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BRANCHING PROCESSES OF GENERAL PETRI NETS

JEAN-MICHEL COUVREUR, DENIS POITRENAUD, AND PASCAL WEIL

Abstract. We propose a new model of branching processes, suitable for de-

scribing the behavior of general Petri nets, without any finiteness or safeness

assumption. In this framework, we define a new class of branching processes
and unfoldings of a net N , which we call true. These coincide with the safe

branching processes and unfoldings if N is safe, or weakly safe as in [Engelfriet

1991], but not in general. However, true branching processes and processes
satisfy the good order-theoretic properties which make the safe processes of

safe nets so useful in practice, and which are known not to hold for the safe

processes of a general net. True processes represent therefore good candidates
to generalize the theory of safe nets to the general case.

1. Introduction

The study of the behavior of models of concurrency usually requires the definition
of more abstract models. Within the framework of Petri nets, primarily two models
were retained: labeled occurrence nets and event structures. Both models were
proposed by Nielsen, Plotkin and Winskel in their foundational paper [10], in order
to give a semantic of concurrency for safe Petri nets. The description of a safe
Petri net execution is presented by a labeled causal net, called a process. Roughly
speaking, causal nets are acyclic Petri nets whose places are without branching.
In particular, their places and transitions are partially ordered, and this order,
restricted to transitions, induces a partial order on the transition occurrences in
the original Petri net. For the representation of conflicts, branching on places is
allowed. This leads to the definition of labeled occurrence nets, called branching
processes. The set of all the behaviors of the system can be captured by a single
branching process, called the unfolding of the system, whose transitions are called
events. By restricting the relations of causality and conflict to events, one obtains
an event structure called the prime event structure. Since the publication of [10],
there have been many attempts to extend these results to general Petri nets.

In these attempts, the focus has often been on using the same classes as in the
case of safe nets, namely causal and occurrence Petri nets. Engelfriet [2] restricted
his work to 1-valued arc-weights, initially 1-marked Petri nets, and he obtained
good algebraic properties on branching processes (a structure of lattice) which led
to the concept of unfolding.

For others (e.g. Best and Devillers [1], Meseguer, Montanari and Sassone [8]),
markings take arbitrary values and tokens are individualized. As argued in [6],
this is contrary to a pure multiset view of general nets, and the systems modelled
by Petri nets rarely justify individualizing tokens. Similarly, Haar [4], pursuing
Vogler’s work [11], proposes an approach which aims at translating general nets
into safe nets, by introducing a place for each reachable marking of original places.
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This not only considerably increases the size of the structure, but it also artificially
introduces conflicts between transitions that access a given place. Thus it strongly
departs from the intended semantic of nets.

In contrast with these approaches, Hoogers, Kleijn and Thiagarajan [6], propose
a new event structure. In this so-called local event structure, tokens are not individ-
ualized. Their theory is complete for co-safe nets (see [6]), and it can be extended
to the case of general nets. However, it does not present the expected properties in
the general case.

In this paper, we propose a more net-theoretic approach, which does not impose
to individualize the tokens, and which incorporates the solutions of [1, 2, 8]. Also,
we do not make any finiteness assumption on our nets. Our formal framework
allows us to identify a new structure, the true unfolding of a net, which allows for
the good algebraic properties identified by Engelfriet [2], and which is applicable
to general nets.

The starting point of our approach is an extension of the definitions of occurrence
nets, which can be arbitrarily valued and non-safe, and of configurations, which are
multisets of transitions (or events). Branching processes are defined as occurrence
nets labeled by the elements of the original net. The differences between our defi-
nitions of occurrence nets and branching processes, and the classical definitions are
discussed in Sections 3 and 4; it is important to note that these definitions coincide
in the case of safe nets.

The set of branching processes of a net is equipped with a natural order relation,
which leads to the definition of unfoldings as maximal branching processes. We
identify two classes of branching processes and two types of unfoldings: weakly safe
and true, and we show that every net admits a weakly safe and a true unfolding,
which are unique up to isomorphism. The weakly safe unfolding coincides with
those of [1, 2, 8]. The true unfolding is particularly interesting because of its order-
theoretic properties. For safe nets, and more generally under the constraints on
the net structure identified by Engelfriet in [2], there exists a unique unfolding,
and the concepts of weakly safe and true unfolding coincide. In general however,
the two unfoldings differ. The “universality” of the construction which associates a
true unfolding to a general Petri net was already studied by Keller in a categorical
setting [7], under various finiteness conditions (on the support of the initial marking
and on the pre- and postsets of every transition).

In addition, we identify a partial order between the unfoldings of a net N (taken
up to isomorphism), and we show that the true unfolding and the weakly safe
unfolding of N are, respectively, the minimum and the maximum unfoldings with
respect to that partial order.

Finally, we formalize the concept of process in our multiset context. Contrary
to other works, our definition is not based on causal nets, but on the concept of
a configuration. Again, it turns out that the safe case does not offer good enough
properties (e.g., we cannot define the greatest lower bound of two processes). In
contrast, the expected properties hold for true processes. This comes from the fact
that a true process is represented in a unique way in the true unfolding.

The drawback of these algebraically and order-theoretically satisfactory struc-
tures is that the concepts of conflict and causality are not any more explicitly given
by the model structure. That is, we lose a direct link with prime event structures,
as in [6].
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The paper is organized as follows. In Section 2, we fix the notation for nets,
homomorphisms of nets and other fundamental objects. Section 3 discusses occur-
rence nets and configurations. In Section 4, generalized branching processes and
unfoldings are introduced. The construction and the properties of the true and the
weakly safe unfolding of a net are discussed in Section 5. Finally Section 6 presents
the generalized notion of processes, and establishes the order-theoretic properties
of true processes. Counter-examples of these properties for safe or weakly safe
processes are also presented.

2. Preliminaries

We first summarize the basic notation and concepts used in this paper, concern-
ing multisets and Petri nets. N denotes the set of non-negative integers.

2.1. Notation. Let X be a set. A multiset over X is a mapping v : X → N.
Multisets are often represented as formal linear combinations, e.g. v = a + 2b for
v(a) = 1, v(b) = 2, v(c) = 0 for all c ∈ X \ {a, b}, and it is also convenient to view
them as vectors in NX . The support of the multiset v is the set v = {x ∈ X |
v(x) > 0}. Note that the support of a multiset may be infinite. A multiset over a
set X can be naturally considered as a multiset over any superset of its support.

The operations of addition and subtraction of multisets over X are defined com-
ponentwise, as on vectors (note however that negative coefficients are not allowed).
An infinite sum of multisets v =

∑
i∈I vi is said to be well-defined if for each x ∈ X,

the sum
∑
i∈I vi(x) is finite. If σ = x1x2 · · · is a finite sequence of elements of X,

the characteristic vector of σ is the multiset σ =
∑|σ|
i=1 xi. Multisets are partially

ordered by letting v ≤ w if v(x) ≤ w(x) for each x ∈ X.
If X and Y are sets, a mapping h : X → Y can sometimes be extended to

multisets, h : NX → NY , by letting h(v) =
∑
x∈X v(x)h(x) if the sum is well-

defined (that is, if each y ∈ Y has finitely many pre-images in the support of v).
The mapping h can also be extended to sequences of elements of X by letting
h(x1x2 · · · ) = h(x1)h(x2) · · · .

Let → be a relation on the set X, for instance the edge relation of a graph

in which X is the set of vertices. We denote by
∗→ (resp.

+→), the reflexive and
transitive closure (resp. transitive) of →. We also use the following notation: if
Y ⊆ X,

•Y = {x ∈ X | ∃y ∈ Y, x→ y} ∗Y = {x ∈ X | ∃y ∈ Y, x ∗→ y}
Y • = {x ∈ X | ∃y ∈ Y, y → x} Y ∗ = {x ∈ X | ∃y ∈ Y, y ∗→ x} .

If Y = {y}, we write simply •y, ∗y, y• and y∗.

When the graph (X,→) is acyclic (i.e, x
+→ x never holds, for any x ∈ X), the

relation
∗→ forms a partial order on a set X.

If (X,≤) is a partially ordered set and if Y ⊆ X, we say that Y is an order ideal
if x ∈ Y whenever x ≤ y for some y ∈ Y . Moreover, we say that x is a lower (resp.
upper) bound of Y if x ≤ y (resp. y ≤ x) for each element y ∈ Y . The greatest
lower bound (resp. least upper bound) of Y , if it exists, is denoted by inf(Y ) (resp.
sup(Y )). If any two elements of X admit a greatest lower bound and a least upper
bound, X is called a lattice. It is a complete lattice if any subset of X admits a
greatest lower and a least upper bound.
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Figure 1. Graphical representation of a net modeling a
reader/writer system

2.2. Petri net. A Petri net, or simply a net, is a tuple N = (P, T,Pre,Post,m0)
consisting of two disjoint sets P and T whose elements are called places and transi-
tions, two multisets Pre and Post over P ×T (sometimes called the flow functions),
and a multiset m0 over P called the initial marking. A marking of N is any multiset
over P . If t is a transition, the pre-condition of t, written Pre(t), is the marking
Pre(·, t). Similarly, the post-condition of t, written Post(t) is the marking Post(·, t).

Note that we don’t make any finiteness assumption: P or T may be infinite,
as well as the support of the initial marking or of the pre- and post-condition of
a transition. A net may be viewed as a labelled bipartite graph (the graphical
representation of N) as follows: we can identify N with the labeled graph (P, T,→
,m0), where places and transitions are the two disjoint sets of nodes, there is an

edge p
Pre(p,t)−→ t (resp. t

Post(p,t)−→ p) between the place p and the transition t if
Pre(p, t) (resp. Post(p, t)) is non-zero, and m0 is a labelling function of the places,
traditionally depicted by the presence of m0(p) tokens in place p.

Example 2.1. Figure 1 represents a net modelling a reader/writer system allowing
at most three concurrent readers. We use the classical graphical representation of
Petri nets, where places are drawn as circles and transitions as thin rectangles,
where the initial marking is indicated by the corresponding number of tokens in
each place, and where pre- and post-conditions are indicated by labels on edges.
The initial marking of place S allows at most three readers to be simultaneously in
place C0. Only one reader at a time can access place C1, and when she is there, no
reader may be in place C0.

If t is a transition and m is a marking of N , we say that t is enabled by m,
written m [t〉, if Pre(t) ≤ m. Firing the transition t in m produces the marking

m′ = m+ Post(t)− Pre(t) . (firing equation)

and we write m [t〉 m′. The firing equation is extended inductively to any sequence
of transitions: if ε is the empty sequence, we let m [ε〉 m; if σ is a sequence of
transitions and if t is a transition, then m [σ t〉 m′ if there exists a marking m′′

such that m [σ〉 m′′ and m′′ [t〉 m′. It is easily verified that if σ = t1t2 · · · tn and
m [σ〉 m′, then

m′ = m+

n∑
i=1

Post(ti)−
n∑
i=1

Pre(ti) . (extended firing equation)

A transition, or sequence of transitions, is said to be firable if it is enabled by the
initial marking. A marking m is called reachable if there exists a finite sequence of
transitions σ such that m0 [σ〉 m.
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A transition t is called spontaneous if Pre(t) = 0, that is, •t = ∅. A place or a
transition x is called isolated if •x = x• = ∅.

In this paper we will use the following properties of nets. Recall that a marking
m is safe if m(p) ≤ 1 for each place p. The net N is said to be

• weakly safe if the initial marking m0 and the pre- and post-condition
Pre(t) and Post(t) of each transition t are safe markings;
• safe if each reachable marking is safe;
• quasi-live if every transition is enabled by a reachable marking;
• acyclic if the graph representing N is acyclic; in that case, the induced

partial order on the set of places and transitions is written ≤.

These notions are classical, see [9], with the exception of weakly safe nets: our defi-
nition differs from Engelfriet’s [2] in the fact that we allow spontaneous transitions.
It is interesting to note that weak safeness is a property that can be easily veri-
fied upon reading the definition of a Petri net, whereas deciding safeness requires
computing a transitive closure, a notoriously high complexity procedure.

Lemma 2.2. Every safe and quasi-live Petri net is weakly safe.

Proof. If N is safe, then the initial marking m0 is safe. We now verify that the pre-
and post-conditions of a transition t of N are safe markings. As we are assuming
that t is enabled by some reachable marking, and therefore by a safe marking, the
marking Pre(t) must be safe. For the same reason, since t appears in a sequence of
transitions enabled by the initial marking, leading to a safe marking, the marking
Post(t) must be safe as well. This concludes the proof. ut

For further reference, we note the following technical lemma, which belongs to
the folklore.

Lemma 2.3. Let N be an acyclic net, let t be a transition, and let σ be a minimal
length firable sequence of transitions enabling t. Then every transition x in σ is
such that x < t.

Proof. We first verify that if a marking m enables a sequence of 2 transitions
t1t2 such that ¬(t1 < t2), then m also enables the sequence t2t1. Indeed, we
have m ≥ Pre(t1) and m − Pre(t1) + Post(t1) ≥ Pre(t2). Moreover, no place in
the support of Post(t1) is in the support of Pre(t2) (otherwise t1 < t2). Thus
m − Pre(t1) ≥ Pre(t2), and this implies m ≥ Pre(t2) and m − Pre(t2) ≥ Pre(t1).
The first inequality shows that m enables t2, and the second inequality shows that
the marking obtained from m by firing t2 enables t1.

Moreover, in this situation, the extended firing equation shows that the markings
obtained after firing the sequences t1t2 and t2t1 coincide.

Now let σ = t1t2 · · · tn be a sequence of transitions such that σt is firable and n
is minimal. For each 1 ≤ j ≤ n, let mj be the marking such that m0 [t1 · · · tj〉 mj .
Thus mi−1 enables titi+1 · · · tnt for each i. Now let i be maximal such that ¬(ti < t).
Then tj < t for each j > i, and hence ¬(ti < tj). Using repeatedly the statement
in the first part of the proof, it follows that mi−1 enables ti+1titi+2 · · · tnt, and also
ti+1ti+2ti · · · tnt, etc, and finally ti+1 · · · tntti, which contradicts the minimality of
n. ut

2.3. Homomorphism of nets. LetN = (P, T,Pre,Post,m0) andN ′ = (P ′, T ′,Pre′,Post′,m′0)
be nets. Let h : P ∪T → P ′∪T ′ be a mapping such that h(P ) ⊆ P ′ and h(T ) ⊆ T ′.



6 J.-M. COUVREUR, D. POITRENAUD AND P. WEIL

We say that h is a homomorphism of nets from N to N ′ (see [2]) if, for each
transition t ∈ T , we have

• Pre′(h(t)) = h(Pre(t)),
• Post′(h(t)) = h(Post(t)),
• m′0 = h(m0).

Observe that in this definition, h(m0), h(Pre(t)) and h(Post(t)) must be well-
defined, that is, the pre-image h−1(p′) of each place p′ ∈ P ′ must have a finite
intersection with the support of m0 and of each pre- and post-condition of a tran-
sition of N (see Section 2.1).

We note the following elementary properties of homomorphisms of nets.

Lemma 2.4. Let N = (P, T,Pre,Post,m0) and N ′ = (P ′, T ′,Pre′,Post′,m′0) be
nets, and let h : N → N ′ be a homomorphism.

(1) Let p′ ∈ P ′. If p′ ∈ m′0, then h−1(p′) has at most m′0(p′) elements in
m0. If p′ ∈ •h(t) for some transition t ∈ T , then h−1(p′) ∩ •t has at most
Pre′(p′, h(t)) elements. And if p′ ∈ h(t)

•
, then h−1(p′) ∩ t• has at most

Post′(p′, h(t)) elements.
(2) If N has finitely many events, then h−1(p′) contains a finite number of

non-isolated or initially marked places for each place p′ ∈ P ′.
(3) If m′0 is safe, then m0 is safe and h induces a bijection from m0 to m0.

Similarly, if t ∈ T and Pre′(h(t)) (resp. Post′(h(t))) is a safe marking, then
so is Pre(t) (resp. Post(t)) and h induces a bijection from •t to •h(t) (resp.
from t• to h(t)

•
).

(4) If N ′ is weakly safe, then so is N .

Proof. To establish Statement (1), we first note that m′0(p′) =
∑
h(p)=p′ m0(p),

so h−1(p′) contains at most m′0(p′) initially marked places. For each transition t
of N , Pre′(p′, h(t)) =

∑
p=h(p′) Pre(p, t), so h−1(p′) ∩ •t has at most Pre′(p′, h(t))

elements. The reasoning is similar for the postset of t.
The other statements are simple consequences of (1). ut

Proposition 2.5. Let N and N ′ be Petri nets and let h : N → N ′ be a homomor-
phism. Let m be a marking of N such that h(m) is well-defined, let t be a transition
of N enabled by m, and let m1 be the resulting marking, that is, m [t〉 m1. Then
h(m1) is well-defined and h(m) [h(t)〉 h(m1).

Proof. According to the firing equation, we have m1 = m − Pre(t) + Post(t).
The assumption that h is a homomorphism implies that, for each place p′ of N ′,
the sums

∑
p∈h−1(p′) Pre(p, t) and

∑
p∈h−1(p′) Post(p, t) are well-defined. Similarly,

stating that h(m) is well-defined implies that each sum
∑
p∈h−1(p′)m(p) is well-

defined. It follows that

h(m1)(p′) =
∑

p∈h−1(p′)

m1(p) =
∑

p∈h−1(p′)

(
m(p)− Pre(p, t) + Post(p, t)

)
is well-defined, and is equal to

h(m1)(p′) = h(m)(p′)− Pre′(p′, h(t)) + Post′(p′, h(t)) .

That is, h(m) [h(t)〉 h(m1). ut
Proposition 2.5 can be extended by induction to sequences of transitions. This

yields immediately the following corollary.
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Figure 2. Graphical representation of a homomorphism of nets

Corollary 2.6. Let N and N ′ be Petri nets and let h : N → N ′ be a homomor-
phism. The image under h a reachable marking of N is reachable in N ′. Moreover,
if N ′ is safe, then N is safe.

Example 2.7. Figure 2 shows both a net, say, N (with 12 transitions and 13
places), and a homomorphism from this net to the net N ′ from Example 2.1. The
values labelling the nodes are the images by the homomorphism.

2.4. Subnets of nets. LetN = (P, T,Pre,Post,m0) andN ′ = (P ′, T ′,Pre′,Post′,m′0)
be nets. We say that N ′ is a subnet of N , and we write N ′ v N , if P ′ ⊆ P , T ′ ⊆ T ,
m0 = m′0 and for each transition t of N ′, Pre(t) = Pre′(t) and Post(t) = Post′(t).

Observe that this definition is different from the sole requirement that P ′∪T ′ ⊆
P ∪ T and Pre′, Post′ and m′0 are the restrictions of Pre, Post and m0 to the places
and transitions of N ′: consider for instance the case where N and N ′ have a single
transition t, N ′ has places p′ and q′, and N has places p, q, p′ and q′, m0 = m′0 = p′,
Pre′(t) = p, Pre(t) = p+ p′, Post′(t) = q, Post(t) = q + q′.

In our definition, a subnet of N is obtained by removing from N some places
and transitions, in a way that impacts neither the initial marking, nor the pre- and
post-conditions of the remaining transitions. In other words, a subnet is uniquely
determined by a set of transitions, the initial marking and, possibly, a set of isolated,
non-initially marked places.

3. Occurrence nets and configurations of a net

A net N is an occurrence net if, for each place p ∈ P ,

• either p is initial (•p = ∅) or it receives its inputs from a single transition
(|•p| = 1), denoted by •p;

• the support of m0 is exactly the set of initial places (m0(p) > 0 if and only
if p is an initial place);
• N is quasi-live (every transition is enabled by some reachable marking).
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Occurrence nets were structurally introduced by Nielsen, Plotkin and Winskel [10]
in the safe case using concurrency relation over transitions and places. Their def-
inition differs from ours by the fact that it imposes acyclicity and the absence of
self-conflicts. We have retained natural structural constraints such as the fact that
a place is either initial and initially marked, or unmarked and in the postset of a
single transition. Self-conflict is more difficult to handle in a structural way in the
setting of general nets and we have introduced the condition of quasi-liveness in
the definition in order to “trim” unnecessary transitions. As we will see, acyclicity
follows from our definition. Our definition remains simple, and it makes no as-
sumption of safeness or finiteness. It is important to note that the two definitions
coincide for safe nets (see subsection 3.1).

3.1. Elementary properties of occurrence nets.

Proposition 3.1. Let N = (P, T,Pre,Post,m0) be an occurrence net. Then N is
acyclic and every vertex of the graph N is preceded by a finite number of transitions.
That is, if x ∈ P ∪ T , then ∗x ∩ T is finite.

Proof. As the graph (underlying) N is bipartite, if N has a cycle, then there exists
a sequence of places p0, p1, . . . , pn−1 and a sequence of transitions t0, t1, . . . , tn−1
such that •pi = ti and ti ∈ pi−1

• for i = 0, . . . , n (where i is taken modulo n).
The value at pi of a marking of N can be modified only by firing transition ti, and
transition ti is enabled by a marking m only if m(pi−1) 6= 0. Finally, as none of the
places pi is initial, the initial marking m0 is 0 on each pi: it is now immediately
verified, by induction on the length of a firing sequence, that no reachable marking
enables any of the transitions ti, thus contradicting the assumption that N is quasi-
live.

Thus N is acyclic. In particular, the set of vertices of the graph N is partially

ordered by the relation
∗→.

Let p ∈ P be a place that is not initial: then ∗p ∩ T = ∗(•p) ∩ T by definition of
an occurrence net. Thus it suffices to show that ∗t∩ T is finite for every transition
t.

Observe that if t′ ∈ T and q ∈ P are such that t′ → q → t in N , then t′ = •q
and t can be fired only after t′ was fired. This remark is extended by induction

to show that if t′ is a transition and t′
+→ t, then t′ must be fired before t can be

fired. As an occurrence net is quasi-live, that is, every transition can appear in a
finite sequence of transitions enabled by the initial marking, it follows that the set
of transitions in ∗t is finite. ut

We note the following property of subnets of occurrence nets. A subnet N ′ of
an acyclic net N is a prefix of N if P ′ ∪ T ′ is an order ideal of P ∪ T .

Lemma 3.2. Let N be an occurrence net and let N ′ be a subnet of N . Then N ′

is an occurrence net if and only if N ′ is a prefix of N .

Proof. It is immediate that a prefix of an occurrence net is an occurrence net.
Conversely, suppose that N ′ v N . Then Pre(t) = Pre′(t) for each transition t of
N ′. In particular, if t is a transition of N ′ and p→ t in N , then p ∈ P ′.

If in addition N ′ is an occurrence net, consider a place p of N ′. If t → p in
N , then m0(p) = 0. If t is not in N ′, then •p = ∅ in N ′, so that m′0(p) > 0,
contradicting the equality m0 = m′0. Thus t is in N ′ and N ′ is a prefix of N . ut
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For occurrence nets without spontaneous, non-isolated transitions, the distinc-
tion between safeness and weak safeness vanishes (see Lemma 2.2). Note that this
includes the weakly safe occurrence nets in Engelfriet’s definition [2].

Proposition 3.3. Let N be an occurrence net without spontaneous, non-isolated
transitions. Then N is safe if and only if N is weakly safe. Moreover, in a safe
occurrence net, a non-spontaneous transition may occur at most once in a firing
sequence enabled by the initial marking. Finally, in a safe occurrence net, there can

be no self-conflict: that is, if t, t1, t2 are transitions with t1
+→ t and t2

+→ t, then
t1 = t2 or •t1 ∩ •t2 is empty.

Proof. In view of Lemma 2.2, it suffices to show that if N is weakly safe, then it is
safe. We consider a marking m of N , reached after firing a sequence of transitions
σ = t1t2 . . . tn from the initial marking m0, and we denote by mi the marking
reached after firing t1 · · · ti.

We show that for each place p, there exists 0 ≤ i ≤ j ≤ n + 1 such that
mh(p) = 0 for h < i or h > j and mh(p) = 1 for i ≤ h ≤ j. This shows that m
is a safe marking, and hence that N is safe. Moreover, it shows that if t is not
a spontaneous transition, then t occurs at most once in σ (by considering a place
p ∈ •t). It also shows that, if •t1 ∩ •t2 is not empty, then t1 and t2 may not occur
in the same firing sequence. In particular, the quasi-liveness condition implies that

there is no transition t such that t1
+→ t and t2

+→ t.
The proof is by induction on |∗p ∩ T |, which is finite by Proposition 3.1.
If |∗p ∩ T | = 0, then p is an initial place, so m0(p) = 1 (since m0 is safe). If the

marking of p is not constantly 1, let j be minimal such that mj+1(p) 6= 1. Then
mh(p) = 1 for h ≤ j, Pre(p, tj+1) 6= 0 and mj+1(p) = 0 . Since p is initial, the
marking of p remains 0 for the rest of the sequence.

Now assume that k ≥ 1 and the property holds for all places in whose past there
are at most k − 1 transitions. Let p be such that |∗p ∩ T | = k. Since p is not
initial, we have m0(p) = 0. If the marking of p is not constantly 0, let i be minimal
such that mi(p) 6= 0. Then ti = •p and mi(p) = Post(p, ti) = 1 since N is weakly
safe. Since ti is not isolated, it is also not spontaneous and we consider a place
q ∈ •ti = ••p. Since N is acyclic (Proposition 3.1), ti 6∈ ∗q ⊂ ∗p, so by induction,
we find that mi−1(q) = 1 (since ti is enabled after firing t1 · · · ti−1), mi(q) = 0 and
mh(q) = 0 for all h ≥ i. Therefore ti will never be enabled again (and hence ti 6= th
for h > i) and mh(p) ≤ 1 for all h ≥ i. Further, if the marking of p does not remain
1 for the rest of the sequence, let j be minimal such that j ≥ i and mj+1(p) 6= 1.
This means that Pre(p, tj) 6= 0 and mj+1(p) = 0 (by acyclicity). And since ti = •p
will not be fired again, we have mh(p) = 0 for all h > j. ut

3.2. Configurations. Let N be a Petri net. The multiset of transitions induced
by a finite firable sequence of transitions is called a configuration of N .

It is not true that, even in an occurrence net, a configuration arises from a
unique firable sequence: suppose P = {p1, . . . , p4}, T = {t1, t2}, m0 = p1 + p2,
Pre = (p1, t1)+(p2, t2) and Post = (p3, t1)+(p4, t2). Then t1t2 and t2t1 are distinct
firable sequences yielding the same configuration. More generally, transitions with
disjoint pre-conditions can be fired in any order.

It follows however immediately from the extended firing equation that if two
firable sequences induce the same configuration ϕ, then they both lead to the same
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marking, denoted by Cut(ϕ). Somewhat abusing definitions, we say that Cut(ϕ) is
the marking reached after firing the vector (or the configuration) ϕ.

Configurations of acyclic nets are characterized as follows ([9] for the case of
finite nets).

Proposition 3.4. Let N be a Petri net and let ϕ be a multiset over T . If ϕ is a
configuration, then the support of ϕ is finite and, for each place p ∈ P , we have

(1) m0(p)−
∑
t∈T

Pre(p, t) ·ϕ(t) +
∑
t∈T

Post(p, t) ·ϕ(t) ≥ 0 .

If N is acyclic and ϕ is a finite support multiset over T satisfying Equation (1) for
all places p, then ϕ is a configuration.

Proof. If ϕ is a configuration of the Petri net N , then the support of ϕ is triv-
ially finite, and for each place p, Cut(ϕ)(p) ≥ 0: that is exactly the statement in
Equation (1).

We now assume that N is acyclic, ϕ has finite support and Equation (1) holds
for each place p. We proceed by induction on the value of

∑
t∈T ϕ(t). The empty

multiset is certainly a configuration, since it is the sum of the terms of the empty

sequence of transitions. Now we assume that ϕ 6= 0. The relation
∗→ is a partial

order by assumption, and we consider a transition s maximal in the support of ϕ
and the multiset ψ such that ψ + s = ϕ. Of course, ψ has finite support.

Let mψ(p) = m0(p)−
∑
t∈T Pre(p, t) ·ψ(t) +

∑
t∈T Post(p, t) ·ψ(t). Then Equa-

tion (1) states that

mψ(p)− Pre(p, s) + Post(p, s) ≥ 0 .

We want to show that mψ(p) ≥ 0 for each place p. If Post(p, s) = 0, then mψ(p) ≥
Pre(p, s) ≥ 0. If Post(p, s) 6= 0, then s ∈ •p, and since s is maximal in the support
of ϕ, Pre(p, t) = 0 for each transition t in the support of ϕ. In particular,

mψ(p) = m0(p) +
∑
t∈T

Post(p, t) ·ψ(t) ≥ m0(p) ≥ 0 .

We can now use the induction hypothesis to see that ψ is a configuration – and
hence, mψ = Cut(ψ). We already noticed that if Post(p, s) = 0, then mψ(p) ≥
Pre(p, s). Moreover, if Post(p, s) 6= 0, then Pre(p, s) = 0 by acyclicity and again, we
have mψ(p) ≥ Pre(p, s). Thus the transition s is enabled by the marking Cut(ψ)
and ϕ = ψ + s is a configuration. ut

In view of the specific properties of occurrence nets, Proposition 3.4 yields the
following corollary.

Corollary 3.5. Let N be an occurrence net and let ϕ be a multiset over T . Then
ϕ is a configuration of N if and only if ϕ has finite support and for each place
p ∈ P , we have

m0(p) ≥
∑
t∈T Pre(p, t) ·ϕ(t) if p is an initial place,

Post(p, •p) ·ϕ(•p) ≥
∑
t∈T Pre(p, t) ·ϕ(t) otherwise.

We also verify that, as in the safe case, under a mild assumption, each reachable
marking of an occurrence net is reached after firing a uniquely determined config-
uration – thus generalizing a property of occurrence nets in the classical setting.
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Proposition 3.6. Let N be an occurrence net such that t• 6= ∅ for each transition
t, and let m be a reachable marking. Then there exists a unique configuration ϕ of
N such that m = Cut(ϕ).

Proof. Since m is a reachable marking, it is reached after firing a sequence σ, and
m = Cut(ϕ), where ϕ is the configuration induced by σ. We denote by |ϕ| the
cardinality of the support of ϕ.

We want to show that Cut(ϕ) = Cut(ϕ′) implies ϕ = ϕ′. Without loss of
generality, we may assume that |ϕ| ≥ |ϕ′|. We proceed by induction on |ϕ|. If
|ϕ| = 0, then ϕ and ϕ′ are both equal to the empty configuration and the equality
ϕ = ϕ′ holds.

Let us now consider configurations ϕ and ϕ′ such that ϕ is not empty and
m = Cut(ϕ) = Cut(ϕ′). Let s be a maximal transition in the support of ϕ (using
the acyclicity of occurrence nets). Then the places in s• are in the support of m,
and as these places may receive tokens only from s, s must be also in the multiset
ϕ′. For the same reason, s is maximal in the support of ϕ′. Moreover, for each
place p ∈ s•, m(p) = ϕ(s) = ϕ′(s), so ϕ and ϕ′ contain the same number of
occurrences of s.

Let ψ and ψ′ be the multisets obtained from ϕ and ϕ′ by removing all occur-
rences of s. Corollary 3.5 shows that ψ and ψ′ are configurations as well: indeed, in
the first inequality, the left-hand side remains constant and the right-hand side may
only decrease when going from ϕ to ψ (resp. from ϕ′ to ψ′); the same situation
holds in the second inequality, except for the places p ∈ s•, but for these places,
the right-hand side is zero since s is maximal and N is acyclic.

The maximality of s in the support of ϕ implies that any firing sequence σ which
induces the configuration ϕ can be rearranged in the form σ1σ2 where σ2 consists
of ϕ(s) occurrences of s. In particular, the configuration induced by σ1 is ψ and it
follows from the extended firing equation that

Cut(ψ) = m+ Pre(s) ·ϕ(s)− Post(s) ·ϕ(s).

Similarly, Cut(ψ′) = m+Pre(s)·ϕ′(s)−Post(s)·ϕ′(s) and hence, Cut(ψ) = Cut(ψ′).
We conclude by induction that ψ = ψ′, and since ϕ(s) = ϕ′(s), we have ϕ = ϕ′. ut

Remark 3.7. The same uniqueness result holds (with essentially the same proof)
for any acyclic net such that t• 6= ∅ for each transition t and |•p| ≤ 1 for each place
p.

4. Branching processes and unfoldings of a net

We now discuss the branching processes and the unfoldings of a net [2], within the
framework developped in this paper. As with occurrence nets, we need to revisit the
classical definition of a branching process: our definition makes no reference to the
notion of conflict, and accounts for the fact that a condition may receive several
tokens and an event may occur several times. Bowing to tradition, occurrence
nets in branching processes will be usually written S = (B,E, In,Out, q0), their
transitions will be called events and their places will be called conditions.

4.1. Branching processes. A branching process of a net N is a pair (S, h) con-
sisting of an occurrence net S = (B,E, In,Out, q0) and a homomorphism h : S → N
satisfying a guarded form of injectivity: whenever e and e′ are events of S,

if In(e) = In(e′) and h(e) = h(e′) then e = e′ .
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N

S S′
g

h h′

Figure 3. g : (S, h)→ (S′, h′) is a homomorphism of branching processes

The branching process (S, h) is called safe (resp. weakly safe) if S is safe (resp.
weakly safe).

We introduce a new property of branching processes. We say that (S, h) is true
if h is injective on q0, the support of the initial marking of S, and on the post-set
e• of each event e of S.

Example 4.1. The net presented in Figure 2 is an occurrence net. With the
homomorphism shown in the figure, it constitutes a true branching process of the
net from Example 2.1.

Let (S, h) and (S′, h′) be branching processes of N and let g : S → S′ be a
homomorphism of nets. We say that g is a homomorphism of branching processes if
h = h′ ◦g, see Figure 3, and we write g : (S, h)→ (S′, h′). We will use the following
technical properties of homomorphisms of branching processes.

Lemma 4.2. Let S and S′ be occurrence nets, h : S → N , h′ : S′ → N and g : S →
S′ be homomorphisms such that h = h′ ◦ g and assume that (S′, h′) is a branching
process of N .

(1) (S, h) is a branching process of N if and only if (S, g) is a branching process
of S′.

(2) If (S′, h′) is true, then (S, h) is a true branching process of N if and only
if (S, g) is a true branching process of S′.

(3) If (S′, h′) is true, then g is the only net homomorphism from S to S′.
(4) If (S, h) and (S′, h′) are true branching processes, then g is injective.

Proof. Let S = (B,E, In,Out, q0), S′ = (B′, E′, In′,Out′, q′0) and let e, e′ be events
of S such that In(e) = In(e′). We first assume that (S, h) is a branching process
of N and that g(e) = g(e′). Then h(e) = h′(g(e)) and h(e′) = h′(g(e′)) are equal:
as (S, h) is a branching process, it follows that e = e′. Thus (S, g) is a branching
process.

Conversely, suppose that (S, g) is a branching process and h(e) = h(e′). Since g
is a homomorphism, we have In′(g(e)) = g(In(e)) and In′(g(e′)) = g(In(e′)), so that
In′(g(e)) = In′(g(e′)). Moreover, h′(g(e)) = h(e) = h(e′) = h′(g(e′)): since (S′, h′)
is a branching process, we have g(e) = g(e′), and since (S, g) is a branching process
as well, we have e = e′, which concludes the proof of Property (1).

The verification of the preservation of true branching processes, that is, of Prop-
erty (2), is analogous.

We now turn to Property (3) and we assume that (S′, h′) is true. If b ∈ q0,

then h(b) = h′(g(b)) = h′(g′(b)) with g(b), g′(b) ∈ q′0, and since h′ is injective on

q′0, we have g(b) = g′(b). Thus g and g′ coincide on q0, a prefix of S. Let I be a
maximal prefix of S on which g and g′ coincide (the existence of such a prefix is
ensured either by an application of Zorn’s lemma) and let e be an event of S \ I.
Since e has finitely many transitions in its past (Proposition 3.1), we may choose e
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such that •e ⊆ I. Then In′(g(e)) = g(In(e)) = g′(In(e)) = In′(g′(e)). We also have
h′(g(e)) = h(e) = h′(g′(e)), and hence g(e) = g′(e) since (S′, h′) is a branching
process. Moreover, if b ∈ e•, then h′(g(b)) = h(b) = h′(g′(b)), and since h′ is
injective on g(e)

•
, we have g(b) = g′(b). Thus g and g′ coincide on the prefix

I ∪ {e} ∪ e• of S, a contradiction. Therefore I = S, that is, g = g′.
Finally, we verify Property (4), assuming that both (S, h) and (S′, h′) are true

branching processes. Let b1 ∈ q0. Then g(b1) ∈ q′0. If b2 is a condition of S such
that g(b2) = g(b1), then b2 ∈ q0: if it is not the case, then S has an event e = •b2
and g(b1) = g(b2) ∈ g(e)

•
, a contradiction. By Property (2), (S, g) is true, so g is

injective on q0 and hence b1 = b2.
As in the verification of Property (3), let I be a maximal prefix of S such that

g−1(g(x)) for every x ∈ I. Let e be an event of S \ I, which we may choose
such that •e ⊆ I. Then there exists an event e′ such that g(e) = g(e′). Since
In′(g(e)) = g(In(e)) = g(In(e′)), the hypothesis on I implies that In(e) = In(e′).
Since (S, g) is a branching process of S′ (by Property (1)), it follows that e = e′.

Moreover, let b ∈ e• and let b′ be a condition such that g(b) = g(b′). Then b′ 6∈ q′0
(by the argument developed above). In particular, we have g(•b′) = g(•b) = g(e)
and, as we just saw, it follows that •b′ = e. But g is injective on e•, which contains
both b and b′, so b = b′. The consideration of the prefix I ∪{e}∪ e• contradicts the
maximality of I, and therefore g is injective on S. ut

4.2. Unfoldings of a net. We extend the natural partial order on the subnets
of a net to branching processes to the following quasi-order (see [2]): we say that
(S, h) � (S′, h′) if there exists an injective homomorphism of branching processes
from (S, h) to (S′, h′). In view of Lemma 3.2, this is equivalent to stating that
(S, h) is isomorphic to a prefix of (S′, h′).

A �-maximal branching process of N is called an unfolding of N . The following
characterization of unfoldings plays a major rôle in the sequel. We say that a
marking v of a net is covered if there exists a reachable marking m such that
v ≤ m.

Proposition 4.3. A branching process (S, h) of a net N is an unfolding if and
only if the following property holds:

(†) if t is a transition of N such that Pre(t) = h(v) for some marking
v covered in S, then there exists an event e of S such that h(e) = t and
In(e) = v.

Proof. Let us first assume that (S, h) satisfies Property (†) and let (S′, h′) be a
branching processes of N such that (S, h) � (S′, h′). We want to show that (S, h)
and (S′, h′) are isomorphic. Without loss of generality, we may assume that (S, h)
is a prefix of (S′, h′), that is, S v S′, and we show that S = S′.

We first verify that if S and S′ contain the same events, then they also contain
the same conditions, and hence they are equal. Indeed, the assumption that S v S′
implies that S and S′ have the same initial conditions and that, for each event e
of S, S contains all the conditions of S′ which are in •e or e•; finally the definition
of occurrence nets implies that all the conditions of S′ are either initial or in the
postset of an event.

Thus if S 6= S′, there is an event e′ of S′ not in S. In the acyclic net S′, we can
choose e′ to be ≤-minimal (by Proposition 3.1).
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Since S′ is quasi-live, there exists a firable sequence of events σ such that the
sequence σe′ is firable; in addition, σ can be assumed to consist only of events that
are ≤-less than e′ (by Lemma 2.3). By minimality of e′, σ is also a firable sequence
of S and in particular, the conditions in In′(e′) are in S. If v is the marking reached
after the firing of σ in S′, m′0 [σ〉 v, then the support of v is in S by definition of
subnets, so that m0 [σ〉 v in S as well.

Now, Pre(h′(e′)) = h′(In′(e′)) and In′(e′) is covered by the marking v, which is
reachable in S. By Property (†), there exists an event e of S such that h(e) = h′(e′)
and In(e) = In′(e′). But h is a restriction of h′, so h′(e) = h′(e′) and, by definition
of a branching process, we get e = e′, a contradiction. Thus, if (S, h) satisfies
Property (†), then (S, h) is �-maximal among the branching processes of N , that
is, (S, h) is an unfolding of N .

Conversely, let us assume that (S, h) does not satisfy Property (†), that is, there
exists a transition t of N which does not lie in h(S), such that Pre(t) = h(v) for
some marking v of S, which is covered in S. Then there exists a firable sequence of
S, σ, such that v ≤ Cut(σ). Let us construct a new net S′ by adding to S one new
event, say e, and a set Q of new conditions, equipped with a bijection θ onto the
support of Post(t). We let Out′(e) =

∑
q∈Q Post(θ(q), t)q, In′(e) = v, and for each

event f of S, In′(f) = In(f) and Out′(f) = Out(f). We also consider the extension
h′ of the homomorphism h given by h′(e) = t and h′(q) = θ(q) for each q ∈ Q. In
order to conclude, we need to verify that (S′, h′) is a branching process of N and
h is the restriction of h′ to S, which is immediate. This shows that (S, h) is not
�-maximal, and hence not an unfolding. ut

We note the following applications of Proposition 4.3, which express important
properties of unfoldings. The first one states that unfoldings simulate all the firable
sequences of a net, the second one deals with homomorphisms between unfoldings,
and the last one considers unfoldings of unfoldings.

Corollary 4.4. Let (S, h) be an unfolding of the net N . If σ is a firable sequence
of N , then there exists a firable sequence ρ of S such that h(ρ) = σ.

Proof. Let N = (P, T,Pre,Post,m0) and S = (B,E, In,Out, q0). We first observe
the following elementary fact: let m be a multiset over P and v be a multiset over
B such that m ≤ h(v). Then there exists a multiset v′ over B such that m = h(v′)
and v′ ≤ v. Indeed, for each p ∈ P , we have m(p) ≤ h(v)(p) =

∑
b∈B, h(b)=p v(b):

one can choose, for each b ∈ B such that h(b) = p, a value 0 ≤ v′(b) ≤ v(p) such
that m(p) =

∑
b∈B, h(b)=p v

′(b).

We now proceed by induction on the length n of σ. If n = 0, the statement is
trivially true. We now assume that σ = σ′t and we let w be the marking such that
m0 [σ′〉 w. Since σ is firable, Pre(t) ≤ w. And by induction hypothesis, there exists
a firable sequence ρ′ of S such that h(ρ′) = σ′. In particular, if q0 [ρ′〉 v, we have
w = h(v) and hence Pre(t) ≤ h(v). As verified above, it follows that Pre(t) = h(v′)
for some multiset v′ ≤ v. In particular, v′ is covered in S and by Proposition 4.3,
there exists an event e of S such that h(e) = t and In(e) = v′. Therefore, the event
e is enabled by the marking v and hence the sequence ρ = ρ′e is firable, which
concludes the proof. ut
Corollary 4.5. Every homomorphism between unfoldings of a net is surjective.

Proof. Let g : (S, h) → (S′, h′) be a homomorphism between two unfoldings of a
net N . Since S′ is quasi-live, every event occurs in a firing sequence enabled by its
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initial marking. So in order to establish that g is surjective on events, it suffices to
show that for each such firing sequence σ′, S has a firing sequence σ, enabled by its
initial marking, and such that g(σ) = σ′. We proceed by induction on the length
of σ′.

If σ′ is the empty sequence, it suffices to take σ equal to the empty sequence.
Suppose now that σ′ = τ ′e′, and let m′ be the marking reached after firing τ ′. In
particular, v′ = In(e′) is covered by m′. By induction, there exists a firing sequence
τ in S such that g(τ) = τ ′: the marking reached after firing τ is m = g(m′). Then
there exists a marking v of S such that g(v) = v′ and v is covered by m.

Moreover Pre(h′(e′)) = h′(v′) = h(v) and Proposition 4.3 shows that there exists
an event e in S such that h(e) = h′(e′) and In(e) = v. Then In(g(e)) = g(v) = In(e′)
and h′(e′) = h′(g(e)): by definition of a branching process, g(e) = e′.

Thus g is surjective on events, and therefore also on the set of non-isolated
conditions. In occurrence nets, the only isolated places are in the support of the
initial marking, and every homomorphism is surjective on that set. This concludes
the proof. ut

Corollary 4.6. If (S, h) is an unfolding of a net N and (S′, g) is an unfolding of
S, then (S′, h ◦ g) is an unfolding of N .

Proof. By Proposition 4.3, it suffices to show that if t is a transition of N and
Pre(t) = h ◦ g(v′) for a marking v′ that is covered in S′, then there exists an event
e′ of S′ such that h ◦ g(e′) = t and In(e′) = v′. Then g(v′) is covered in S, so there
exists an event e of S such that h(e) = t and In(e) = g(v′) (by Proposition 4.3,
since (S, h) is an unfolding). And since (S′, g) is an unfolding of S, there exists an
event e′ of S′ such that g(e′) = e and In(e′) = v′ (Proposition 4.3 again). Then
h ◦ g(e′) = t, which concludes the proof. ut

4.3. Quasi-order on branching processes and isomorphism. In this section,
we investigate the equivalence relation induced by the quasi-order �. We show that
�-equivalent unfoldings of a net N are isomorphic. We need an additional (but
reasonable) hypothesis to establish the same result for all the branching processes
of N .

Proposition 4.7. If (S, h) and (S′, h′) are unfoldings of a net N and if (S, h) �
(S′, h′), then (S, h) and (S′, h′) are isomorphic.

Proof. By definition, there exists an injective homomorphism g : (S, h)→ (S′, h′).
By Corollary 4.5, g is surjective. Therefore g is an isomorphism. ut

We say that a net has finite preconditions if the multisets Pre(t) (for every transi-
tion t) have finite support. We show in Corollary 4.11 that, under this assumption,
�-equivalent branching processes are isomorphic. We first record several technical
results, the first of which is immediate from the definition.

Lemma 4.8. Let h : N → N ′ be a homomorphism of nets. If N ′ has finite precon-
ditions, then so does N . The converse holds if h is onto.

Proposition 4.9. Let (S, h) and (S′, h′) be branching processes of a net N with
finite preconditions. If S contains finitely many events and (S, h) � (S′, h′), then
(S′, h′) has only a finite number of prefixes that are isomorphic to (S, h).

Proof. We may assume without loss of generality that (S, h) is actually a prefix
of (S′, h′). We proceed by induction on the cardinality of the set of events in S. If
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S contains no events, then S must be the unique eventless prefix of S′, namely the
support of the initial marking.

Now suppose that S has at least one event, let e be a maximal event in S and let
Se be the prefix of S obtained by removing e and e• from S. By induction, S′ has a
finite collection of prefixes that are isomorphic to Se. Let (S′′, h′′) be such a prefix:
it suffices to show that (S′′, h′′) can be extended in only finitely many ways to a
prefix isomorphic to (S, h). Such an extension is determined by the addition of an
event e′ of S′ such that the support of In′(e′) is contained in S′′ and h′(e′) = h(e).
For each condition b in the support of In(e), we have seen (Lemma 2.4 (2)) that
h−1(h(b)) is finite. Since In(e) has finite support, there are only finitely many sets
of places in S′′ which can occur in the support of In′(e′), and we conclude using the
guarded injectivity in the definition of a branching process. ut

Example 4.10. A counter-example to the statement of Proposition 4.9 when the
net does not have finite preconditions is as follows. Let N be the net with places
p1, p2, . . ., each initially marked with 2 tokens, and a single transition t with Pre(t) =∑
i≥1 1·pi. Let (S′, h′) be the branching process of N with conditions {b(i, 1), b(i, 2) |

i ≥ 1}, all of them initially marked 1, with h′(b(i, 1)) = h′(b(i, 2)) = pi; the events of
S′ are the (uncountably many) eX , where X = (X(i))i≥1 is a sequence with values
in {1, 2}, and In′(eX) =

∑
i≥1 1 · b(i,X(i)). If Y is the sequence constantly equal to

1 and S contains the conditions of S′ and the single event eY , then (S, h) v (S′, h′)
and a branching process of N , which is isomorphic to uncountably many prefixes of
(S′, h′), namely all the prefixes containing all the conditions and a single event.

The following corollary extends the result of Proposition 4.7.

Corollary 4.11. Let (S, h) and (S′, h′) be branching processes of a net N with finite
preconditions. If (S, h) � (S′, h′) and (S′, h′) � (S, h), then (S, h) and (S′, h′) are
isomorphic.

Proof. Again, we may assume that (S, h) is a prefix of (S′, h′). In addition, there
exists an injective homomorphism g : (S′, h′) → (S, h). We want to show that g
is an isomorphism, that is, g is onto. Let e be an event in S and let Se be the
least prefix of S containing e. Note that Se contains finitely many events (namely
the transitions in the past of e). By the first statement, there are finitely many
prefixes of S′ that are isomorphic to Se, and therefore the injective homomorphism
g induces a permutation of these prefixes. In particular, Se = g(S′e) for one such
prefix S′e and hence e ∈ g(S′). ut

5. True unfolding and weakly safe unfolding of a net

The main results of this section, Theorems 5.2 and 5.6, show the existence and
the unicity (up to isomorphism) of true and weakly safe unfoldings.

5.1. The true case. We first record a crucial property of true unfoldings.

Proposition 5.1. Let (S, h) be a branching process of a net N and let (S′, h′) be a
true unfolding of N . Then there exists a unique homomorphism g : (S, h)→ (S′, h′).

Proof. We first establish the result when S has finitely many events, proceeding by
induction on the number of events in S. If S has no event, S coincides with its set
of initial conditions, which is mapped by h to the support of m0. And by definition



BRANCHING PROCESSES OF GENERAL PETRI NETS 17

of true branching processes, h′ establishes a bijection between the supports of q′0
and m0: the announced homomorphism is thus uniquely determined.

Let us now assume that S contains some events, and let e be a maximal event
of S. Let Se be the prefix of S obtained by removing e and e•. In particular
the support of In(e) is contained in Se, and the marking In(e) is covered by a
reachable marking of Se (since S is quasi-live). By induction, there exists a ho-
momorphism g : (Se, h) → (S′, h′). Moreover, by Proposition 4.3, there exists an
event e′ of S′ such that h′(e′) = h(e) and In(e′) = g(In(e)). We can now extend
the homomorphism g to S by letting g(e) = e′ and, for each condition b ∈ e•,

g(b) = h′
−1

(h(b)) ∩ e′• (which is well defined since the true unfolding (S′, h′) es-
tablishes a bijection between e′

•
and h(e)

•
).

Now let (S, h) be an arbitrary branching process. For each element x of S,
event or condition, let Sx be the least prefix of S containing x. Then Sx contains
finitely many events (Proposition 3.1) and hence, there exists a homomorphism
gx : (Sx, h) → (S′, h′), and we let g(x) = gx(x). In order to show that g is a
homomorphism, it suffices to show that the restriction of g to Sx is exactly gx, for
every x. Let then y be an element of Sx. We have Sy v Sx and two homomorphisms
are defined from (Sy, h) to (S′, h′), namely gy and the restriction of gx to Sy.
Lemma 4.2 (3) guarantees that these two homomorphisms coincide, which concludes
the verification that g is a homomorphism.

Lemma 4.2 (3) again establishes the uniqueness of g. ut
We can now state and prove the following theorem.

Theorem 5.2. Every net N has a true unfolding Btrue, which is unique up to
isomorphism. In addition, every branching process (S, h) of N admits a homomor-
phism to Btrue, and every true branching process satisfies (S, h) � Btrue.

Proof. Let N = (P, T,Pre,Post,m0). We first consider the net S0, whose condition
set is m0, with initial marking m0, and without any event. Then S0 is an occurrence
net and if h0 is the identity map on m0, then (S0, h0) is a true branching process
of N .

Suppose that we have constructed a sequence (Si, hi)i≤n of true branching pro-
cesses, such that (Si, hi) v (Sj , hj) whenever i < j. By definition, Si is a subnet
(and a prefix) of Sj and hi is the restriction to Si of hj . A new net Sn+1 is
constructed from Sn as follows.

For each transition t of N and for each marking v of Sn, covered in Sn, such that
Pre(t) = hn(v), and such that Sn has no event e with hn(e) = t and Inn(e) = v,
we add to Sn a new event e, and a set of new conditions Q, equipped with a
bijection θ onto the support of Post(t) (e and the set Q depend on the choice of
t and v). Then we extend the mappings Inn and Outn by letting Inn+1(e) = v
and Outn+1(e) =

∑
q∈Q Post(θ(q), t)q for each new event. We also extend hn by

letting hn+1(e) = t for each new event e, and hn+1(q) = θ(q) for each new condition
q. It is immediate that the resulting net Sn+1 is an occurrence net, that the pair
(Sn+1, hn+1) is a true branching process of N , and that (Sn, hn) v (Sn+1, hn+1).

Note that Sn+1 may not be defined (if no pair (t, v) as above can be identified
in Sn), in which case the sequence (Si, hi)i is finite. In general however, this is
an infinite increasing sequence of true branching processes of N . In any case,
let Btrue = (B,E, In,Out, q0) be the union of the Si, that is, B =

⋃
i∈I Bi and

E =
⋃
i∈I Ei, with In(e) = Ini(e) and Out(e) = Outi(e) if e ∈ Ei. The mappings
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htrue : B → P and htrue : E → T are defined similarly, by letting htrue(x) = hi(x)
whenever x occurs in Si. Again, it is easily verified that (Btrue, htrue) is a true
branching process of N . We now verify that it is an unfolding, using Condition (†)
in Proposition 4.3.

Let t be a transition of N such that Pre(t) = htrue(v) for some marking v covered
in Btrue. Then v is covered in some Sn and Pre(t) = hn(v). By construction, there
exists an event e in Sn or in Sn+1 such that hn+1(e) = t and Inn+1(e) = v. In
particular htrue(e) = t and In(e) = v, so Condition (†) holds and (Btrue, htrue) is an
unfolding.

Let now (S, h) be a branching process of N . By Proposition 5.1, there exists a
homomorphism g : (S, h)→ Btrue. If (S, h) is true, then g is injective by Lemma 4.2,
that is, (S, h) � Btrue. Finally, if (S, h) is another true unfolding, we conclude by
Proposition 4.7. ut

Theorem 5.2 and Lemma 4.2 (3) and (4) imply the following illuminating obser-
vation.

Corollary 5.3. Each true branching process of a net N is isomorphic to a single
prefix of the true unfolding of N .

Corollary 5.3 shows the following, more detailed order-theoretic result.

Proposition 5.4. The set of true branching processes of a net N forms a complete
lattice.

Proof. Let (Si, hi)i∈I be a family of true branching processes of N . By Corol-
lary 5.3, each Si can be identified with a subnet (and hence a prefix, Lemma 3.2)
of Btrue. The announced result now follows from the fact that prefixes of a net, and
ultimately ideals of an ordered set, form a complete lattice. ut

5.2. The weakly safe case. We get a result analogous to Theorem 5.2 on the exis-
tence of a weakly safe unfolding, but the order-theoretic properties of safe branching
processes are less strong than for true branching processes.

Proposition 5.5. Let (S, h) be a weakly safe branching process of a net N and let
(S′, h′) be a weakly safe unfolding of N . Then (S, h) � (S′, h′).

Proof. Let Sn be the least prefix of S containing the events with at most n transi-
tions in their past. Then Sn v Sn+1 and S is the union of the Sn by Proposition 3.1.
S0 coincides with q0, the initial conditions of S, which is mapped by h to m0.

Similarly, h′ maps the initial conditions q′0 of S′ to m0: thus, for every initial place

p of N , h−1(p) and h′
−1

(p) have the same number of elements, namely m0(p), and
one can define accordingly an injective homomorphism g : (S0, h)→ (S′, h′).

Let us now assume that g : (Sn−1, h) → (S′, h′) is an injective homomorphism
and let e be an event of Sn not in Sn−1. Then the support of In(e) is contained in
Sn−1 and the marking v = In(e) is covered by a reachable marking of Sn−1 (since S
is quasi-live). Since Pre(h(e)) = h(v) = h′(g(v)), Proposition 4.3 shows that there
exists an event e′ of S′ such that h′(e′) = h(e) and In(e′) = g(v). This event is
unique, by definition of a branching process and we let g(e) = e′.

Now h (resp. h′) maps e• (resp. e′
•
) to h(e)

•
. For each place p in h(e)

•
, the

sets h−1(p) ∩ e• and h′
−1

(p) ∩ e′• have the same cardinality, namely Post(p, h(e))
(since S and S′ are weakly safe), and g can be extended accordingly to an injective
homomorphism from (Sn, h) to (S′, h′).
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Since S is the union of the Sn (Proposition 3.1), this establishes the existence of
an injective homomorphism from (S, h) to (S′, h′), and hence (S, h) � (S′, h′). ut

Theorem 5.6. Every net N has a weakly safe unfolding Bw.safe which is unique
up to isomorphism. In addition, every weakly safe branching process (S, h) satisfies
(S, h) � Bw.safe.

Proof. The proof of the existence of a weakly safe unfolding follows the same line
as that of Theorem 5.2, and we only indicate the differences. As in the proof of
Theorem 5.2, the net S0 has no event, and only initial conditions ; but its condition
set is defined by splitting each initial place of N according to its initial marking.
More precisely, S0 consists of a disjoint union

⋃
p∈m0

Bp where each set Bp consists

of m0(p) elements, each with an initial marking equal to 1. The map h0 sends each
condition in Bp to p: thus (S0, h0) is a weakly safe branching process of N .

Again, we assume that we have constructed a finite sequence of weakly safe
branching processes (Si, hi)i≤n, where (Si, hi) v (Sj , hj) for each i < j. If t and
v are a transition of N and a marking of Sn as in the proof of Theorem 5.2, we
construct (Sn+1, hn+1) from (Sn, hn) as in that proof, with the following difference:
the set Q of new conditions added to Sn in relation with the pair (t, v) is the
disjoint union

⋃
p∈Post(t)Q

p of sets such that Qp has Post(t, p) elements. Then

Outn+1(e) =
∑
p∈Post(t)

∑
q∈Qp q, and hn+1 maps each condition in Qp to the place

p.
It is immediately verified that (Sn+1, hn+1) is a weakly safe branching process

of N . Now, if (Bw.safe, hw.safe) is defined as in the proof of Theorem 5.2, as the
inductive limit of the increasing sequence of branching processes (Sn, hn), then
(Bw.safe, hw.safe) is a weakly safe unfolding of N .

Now let (S, h) be a weakly safe branching process of N . Proposition 5.5 shows
that (S, h) � Bw.safe. If in addition (S, h) is an unfolding, we conclude that (S, h)
and Bw.safe are isomorphic by Proposition 4.7. ut

However, a safe branching process of N cannot be identified unequivocally with a
prefix of Bw.safe, and we don’t have an analogue of Proposition 5.4 for safe branching
processes. This is illustrated in the following example.

Example 5.7. Consider the net N represented in Figure 4. The nets β1, . . . , β4
represented in Figure 5 are safe branching processes of N . Moreover, it is easy to
verify that both β3 and β4 are v-less than β1 and β2, and that both are maximal
with this property: thus β1 and β2 do not admit a greatest lower bound. Similarly,
Figure 6 shows safe branching processes β1 and β2, and distinct branching processes
β3 and β4 which are minimal among the common upper bounds of β1 and β2. Thus
β1 and β2 do not admit a least upper bound.

It is interesting to observe (compare with Corollary 5.3) that in both cases, both
β1 and β2 are isomorphic to two distinct subnets of the safe unfolding of N , repre-
sented in Figure 7.

5.3. Comparing unfoldings. Let us write (S, h) =⇒ (S′, h′) if (S, h) and (S′, h′)
are unfoldings of a net N and there exists a homomorphism g : (S′, h′) → (S, h).
(This is equivalent to (S, g) being a branching process of S′ by Lemma 4.2 (1).)
Note that g is not required to be injective, but it is surjective by Corollary 4.5. The
relation =⇒ is a quasi-order on the set of unfoldings of N and we shall verify that
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A

a

B C

b1 b2 c1 c2

Figure 4. The net N

β1 A A

a a

B C B C

b1 c1 b2 c2

β2 A A

a a

B C B C

b1 c2 b2 c1

β3 A A

a a

B C B C

b1 b2

β4 A A

a a

B C B C

c2 c1

Figure 5. Weakly safe branching processes may not have an inf

β1 A A

a a

B C B C

b1 b2

β2 A A

a

B C

c1

β3 A A

a a

B C B C

b1 c1 b2

β4 A A

a a

B C B C

b1 b2 c1

Figure 6. Weakly safe branching processes may not have a sup

A A

a a

B C B C

b1 b2 c1 c2 b1 b2 c1 c2

Figure 7. The weakly safe unfolding of N

the true unfolding and the weakly safe unfolding of a net N sit at extreme positions
with respect to this order.

First we show that =⇒-equivalent unfoldings are isomorphic.
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Lemma 5.8. Let (S, h) be a branching process of a net N and let g : (S, h)→ (S, h)
be a homomorphism. Then g is injective on every prefix of S with a finite number
of events.

Proof. Let S′ be a prefix of S with finitely many events, and let b be a condition
of S′. Then g induces a surjective mapping from the set of elements of h−1(h(b)) in
S′, to the set of elements of h−1(h(b)) in g(S′). Since S is an occurrence net (and
therefore has no non-initally marked, isolated place), the set h−1(h(b)) has finitely
many elements in S′ by Lemma 2.4 (2). So g actually induces a bijection on the
subset of h−1(h(b)) in S′. This implies that the restriction of g to S′ is injective
on conditions: indeed, if g(b) = g(c), then h(b) = h(g(b)) = h(g(c)) = h(c), that is,
c ∈ h−1(h(b)).

Let now e and f be events in S′ such that g(e) = g(f). Then h(e) = h(f) and
g(In(e)) = g(In(f)). The last equality implies that In(e) = In(f), and the guarded
injectivity in the definition of branching processes then guarantees that e = f . This
concludes the proof. ut

Proposition 5.9. Let (S, h) and (S′, h′) be unfoldings of a net N such that (S, h) =⇒
(S′, h′) =⇒ (S, h). Then (S, h) and (S′, h′) are isomorphic.

Proof. Let g : (S, h)→ (S′, h′) and g′ : (S′, h)→ (S, h) be homomorphisms. Then
g is surjective by Corollary 4.5. Let now x, y be elements of S, events or conditions,
such that g(x) = g(y). Let S′′ be a prefix of S containing x and y, with finitely
many events: such a prefix exists by Proposition 3.1. Then g′ ◦ g is injective on
S′′ by Lemma 5.8, and hence g is injective on S′′: it follows that x = y. S to
g(S) = S′. ut

Theorem 5.10. The true unfolding of a net is its unique =⇒-minimal unfolding
(up to isomorphism).

Proof. By Theorem 5.2, every unfolding (S, h) of N admits a homomorphism
g′ : (S, h)→ Btrue, that is, Btrue =⇒ (S, h). If (S, h) =⇒ Btrue, that is, if there exists
a homomorphism g′ : Btrue → (S, h), then g ◦ g′ is a homomorphism from Btrue to
Btrue and Lemma 4.2 (3) shows that g ◦ g′ is the identity of Btrue and hence, Btrue
and (S, h) are isomorphic. ut

Theorem 5.11. The weakly safe unfolding of a net is its unique =⇒-maximal
unfolding (up to isomorphism).

Proof. If (S, h) is an unfolding of N and (S′, g) is a weakly safe unfolding of
S, then (S′, h ◦ g) is a weakly safe unfolding of N by Corollary 4.6 and hence,
(S′, h ◦ g) is isomorphic to Bw.safe (Theorem 5.6). Moreover, g : (S′, h ◦ g)→ (S, h)
is a homomorphism, so we have (S, h) =⇒ Bw.safe.

Now if Bw.safe =⇒ (S, h), there exists a surjective homomorphism from (S, h) to
Bw.safe, and this implies that (S, h) is weakly safe. Therefore (S, h) is isomorphic to
Bw.safe. ut

6. Processes and their properties

The notion of process of a net is developped in the literature [10, 2], but it is
limited to the case of safe processes. Here we extend the notion, in such a way that
the usual processes are what we call here safe processes.



22 J.-M. COUVREUR, D. POITRENAUD AND P. WEIL

By definition, a process of a net N is a triple π = (S, h,ϕ) such that (S, h) is a
branching process of N , and ϕ is a configuration of S which covers all its events
(that is, every event of S is in the support of ϕ). We say that a process π = (S, h,ϕ)
is true (resp. safe, weakly safe) if the underlying branching process (S, h) is true
(resp. safe, weakly safe). Moreover, if (S′, h′) is a branching process of N such that
(S, h) � (S′, h′), we say that π is a process of the branching process (S′, h′).

Finally, we extend the quasi-order on branching processes of N , to its processes.
If π1 = (S1, h1,ϕ1) and π2 = (S2, h2,ϕ2) are processes of a net N , we say that
π1 is smaller than π2, written π1 � π2, if there exists an injective homomorphism
g : (S1, h1)→ (S2, h2) with g(ϕ1) ≤ ϕ2.

6.1. True processes. The above definitions, together with Theorems 5.2 and 5.6,
yield immediately the following result.

Proposition 6.1. Every true (resp. weakly safe) process of a net N is a process
of the true (resp. weakly safe) unfolding of N .

Proposition 6.1 then leads to the following characterization of the true unfolding
of a net.

Proposition 6.2. Let (S, h) be a branching process of a net N . If every true
process of N is a process of (S, h), then (S, h) is isomorphic to the true unfolding
of N .

Proof. We first assume that (S, h) is true. If (S′, h′,ϕ) is a true process of N , then
(S′, h′) is isomorphic to a uniquely determined prefix of (S, h) by Proposition 5.1.

We apply this fact to the prefixes of Btrue: let e be an event of Btrue. Since Btrue is
quasi-live, e occurs in a configuration ϕ of Btrue. Let Se be the least prefix of Btrue
containing the events in the support of ϕ, and let he be the restriction of htrue to Se.
Then the process (Se, he,ϕ) is a true process of N . Therefore (Se, he) is isomorphic
to a single prefix of (S, h), and we let ge : (Se, he) → (S, h) be the corresponding
injective homomorphism. In particular, if e and f are events of Btrue, then ge and gf
coincide on the intersection of Se and Sf . Therefore the injective homomorphisms
ge (when e runs over all the events of Btrue) induce an injective homomorphism
g : Btrue → (S, h), that is, Btrue � (S, h). It follows from Theorem 5.2 that (S, h) is
isomorphic to Btrue.

In the general case, where (S, h) is not assumed to be true, let R be the subnet
of S consisting of the initial conditions, of the events e such that, for each event
f ≤ e, h is injective on f•, and of the pre- and post-conditions of these events. It
is immediate that R is a prefix of S and therefore an occurrence net (Lemma 3.2).
If k is the restriction of h to R then (R, k) v (S, h). Moreover, (R, k) is a true
branching process by construction, and every true process of (S, h) is in fact a
true process of (R, k). It follows from the first part of the proof that (R, k) is
isomorphic to Btrue, and since Btrue is �-maximal, (S, h) is isomorphic to Btrue as
well (Proposition 4.7). ut

We can also show that true processes have valuable order-theoretic properties
with respect to the �-order.

Proposition 6.3. Any family of true processes of a net N admits a greatest lower
bound. If a family of true processes of N admits a common upper bound, then it
has a least upper bound.
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A F

B G
C D E

Figure 8. The net N

Proof. Let (πi)i∈I be a family of true processes of N , with πi = (Si, hi,ϕi) for
each i. Each (Si, hi) can be viewed in an unambiguous fashion as a prefix of
Btrue (Corollary 5.3), and hence ϕi can be viewed as a configuration of Btrue. Let
ϕ = miniϕi, that is, ϕ =

∑
e mini ϕi(e) · e, where the sum runs over all the events

of Btrue. Let S be the subnet of Btrue consisting of the initial conditions, the events
occurring in ϕ and their pre- and post-conditions. It is easily verified that S is a
prefix of Btrue, and if h is the restriction of (any) hi to S, (S, h) is a true branching
process of N . It is also clear that (S, h) v (Si, hi) and ϕ ≤ ϕi for each i. We want
to show that (S, h,ϕ) = mini πi, and for this purpose, it suffices to establish that
ϕ is a configuration. We use the characterization given in Corollary 3.5.

First it is immediate that ϕ has finite support, since each ϕi does. Moreover,
the fact that each ϕi satisfies the inequalities in Corollary 3.5 easily implies that ϕ
does as well. Thus ϕ is a configuration and (S, h,ϕ) = mini πi.

The statement concerning upper bounds follows immediately: if the set U of
upper bounds of (πi)i∈I is non-empty, we claim that inf U is the least upper bound
of the (πi)i∈I . To justify this claim, it suffices to verify that inf U is indeed an
upper bound, that is, inf U ∈ U . This is readily verified, using the description of
inf U in the first part of the proof, and the fact that the configurations we consider
are finite support vectors with positive integer coefficients. ut

Remark 6.4. Let (πi)i∈I be a family of true processes of a net N as in Proposi-
tion 6.3. It is not difficult to verify that this family does not have an upper bound if it
takes infinitely many values. Now consider the net N in Figure 4, and consider the
true processes determined by the configurations a+b1, a+b2 and a+c1. Any two of
these processes have a least upper bound: for instance sup(a+b1, a+b2) = 2a+b1+b2.
Note in particular that the sup of these configurations taken as multisets, a+b1+b2,
is not a configuration. Moreover, the three processes taken together do not admit a
common upper bound.

6.2. Weakly safe processes. In this section, we verify that weakly safe processes
do not have the good order-theoretic properties enjoyed by true processes, described
in Propositions 6.2 and 6.3.

Consider the net N represented in Figure 8. Figure 9 shows all the �-maximal
weakly safe processes of N (up to isomorphism): there are 4 of them.

Moreover, Figure 10 shows two distinct weakly safe branching processes of N ,
both of which contain all the maximal weakly safe processes. Thus the analogue of
Proposition 6.2 does not hold for weakly safe processes. Example 5.7 demonstrates
that Proposition 6.3 does not hold for weakly safe processes.

Of course, the weakly safe branching processes of Figure 10 also occur in the
weakly safe unfolding of N , shown in Figure 11. This weakly safe unfolding exhibits
large-scale duplication of weakly safe processes.



24 J.-M. COUVREUR, D. POITRENAUD AND P. WEIL

π1 A A F A F

B G G

C

D

C

π2 A A F A F

B B G

C

D

C

D

π3 A A F A F

B B G

C

D E

C

π4 A A F A F

B B B

C

D E

C

D

Figure 9. All the maximal weakly safe processes of N

β1 A F A A F

B G B B G

C
D

E

C D

β2 A A F A F

B B G B G

C

D

E

C D

Figure 10. Two weakly safe branching processes containing all
the weakly safe processes of N

7. Concluding remarks

This paper proposes a general framework for the unfolding of general Petri nets.
Traditional occurrence nets are covered by safe unfoldings. When applied to general
nets, this approach has certain drawbacks, which are exemplified in Sections 5.2
and 6.2: even though every net admits a unique safe unfolding, the safe branching
processes do not form a lattice, and neither do the safe processes. The root of the
problem can be traced to the following fact: a safe process of a net N may occur
in several ways as a process of the safe unfolding of N .

The essential contribution of our work is the concept of true unfolding of a net.
This is an extension of the traditional notion in the following sense: if N is a safe
Petri net, then its safe and its true unfoldings (resp. branching processes, processes)
coincide. The true processes and the true branching processes of a general net
satisfy good order-theoretic properties. Moreover, true branching processes as well
as true processes have a unique representation in the true unfolding.

Another contribution of the paper is the absence of finiteness conditions on our
nets: neither on the number of places or transitions, nor on the support of the pre-
and post-conditions of the transitions.

One question not tackled in this paper is the relationship between unfoldings
and event structures. Within the framework of general Petri nets, the concept of
prime event structure is not adapted to capture the multiset aspects. Two natural
questions should be considered: (1) In which cases does the notion of true unfolding
make it possible to capture the conflict and causality relations? (2) What is the
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Figure 11. The weakly safe unfolding of N

concept of event structures associated to true unfoldings? An additional question
concerns the interpretation of true unfoldings to define a true concurrency semantics
similarly to van Glabbeek and Plotkin [3].

In the course of the preparation of the final version of this paper, we discovered
the recent work of Hayman and Winskel [5]. These authors consider nets where
the support of the initial marking and the pre- and postsets of transitions may be
infinite, and the marking function may take infinite values. Unfoldings are defined
for these nets in a categorical setting, using classical occurrence nets and a notion
of symmetries. A thorough comparison between this work and our results remains
to be done.

Acknowledgements. The authors gratefully acknowledge the crucial contribution
of the referees who helped eliminate technical mistakes and make the purpose of
the paper clearer.
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