1/B-spaced channel taps

is introduced by anti-aliasing filtering so that

E{α̃∗
l [k]α̃l′ [k

′]} = Ωl,l′ [k − k′] (13)

where

Ωl,l′ [k − k′] =
I∑

i=1

sinc(Bτi − l)sinc(Bτi − l′)Γi

(
k − k′

B

)

.

(14)

Moreover, the band limiting operation leads to an infinite

number of virtual coefficients {α̃l[k]}k∈Z. In practice, this

sequence is truncated whenever |α̃l[k]|2 becomes negligible.

The resulting error is discussed in [16].

C. FBMC Receiver

Considering x and y two functions of ℓ2(Z), we define the

inner product 〈x, y〉 = ∑

k∈Z x∗[k]y[k] and its induced norm

‖x‖ =
√

〈x, x〉. Then, the dual frame of {γm,n}(m,n)∈Λ is

γ̌m,n[k] = γ̌[k − nN ]ej2π
m
M

k, γ̌[k] ∈ R. (15)

The biorthogonality condition is given by 〈γ̌p,q, γm,n〉 =
δm,pδn,q for all (m,n) and (p, q) in Λ. The transmitted

symbols are recovered by computing the inner product of the

received signal and the dual frame {γ̌m,n}(m,n)∈Λ (Fig. 1). We

denote Λp,q = Λ\{(p, q)} and we express the qth received

symbol on the pth sub-channel using (1) and (10):

ĉp,q = 〈γ̌p,q, r〉 (16)

=
〈

γ̌p,q, H̃s
〉

+ 〈γ̌p,q, n〉 (17)

= cp,qAp,q
︸ ︷︷ ︸

Sp,q

+
∑

(m,n)∈Λp,q

cm,nAm,n,p,q

︸ ︷︷ ︸

Ip,q

+Np,q (18)



where

Am,n,p,q =
〈

γ̌p,q, H̃γm,n

〉

(19)

=
∑

k∈Z

γ̌[k − qN ]ej2π
(m−p)

M
k

·
∑

l∈Z

α̃l[k]γ[k − l − nN ]e−j2π m
M

l (20)

Ap,q =
〈

γ̌p,q, H̃γp,q

〉

= Ap,q,p,q (21)

and

Np,q = 〈γ̌p,q, n〉 =
∑

k∈Z

n[k]γ̌[k − qN ]e−j2π p

M
k. (22)

The expression of the received symbol splits into three terms:

• Sp,q represents the useful part of the signal;

• Ip,q denotes the interference term, including inter-carrier

and inter-symbol interference;

• Np,q refers to the noise filtered by the receiver.

The coefficient Am,n,p,q reflects the complex gain introduced

by the system, assuming an estimated symbol (p, q) and an

interfering symbol (m,n).
In order to maintain a low-complexity receiver, interference

mitigation is performed by a zero-forcing equalizer, using one

coefficient per sub-channel. Assuming perfect knowledge of

{α̃l[k]}(l,k)∈Z2 , the expression of the equalized signal is given

by

c̃p,q = cp,q +
Ip,q
Ap,q

+
Np,q

Ap,q
. (23)

This type of equalizer presents the advantage of a low com-

plexity but it may amplify noise and interference terms when

the channel experience severe fading [1].

III. SINR MAXIMIZATION IN THE WSSUS CONTEXT

The design of a multicarrier transmission system consists

in optimizing the parameters M , N , γ, γ̌ subject to a given

channel realization. Such a joint optimization problem remains

unsolved since there is an arbitrary trade-off between interfer-

ence level and spectral efficiency [8]. Most studies in this field

choose a separate optimization approach on Sp,q , Ip,q and Np,q

for a given lattice structure (i.e. M and N fixed).

Furthermore, the channel is often considered as time-variant

over a block. Thus, an optimization based on the second-order

statistics is usually performed [3], [8].

In the following optimization procedure, we consider a

normalized transmission pulse shape, such that ‖γ‖2 = 1.

We denote σ2
S = Ec,H̃{|Sp,q|2}, σ2

I = Ec,H̃{|Ip,q|2} and

σ2
N = En{|Np,q|2}. We conduct here a qualitative analysis

of the signal-to-noise ratio (SNR = σ2
S/σ

2
N ) and signal-to-

interference ratio (SIR = σ2
S/σ

2
I ). A more thorough study is

developed in [6], [17]. The expression of the signal-to-noise-

plus-interference ratio is then given by

SINR =
σ2
S

σ2
N + σ2

I

=
1

1
SNR + 1

SIR

. (24)

A. SNR maximization

Assuming an additive complex bandlimited Gaussian noise

channel such that n[k] ∼ CN (0, σ2
n), the mean power of the

received noise term Np,q writes

SNR =
σ2
S

σ2
N

=
σ2
S

σ2
n ‖γ̌‖2

. (25)

The biorthogonality condition applied to the prototype func-

tion implies 〈γ, γ̌〉 = 1. Using the Cauchy-Schwarz inequality

we also have | 〈γ, γ̌〉 | ≤ ‖γ‖2 ‖γ̌‖2 and finally

‖γ‖2 ‖γ̌‖2 ≥ 1. (26)

The average noise power is minimum when equality is verified

in (26). It requires an orthogonal setup, that is to say γ̌ = βγ,

∀β ∈ R. This result corroborates the matched filter theory [2,

p. 160].

B. SIR maximization

Independence between symbols and channel coefficients

allows us to write

SIR =
σ2
S

σ2
I

=
E
H̃
{|Ap,q|2}

∑

(m,n)∈Λp,q
E
H̃
{|Am,n,p,q|2}

(27)

where

E
H̃
{|Am,n,p,q|2}
=

∑

k,k′

∑

l,l′

E{α̃∗
l [k + qN ]α̃l′ [k

′ + qN ]}

· γ̌[k]γ̌[k′]γ[k − l − (n− q)N ]γ[k′ − l′ − (n− q)N ]

· ej2π (m−p)
M

(k−k′)e−j2π m
M

(l−l′). (28)

In light of (27), the signal-to-interference ratio may be

maximized if E
H̃
{|Am,n,p,q|2} → δm,pδn,q subject to given

values of M , N and the second-order characteristics of the

WSSUS channel.

We assume Ωl,l′ [k−k′] ≈ σ2
l [k−k′]δl,l′ , where σ2

l [k−k′] =
∑I

i=1 sinc
2(Bτi − l)Γi[k − k′]. This is a convenient approx-

imation when the sampling period 1/B is small compared to

time arrivals τi. Considering the same Doppler spectrum for

each path, we have

E
H̃
{|Am,n,p,q|2} =

∑

k,k′

Qn−q[k, k
′]ej2π

(m−p)
M

(k−k′) (29)

where

Qn−q[k, k
′] = Γ[k − k′]γ̌[k′]γ̌[k]Rn−q[k, k

′] (30)

and

Rn−q[k, k
′] =

∑

l∈Z

σ2
l [k − k′]γ[k − l − (n− q)N ]

·γ[k′ − l − (n− q)N ]. (31)

We notice that Rn−q[k, k
′] reflects the time-autocorrelation

of the transmitter pulse shape. On one hand, we want

Rn−q[k, k
′] ≈ δn,q . On the other hand, (29) requires

Qn−q[k, k
′] to be approximately constant in order to satisfy



E
H̃
{|Am,n,p,q|2} ≈ δm,p. These two constraints are incompat-

ible and demonstrate the time-frequency uncertainty principle.

An optimal trade-off may be reached using Gaussian pulses.

However, due to their non-orthogonality, one may need to

choose a large oversampling factor in order to mitigate ISI

and ICI. Another frequently used strategy is to perform an

orthogonalization procedure, as described in [8].

C. SINR maximization

Summarizing the SNR and SIR maximization constraints, a

quasi-optimal transceiver may be designed in terms of mean

SINR, for a given M , N and Γ[k], if the following conditions

hold:

• orthogonal scheme such that γ̌ = βγ, β ∈ R;

• good time-frequency localization for γ and γ̌;

• high spectral efficiency such that N/M → 1.

However, the last two conditions cannot be satisfied at the

same time [18, p. 63]. If we relax the spectral efficiency

condition, it becomes possible to decrease interference mean

power. This is of primary concern when experiencing fast-

fading.

IV. FILTERS SPECIFICATION

In this section, we study two families of prototype filters

that are used for multicarrier communications over time-

frequency dispersive channels: rectangular and short perfect

reconstruction filters.

From the optimization guidelines described above, it is of

prime interest to characterize the filters in the time-frequency

plane. We recall the second-order moments in time and

frequency assuming a real-valued linear-phase discrete-time

signal x[k] ∈ ℓ2(Z) of length L:

σ2
t (x) =

1

‖x‖2
L−1∑

k=0

(

k − L− 1

2

)2

|x[k]|2, (32)

σ2
f (x) =

1

‖x‖2
∫ 1

2

− 1
2

f2|X(f)|2 df (33)

with X(f) =
∑L−1

k=0 x[k] exp(−j2πfk/L). The out-of-band

energy with respect to a band 1/M writes

ǫM (x) =
1

‖x‖2
∫ 1

2

1
2M

|X(f)|2 df. (34)

The time-frequency coefficient is given by

ξ(x) =
1

4πσt(x)σf (x)
. (35)

If X(±1/2) = 0 then, according to [19], 0 ≤ ξ(x) < 1.

A. Rectangular filters (CP-OFDM)

CP-OFDM relies on a biorthogonal FBMC scheme based

on rectangular filters defined by

γRECT[k] =
1√
N

χ{0,...,N−1}[k] (36)

γ̌RECT[k] =

√
N

M
χ{N−M,...,N−1}[k] (37)

where χI is the indicator function of any set I, specified by

χI[k] =

{

0, if k /∈ I

1, if k ∈ I.
(38)

The first N−M coefficients of γ form the cyclic prefix in order

to mitigates ISI introduced by time-dispersive channels. At the

receiver side the cyclic-prefix is removed by γ̌. It follows from

(25) that a biorthogonal setup amplifies the noise term since

‖γ̌‖2 > 1.

B. Short perfect reconstruction filters (NR-OFDM)

NR-OFDM refers to an orthogonal FBMC scheme using

perfect reconstruction filters (i.e. in addition to the biorthogo-

nality condition, we have γ = γ̌). In this article, we focus on

short filters so that their length is equal to N . This class of

filters allows an efficient implementation which is comparable

with CP-OFDM. The pulse-shaping procedure requires N
additional multiplications at the transmitter and at the receiver

side [11].

The prototypes described in [10] are derived from two

optimization criteria: out-of-band energy minimization (OBE)

and time-frequency localization maximization (TFL). Using

∆ = N − M , closed-form expressions are given for both

filters.

γOBE[k] =







1√
M

cos
(

ã+ b̃ (2k+1)
2∆

)

if 0 ≤ k ≤ ∆− 1

1√
M

if ∆ ≤ k ≤ M − 1

1√
M

cos
(

ã+ b̃ 2(∆−k)+1
2∆

)

if M ≤ k ≤ N − 1

(39)

γTFL[k] =







1√
M

sin
(

(2k+1)π
4∆

)

if 0 ≤ k ≤ ∆− 1

1√
M

if ∆ ≤ k ≤ M − 1

1√
M

sin
(

(2(∆−k)+1)π
4∆

)

if M ≤ k ≤ N − 1

(40)

where ã and b̃ are two constants given in [10] and depending

on the ratio M/∆.

A time-frequency analysis of the prototypes is summarized

by Fig. 2 and Tab. I. Considering the empirical computation of

time-frequency moments, a rectangular pulse is submitted as

a reference. We show that TFL pulses demonstrate a better

localization both in time and in frequency than OBE. As

expected, the time-frequency localization of the rectangular

waveform is far behind OBE and TFL pulses.

TABLE I: Filters characteristics in the time-frequency domain

for M = 64 and N = 72.

Filter type σt(γ̌) σf (γ̌) ǫM (γ̌) ξ(γ̌)

RECT 0.2566N 2.12/M 0.2263 0.1226

NR-OBE 0.2617N 1.44/M 0.1715 0.1874

NR-TFL 0.2580N 0.68/M 0.1839 0.4047
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(a) Rectangular filter (γ̌RECT).
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(b) Perfect reconstruction OBE filter.
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(c) Perfect reconstruction TFL filter.

Fig. 2: Time and frequency responses of the prototypes filters

for M = 64 and N = 72.

V. SIMULATIONS RESULTS

The scenario developed in our simulations refers to a video

broadcasting system operating around a central frequency fc =
600 MHz and using a band B = 8 MHz. We consider here two

mobility scenarios: pedestrian (vmax = 3 km/h) and vehicular

(vmax = 350 km/h). The propagation takes place in an urban

environment, this justifies the use of COST 207 TUx6 channel

model [20]. This involves a 6-path WSSUS model where the

last path occurs at 5 µs.

The video stream is split into packets, transmitted in an

asynchronous way (i.e. different packets experience indepen-

dent realizations of the channel). A packet is made of several

OFDM symbols which includes M = 4096 QPSK symbols.

Simulations are computed for CP-OFDM, OBE-OFDM and

TFL-OFDM with N/M ∈ {17/16, 9/8, 5/4}. Uncoded bit-

error-rate (BER) performances are presented as a function of

Eb/N0 where Eb = Nσ2
c/2MB and N0 = σ2

n/B (Fig. 3).

First of all, the oversampling factor demonstrates a different

behavior in the CP-OFDM case and in the NR-OFDM case.

In fact, the length of the cyclic prefix has no consequence

on the time-frequency localization of the rectangular pulse γ̌.

However, according to (26) and (36), an increased N/M factor

amplifies the noise term. On the contrary NR filters show a

better time-frequency localization when N/M increases and

improves the resilience to ISI and ICI.

In the low mobility scenario, the use of TFL-OFDM might

be interesting because it provides a good frequency localiza-

tion which is required for mainly frequency-selective channels

(Fig. 3b). We notice that CP-OFDM remains an attractive

solution for low N/M factor.

On the contrary, the high mobility scenario combined with

a narrow frequency spacing between subcarriers (M=4096),

first demonstrates the superiority of the NR-OFDM solutions

compared to CP-OFDM. We also note that OBE-OFDM leads

to a better result than TFL-OFDM. Indeed, compared to TFL,

this criterion provides pulses with narrower main lobes in

the frequency domain. This spectral characteristic tends to

mitigate ICI introduced by Doppler spread (Fig. 3c).

Summarizing the simulation results, and some other ones

not presented here, it appears that considering both mobility

scenarios (low and high speed) the TFL prototype offers a

good trade-off and, in presence of Doppler spread, always

outperforms CP-OFDM for M ∈ {1024, 2048, 4096} and

Eb/N0 < 20 dB.

VI. CONCLUSION

We have presented an analysis of FBMC schemes in the

context of time-frequency dispersive channels. Using WSSUS

assumption, we have shown the interest of well localized

pulses in the time-frequency domain in order to mitigate ISI

and ICI. Focusing on the particular case of non-rectangular

short perfect reconstruction filters [10], we preserve an ac-

ceptable transceiver complexity. Furthermore, we demonstrate

through numerical simulations that one-tap equalization is

sufficient to yield superior BER performance than CP-OFDM,

for similar oversampling factors in several high mobility

scenarios.
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