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ABSTRACT

A new CGreen's function and a new Poisson-type integral formula for a boundary
value problem (BVP) in thermoelastostatics for a quarter-plane subject by mixed
homogeneous mechanical boundary conditions are derived in this paper. The thermoelastic
displacements are generated by a heat source, applied in the inner points of the quarter-
plane and by temperature, prescribed on its boundary semi-straight-lines. All results,
obtained in terms of elementary functions, are formulated in a special theorem. The
first difficulty to obtain these results is in deriving the functions of influence of a

unit concentrated force onto elastic volume dilatation @', The second difficulty is in
calculating a volume integral of the product of function @* and Green’s function G in
heat conduction. A closed-form solution for a particular BVP of thermoelastostatics for a
quarter-plane also is included. Using the proposed approach, it is possible to extend the
obtained results not only for any canonical Cartesian domain, but also for any canonical
orthogonal one.
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1. Introduction

A Green’s function plays the leading role in finding solutions in integrals for boundary value problems (BVPs) in different
fields of mathematical physics, including thermoelastostatics. The main objective of this paper is to prove a theorem on
deriving a Green's function and a Poisson-type integral formula for a thermoelastic quarter-plane V.= (0 < x1,x3 <
00), where (x,x,) are rectangular coordinates. In the case of deriving a Poisson-type integral formula, thermoelastic
displacements are generated by the inner heat source F(x);x = (x1.x2) and by temperatures T1(0,y>) and T,(y1, 0),
prescribed on the boundary semi-straight-lines Ig(y; = 0.0 < y; < o0) and I'y(y2 = 0,0 < y; < o0). The mechanical
boundary conditions are homogeneous; the boundary semi-straight-line Iy is rigidly fixed, but the boundary semi-straight-
line Iy is fixed without any rotation. In the case of deriving the Green'’s function, the heat source is described by a §-Dirac
function. But the temperature and above-mentioned mechanical conditions on the boundary semi-straight-lines "o and
I59 are homogeneous in this case.

A stress analysis and contact problems for an elastic quarter-plane are discussed in [1]. But note, formulation of the
problem, that consists in deriving the Poisson-type integral formula for a thermoelastic quarter-plane, is suggested in this
paper for the first time. This formulation differs substantially from the formulation presented in [1]. This is explained by
the fact, that the Poisson-type integral formula, that has to be derived, must be expressed directly in terms of a given heat
source, boundary temperature and some known kernels. In such a way the use of obtained Poisson-type integral formula
does not request a solution to intermediary heat conduction or to additional elasticity BVPs.

* Corresponding author.
E-mail addresses: v.seremet@uasm.md (V. Seremet), guy.bonnet@univ-paris-est.fr (G. Bonnet).



To prove the above-mentioned theorem we need some basic equations of thermoelastostatics, described in Section 1.1.
Also we need the general Green-type integral formula in stationary thermoelasticity and the formulae for thermoelastic
Green's functions, suggested and published by the author earlier and presented in the Section 1.2.

1.1. Basic equations in thermoelastostatics

To date, a number of theories on thermoelasticity have been developed and described in classical scientific literature
[2-5]. However, many new developments of thermoelasticity and many references are included in [6]. The best developed
theory widely used in practical calculations is the theory of stationary thermal stresses, i.e., the theory of uncoupled
thermoelasticity, when the temperature field does not depend on the field of elastic displacements, and when inertial terms
can be ignored. According to this theory, the formulation of the BVP consists of non-homogeneous Lame’s equations

uV2(E) + Ot 0 (E) — yTi(E) =0, &= (6.6, &) eV (1)

with the respective homogeneous mechanical boundary conditions. In Eq. (1) V? is the three dimensional (3D) Laplace’s
differential operator; # = u; j is the thermoelastic volume dilatation; y = o (224 34) is the coefficient of thermoelasticity;
o, is the coefficient of the linear thermal dilatation; X, ;¢ are Lame’s constants of elasticity; the temperature field in Eq. (1)
can be determined by the BVP in heat conditions that consists of Poisson’s equation

V2T(&) = —a 'F(§) (2)

with the respective boundary conditions for heat actions, which are: temperature T (y), heat flux a(dT (y)/dny), or for certain
laws of heat exchange T (y) + a[dT(y)/dn,] between the exterior medium and the surface of the body. In Eq. (2) a is the
coefficient of temperature conductivity; « is the coefficient of convective heat conductivity. To solve the BVP of stationary
thermoelasticity in Egs. (1) and (2) using traditional methods, at the first stage, we need to solve the BVP of heat conduction
in Eq. (2) with the given boundary conditions. At the second stage we need to solve the BVP of thermoelasticity in Eq. (1)
at the already known temperature field at some given homogeneous mechanical boundary conditions. If the displacements
ug (&) are known, then thermal stresses can be determined by the Duhamel-Neumann law:

O'U=[1(U,J+UJ,)+(SU(A.UJJ—)/T): 1.]= 1,2,3. (3)

Furthermore, the two stages in obtaining the solution of the BVPs in thermoelasticity using traditional methods can be
replaced by one single stage. To achieve this, the generalized Green'’s functions and Green-type integral formula [7-9]
have to be used. The results obtained in thermoelastostatics can be also generalized with respect to dynamic uncoupled
thermoelasticity [10]. Some of these formulae are presented in the next subsections of the Introduction.

1.2. Green-type integral formula in thermoelastostatics

On the basis of the proposed thermoelastic influence functions [7-9], the following new general Green-type integral
formula to determine the fields of displacements, described by BVP in Eqs. (1)-(2), has been suggested:

u(E) = ' f F)Ux(x, £)dV (x) — f T) AUk, £)/3n,)dIb(y)
v I

+f (E’T(Y)/any)uk(%&)dFNU’)+[ [T() + aa™ " (9T (y)/dny)] Up(y. £)d T3 (). (4)
I'n I'm

InEq.(4) I'p, I'y and I}y are parts of the entire surface I" = I'p U I'y U I'y on which the Dirichlet’s, the Neumann's and the
mixed boundary conditions are prescribed, respectively. The functions Uy (x. &), dUy(y, §)/dny; y U I'p, Uy, §)s y U Iy
and Uy (y, &); y U I'y represent influence of an inner unit point heat source Q = §(x — &) € V, unit point temperature
T =38(y — &) € I'p, unit heat flux dT (y)/dny = a~'8(y — &) € Iy and unit point law T (y) + aa~' (3T (y)/dny) = a~'8(y —
&) € Iy of heat exchange between the exterior medium and surface of the body, on the thermoelastic displacements,
respectively. They are determined by the following general integral formulas [7-9]:

U(x. &) =y f Gx,2)O Pz, £)dV(2); z = (21,22, 23);
v

dUk(y.§) lim WUe(x, &)
an, x>y on,

JdG(y,
y/ ‘ ,(y z)(~)“"(z.s)dV(z); x,E.zeV,ye Ip;
v dny
Up(y, &) = lim Ug(x, &) = limy / G(y.z)(-)"“(z.s)dV(z); x,E&,zeV,yely:
x—=y x—=y v

Ue(y. &) =1L“} Ue(x, &) =1er;y f Gy, 2)0M(z,£)dV(z); x,6,zeV,ye Iy
v



The functions @® (z, &) and G(x. z) in Eq. (5) are the functions of influence of a unit point concentrated body force onto
volume dilatation of BVP in elasticity and the Green's function of BVP in heat conduction, respectively. The influence
functions Uy (x, &) have physical meanings as the displacements in an inner point of observation x = (x1, x5, X3), generated
by a unit heat source, described by Dirac’s § function, applied in an inner point, § = (&1, &, &3). The influence functions
Uk (x, &) satisfy two types of homogeneous boundary conditions: for elasticity BVP with respect to point§ = (&1, &, &3) and
for heat conduction problems with respect to pointx = (xy, x5, x3) [7-10].

2. Deriving the Green'’s functions and Poisson-type integral formula for a thermoelastic quarter-plane

Theorem. Let the field of displacements uy (&) at inner points & = (&, &) of the elastic quarter-plane V(0 < xq,x, < 00) be
determined by non-homogeneous Lame’s equations
UV (E) + (A4 )0 (E) — yTR(E) =0; k=1,2 (6)

and in the pointsy = (0,y3) and y = (y1.0) of its boundary semi-straight-lines I'g(y; = 0, 0 < y, < o0) and
oy, =0, 0 < y; < o0) the following homogeneous mechanical conditions are given:

(a) on the absolutely rigidly fixed boundary semi-straight-line I'ijp(y1 = 0, 0 <y, < 00)

U161 =05 =y) =u2(51 =05 =y2) =0 (7)
and
(b) locally mixed boundary conditions on the boundary semi-straight-line I’;p(y, =0, 0 < y; < 00)
U1 =y1.6 =0) =00 =y1.5=0) =0, (8)

where o are the normal stresses which are determined by the Duhamel-Neumann law (3). Let the temperature field T(&) in
Eq. (6), generated by the inner heat source F (&) and boundary temperature (Dirichlet’s boundary condition), also satisfy the
following BVP in heat conduction:

V2T(¢) = —a_‘F(.{E). EeViT=T1y),y=0.y) € Ngs T =To(y); y = (y1,0) € I'yp. (9)

If the inner heat source F and boundary temperature T satisfy the conditions:

o0 o0 o0 [=<]
/ / [F(x)|dxdx, < 005 / [T1(0, y2)|dy; < oo; / [T2(y1,0)|dy; < o0, (10)
0 0 0 0

then the solution of this BVP in Egs. (6)-(9) of thermoelasticity for searched displacements uy (&) can be presented by the following
Poisson-type integral formula, written in the matrix form:

=]

] o0 o0 o0
u(§) = Z/ / F(x)U(x, & )dx;dx; —/ T1(0,y2)Q1(0, y,: &)dy, —/ T5(y1. 0)Q2(y1, 0; §)dy,. (11)
o Jo 0 0

The matrices U(x, &) and Q1(0,y2: &) = U(0,y2; &)/dny1, Qa(y1.0; &) = dU(yy, 05 £)/dny of influence of an inner unit
point heat source and unit point temperature given on the boundary semi-straight-lines onto thermoelastic displacements, also
the matrix u(& ) of searched displacements in Eq. (11), are determined as follows:

(a) for the matrix U(x, &)
_ (Uix. &)\ _ 4
U8 = (Uﬂx.&)) T Am (4 2p)

nr 11
—(a —EnIn—= + 287 % (6 + £1) (—2 - T)
T2 oo

r —_1X161 2 _1x1&1 ' (12)
(X2 —=&)\In——=2B" — |+ (x2 + &) | In— —2B" ——
B i 2 e

X

wherer = r(x, &) = X =&y nx. &) = X =&t n =nxé& = x =&l x = (x1.x2); § = (§1.&€); & =
(=61.62); & =1, =6 m§) =Ix— &5l &) = (=61, &) B=[(A +30)/ (L + )]
(b) for the matrix Q; (0, y,: &)

—52<1 _ 1
Q11(0,y2:8) 14 ST\r2 ™ 2
0,y.:8) = 5 - r 3
Qi(0,y2:6) (le(O.y2;$)> 70+ 30 | & VatEr Yook
S1 —r2 +—r2
2

wherer =r(y, &) =y —&lira =ny. &) =y — &Ly =(0,y2);



and
(c) for the matrix Q,(y;.0; &)

£y _E)<1_1)_w
QWi o-s)=(Q2‘0"~°‘f’)=4” R T
o 10, 8) 11\ 2B 2 ;
G0 G5/ 2w+ 2 lnr—‘+s§<—z——z>+7zy'&(1—%) (14)
r ry r r
_ (wi(§)
u@) = <U2(E )) '

1 n
wherer =r(y, &) =y —&[; ny.§) =y =&l y= (1,0).
Proof. First, the Green's function G for Poisson’s equation for a quarter-plane with Dirichlet's boundary conditions is
rewritten, and then, in the Section 2.1, we derive the volume dilatation ®® (x, &). In Section 2.2 it is shown how to derive
thermoelastic influence functions Ug(x, &). Finally, in Section 2.3, on the base of the functions Uk (x, &), the Poisson-type
integral formula for stated BVP of thermoelasticity is derived. O

To obtain the matrix U(x, &) in Eq. (12) for the BVP in Eqgs. (6)-(9) we use the integral formula in Eq. (5). The functions
G(x,&) and @® (x, &) in this equation must be the Green's function of the Dirichlet problem in heat conduction and,
respectively, the influence functions of a unit concentrated body force 8.8 (x—& ) onto volume dilatation in theory of elasticity
for the quarter-plane V; 8 is Kronecker's symbol and §(x — &) is Dirac's function.

So, to get the Green'’s function G(x, &) we have to solve the BVP, which consists of the equation in the heat conduction
with the homogeneous boundary conditions similar to those in Eq. (9):

VG(x, &)= —8(x—&); xEeV;

15
G=0;, x1=0,0<x; <o0; G=0; x;=0,0<x; <o0. (15)
Here we recall this Green'’s function from the handbook [8] (see problem and answer 10.P.1):
1 rr;
&) =—In—==; r=V -2+ m—&)% n=V&+)+ X - &%
2T 2 (16)

r2 =V & — &2+ (a0 +8)% r2 =V &1 +E)2 4 (x +E)%
This Green'’s function is constructed using the image method in [11]. An interesting alternative method to derive Poisson
integral formula using the special developed image concept and its applications are presented in [12,13].

2.1. Deriving the volume dilatation @® (x, ) inside the quarter-plane V

This section consists of three subsections. In Section 2.1.1 we formulate the BVP for volume dilatation deriving. Deriving
the volume dilatation ®® on the boundaries straight lines /"o and I is presented in the Section 2.1.2. Finally, in the
Section 2.1.3 the volume dilatation ®® (x, &) inside the quarter-plane V is derived.

2.1.1. The formulation of BVP for volume dilatation deriving. Integral representation for @® (x, &)
To get the influence functions ®® (x, £), usually, we have to solve the following BVP, which consists of Lame’s equations
in the theory of elasticity and homogeneous boundary conditions as in Eqs. (7) and (8):

uVIUP xE) + A+ O (x,6) = —Sudx —&); xE€V;ik=1,2;

(17)
UV =uP =0; xiy=0,0<x;<00; o =UF=0 0<x <00, x=0
and then, on the base of displacements Ui‘k'(x. &), to compute the volume dilatation
oV ) =Ux8), j=12 (18)

But as it will be shown below, in the case of the boundary condition in Eq. (17), we can derive the volume dilatation ®® (x, &)
using the equation

VZOW (x, &) = —(h + 2p) (D8 (x — &) /3x;) (19)
and its integral representation via respective Green'’s function Ge (x, & ):

1 B d0® (y &) d
OWx &) =— —Gpl(x, +/ — 2 Wy E)— [Go(y. x)dI (), 20
&) "+ 20 95 o(x, &) ; anr (V4 E)i)nr oy, x)dI"(y) (20)
where " is the surface of the quarter-plane that consists of two boundary semi-straight-lines: I'p(y; = 0, 0 <y, < 00)
and (0 < yy < 00, ¥y, = 0): Gu(x, &) is the Green's function for Poisson’s equation that follows homogeneous boundary
conditions similar to volume dilatation ®@® (x, £). More details about the BVP for G (x, £) can be seen in Eq. (44).



2.1.2. Deriving the volume dilatation @®) on the boundary semi-straight-lines I'jg and I';g
To show this, first prove that the boundary conditions in Eq. (17) lead to the following values of the volume dilatation:

(a) On the boundary semi-straight-line I'ig(y; =0, 0 <y, < 00):

1 1 0 Ty.§) &) . X _ ad
Oy )y =—I® - " n =(0.yy); LY =B 65— - 21
. &) T 7 E " ho. E) y=(0,y2); Ly éli’fk 1k (21)
and
(b) On the boundary semi-straight-line (0 <y, < 00, y; = 0):
O¥(y.£)=0; y=(1.0). (22)

Let us prove that the second boundary conditions in Eq.(17)lead to zero volume dilatation on the boundary semi-straight-
line I50(0 <y < 00, y, = 0), it means

o =UuP =0, 0<xy<00, x=0-0W(yE =0 (23)
To do this, first of all, from formula for normal stresses 022’ determined by Hooke's law:
o = nW + Ul +28;0%; ijk=12 (24)
and formula (18) for ®® we obtain:
oy =2pUy + 200 = (L +2)O® — 2,0 (25)
Next, from boundary conditions
o =U¥ =0, 0<x <00, x=0 (26)
in Eq. (23) it follows
og) =Uf =0y 0<x <00, x,=0. (27)

Finally from Egs. (25) and (27) it follows Eq. (22). So we proved that on the boundary I the volume dilatation is equal to
zero.
To prove Eq.(21) we write Lame’s Eq. (17) (ati = 1) in the following form:

s 1 r+ Jd
Vf[Ui*‘( £+ "xl(-)‘*vx.s)]=—;[s.-k+7",—]a<x—s); ik=1,2, (28)

2(h 4+ 2p1) dx
where Eq. (19) and the Euler’s relationship
VA(F-9) =fV?p +2fipi + ¢V*f (29)

were used.
Eq. (28) can be regarded as an equation of Poisson-type and so its solutions can be found in terms of Green’s functions of
the respective BVP. Hence, having calculated the multiple integrals taken over the quarter plane V by parts, and the integral

/f(z)&(z —x)dV(z) =f(x) (30)
v

we represent the solutions of Eq. (28) as follows

s d
b (x.£) + +“x1(~)'*’<x.s>=A(Balk—elﬁ) an.s)—f [ Uy, e+ 2 oW, s>]
k I'o

dGi(y.x)
X — 77
anyy

arue - [ [u:*‘(y. 6+ 2y o, _s>] Mdrzo()’). (31)
o 2 any,
where Gy (x, &) is the Green's function, having boundary conditions analogical for displacements U{k’(x, &)and
A=[G+ )/ 2p+2w)]);  B=[0+3w)/0+ 1] (32)
According to Eq. (17) we have the following boundary conditions for U‘k'.
Uik'=0; x1=0,0<x; <o0; U{k'=0; 0<x; <00, x=0. (33)

So, for deriving the function G;(x, &) we have the BVP (15) in the quarter-plane V(0 < x;,x3 < 00).



However, the Green's functions for Poisson’s equation for the quarter-plane under the above Dirichlet's boundary
conditions are given in the Answer to Problem 10.P.1 [10]. So the Green's function G;(x, &) = G(x, &) is determined by
the expression in Eq. (16).

Taking into consideration the first boundary condition in Eq. (33) for displacements U{k’, we then obtain:

U =0= U + [+ p)/2uly0% =0, (34)

because on the boundary semi-straight-line ;o we have @ =£ 0, but y; = 0.Analogically, on the boundary semi-straight-
line I';o we have the equalities

uP =0; 0%y, &) =0= U +[0 4w /2u10% =0 (35)

that follows from Egs. (22) and (33). So, due Eqgs. (34) and (35) we find that the integrals in Eq. (31) are zero. So, the
representation in Eq. (31) takes the simple form:

»+ J
U®x, &) + "xlw‘*’(x.a)=A(Béw—sl—f )Gl(x.s» (36)
21 0

Let us calculate the derivative with respect to the variable x; in Eq. (36) and then proceed to the limitx — y; x e V, y €
Io; X = (X1, X2); y = (0,y2):

3\ i
lim {u{“,’( s)+ TR o0y, &) +x0% (x.E)]} = lim [A (Ba,k—gl;) iG(x.E)]. (37)
2;1 &k

x—=y=(0,y3) x—y=(0y,) X1

Then, taking into consideration the fact, that due to the boundary conditions in Eq. (17), the tangential derivatives U;kz) on
the boundary semi-straight-line I'jp = (y; = 0, 0 <y, < 00) are equal to zero, it means

UM y.£) =0, (38)
and from Eq. (18) we come to the conclusion that on g
(k)w £) = Wy, £). (39)

Let us calculate the limit from the left part in Eq. (37):

lim {u{":< 6+ 2 o0, £)+x0 (x.s)]} = U, £+ 2T o0, £) +31057 x, )]
x—=y=(0,y2) 2;1 2;1
= U0, L 5 Ro®y, &)
3
= A-zi' L OV (y, ), (40)
n

where Eq. (39) was used.
Analogically, calculating the limit of the right part in Eq. (37), we obtain the following formula:

) 9\ ) 1[0 r(x. &)rix, &) }
1 A|Bdik —&1— )| —Gilx, = 1 By — In———
x—»yl=r(r(]lyz) [ ( L El C)Ek) (")X] ](X E)] x—>y1=r(r(l)y2) ‘ ( 1 E] E ) |:(9E| n Tz(X.E)rlz(X.E):I

1 0 ryz. &)
=A|(BS —— In———
( =& »&)naa M2, 6)

d A
a1 T&E) g O (41)

7 oE n(x.§)’ 0k
where the expressions in Eq. (16) for Green'’s function Gy(x. &) = G(x, &) and the relation
Bl d rx,&)ri(x,§)
—Gix, &) =) ' — In ————2— 42
ax ! § 051 ra(x, §)rp(x. &) (42)
were used.

Finally, substituting expressions in Eqs. (40) and (41) into the formula in Eq. (37), we come to the following formula for
the volume dilatation on the boundary semi-straight-line "o of the quarter-plane V:

1 190 . d
Wl (108 e g 9, (43)
M2 O T dE . E) A&k

that coincides with the formula in Eq. (21).

(_)(k)(y‘ &-) —



2.1.3. Deriving the volume dilatation ©®® (x, &) inside the quarter-plane V

So, as for the BVP for @®, we have Eqgs. (19), (21) and (22), then the BVP for respective Green's function G for the
considered quarter-plane can be written in the form:

VfC(.,(x.E) =—-0(x—§&); x eV,

(44)
Go(y,6)=0; y1=0,0=<y; <o Go(y.§) =0, 0=y; <00, y,=0.

But for Green's function Ge, described by (44), we have the expression that coincides with BVP, described by Eq. (15), this
is why the function Gy = G is determined by the expression in Eq. (16).

Finally, if we substitute the expressions in Eqs. (21) and (22) in the representation (20), rewritten for a quarter-plane in
the form:

1 R] 9000, yy: &) d
oW (x. £) = — Go(x. / IS 9®(0, vy E)— | G (0, y; x)d
(X, &) A+2;1 TS o, &) — A an (0,y, 'é)(')y1 0(0,y2; x)dy;
30® (y,,0; &) bl
—f [.}'7'&—(-)‘*'wl.O:g)f]G(.)(yl.O;x)dyl
0 dy, dy
= ! J (x. &)+ (~)“"(y 0; &) J Go(y1. 0y x)d (45)
= A+2 5 Go 1, U ¢ 9y CAVARIH V1.

then, calculating the integral:

2

°° d 1 ® 9 1(0,y2:8) 9G(0,y,: %)
/ 6 (0,23 £)=—Ge (0, y2; X)dyz = — L“"/ O g 10023 8) 960,72
0 ay2 0

42w 91 r(0.y2:6) Iy

1 W 0 /'°° r(0,y; &) 1 [ X1 X1 ]
=——F "L — n - - dyz
(42 © 98 12(0,y2:8) m [1(0.y2; x)  12(0,y25%)

1 d ri(x,
S A A L1 (46)
x4+ 2,u)7r & rax§)
1Y =B 51——5110 r(0.y2:%) = /x] + (y2 — x2)% r2(0.y2: %) = /%] + (v2 + x2)?
we obtain the searched volume dilatation of the elastic BVP in Eq. (17) for quarter-plane, written in the form:
1 d I J d
oPVx )= ——o— [— In—2 + 21 — In ] Ly =B 61— — Su. (47)
i 2 (A4 2p) | 0& 1y & T2 T 0&

2.2. Deriving the thermoelastic influence functions Ug(x, &)

Now we have both functions G(x, £) and @ ¥ (x, &), needed for deriving the thermoelastic influence functions Uy (x. &),
using the Eq. (12). So, substituting functions G(x, & ) and @ (x, &) from Eqs. (16) and (47) in the Eq. (5) rewritten for quarter-
plane, then, calculating the volume integral

o0 oo
Up(x, &) = yf f G(X.z)(~)""(z.$)dzldzz _ / / /‘ r1(x Z)ry(x, z)
o Jo 27 (n + 2q) 27r r(x Z)r2(x,z)

" [i In 1z, §)ry(z, &) , i.'i’,iln rl(z.S)]dz]dzz
A& r(z.8)rpz,§) & ma(z,§)

in the special way (see Appendix), we obtain the following expression for functions Uy (x, &):

(48)

)/
8m(A+2p1)

that, being presented in the matrix form, coincide with the matrix U(x§) in Eq. (12).

r
Up(x, &) = {)Ek[rl(lnrl 1)+r2(lnr2—])—r (Inr—])—rn(lnru—1)]+4x1L(k’lné} (49)

2.3. Deriving the Poisson-type integral formula

The next step is to calculate the other influence functions in Eq. (4), rewritten for the quarter-plane in the form:

. S o0 AUL(0, yo2: &) oo AUk(y1.0; &)
u()=a ]/ / F(x)Uk(x, &)dx;dx; —/ T1(0.}'2)k.7“d}'z —/ Tz(,VI.O)(k.yl—EdyL (50)
o Jo 0 any, 0 any,



These functions are: dUy (0, y,; §)/dny, and dUy(y;. 0; §)/9ny, on the boundary semi-straight-lines I'g(y; = 0,0 < y, <
o0) and I5(0 < y; < 00,y2 = 0). So, to get the Poisson-type integral formula we have to use the formula (50) for the
quarter-plane. The influence functions Uy (x, &) in this formula are determined by Eq. (49). The functions dUy (0. y,: &)/dny,
and dU(y1, 0; &)/dny,, as functions of influence, given on the boundary semi-straight-lines, have to be determined using
Eq. (5) and the functions Uk (x, &) in Eq. (49) as follows:

(a) Function of influence of a unit point temperature on semi-straight-line ;o onto thermoelastic displacements:

Uk (y, Uk (x,
M: lim - f‘(x 5 Y 2 (rzz(lnrz—])—rz(lnr—l))—ZL:_’,"lnL ;
any x=y=0y;)  Iny, 4 (A4 2p) | 0E0E ry

T=\/$12+0'2—_52)23 r2=\/512+0’2+52)2 (51)
and

(b) Function of influence of a unit point temperature on semi-straight-line Iy onto thermoelastic displacements:

Uk(y. §) i AUg(x, §) v d il
—=" = lim = B
any, x=y=n1.0)  dny, 4 (A +21) 08, | 0&

W1 — &2+ ER =1 +E)? +E (52)

Substituting the influence functions in Eqs. (51) and (52) into the formula (50) we obtain the following Poisson-type integral
formula:

(r,z(lnrl — 1) —r%(Inr — 1)) +4y1L:_',” lnrl]:

Y 1 R o, 2
y = ——F1a" F — LE E)—1 e E)—1
k(&) 8701 20) {a /0 A (X)[iiék[r‘ (x,§)(Inr(x,§) = 1) +ry(x, §)(Inry(x, &) — 1)

ri(x. &)
r2(x.§)

2 E)(Inr(x, &) — 1) —rh(x, &) (Inrpa(x, &) — 1)] —+—4x1L'(§' In ]dxldxz

o0 ')2
—2f T](O.}’2)|:+(r§(0-yz§)(lnr2(0-)’2:E)—1)—r2(0-y2:5)(|nr(0.Y2;E)—1))
0 0508,

(0,y2:6) o a o
— o I5YBS) g —2/ Ty 1. 0)—— | = (2 (yy. 0; £)(In Ty (yy. 0: &) — 1
o 0 ) ly, . 2 )6)52 fffk( 1V1,0:8)(Inry(yq. 05 6) )
— P2y, 0; £)(nr(yy, 0, €) — 1))+4y1L1§'1nr1(yl.o;s)] dyl}. (53)

Finally, it should be noted that integrals with semi-bounded intervals in Eq. (53) exist, which means that the displacements
|ug(&)] < oo, when the following conditions are satisfied:

o0 o0 o0 o0
f [ [F(x)|dx1dx, < 005 / [T1(0,y2)|dy, < oo; / [T2(y1.0)|dy; < oo. (54)
o Jo 0 0

The conditions in Eq. (54) will be satisfied in the case when the functions F(x) and T (y) are given on the bounded domains or
bounded intervals. If we calculate the derivatives in Eqs. (49), (51) and (52) and present the obtained results in matrix form,
then we can be sure that the influence matrices U(x.&); dU(0, y2: §)/0ny; = Q1(0.,y2: §); dU(y1,0; §)/dny; = Qa(y1.0: &)
and Poisson-type integral formula in Eq. (53) coincide with the results in Eqgs. (11)-(14). The investigations show that
the obtained displacements, described by Poisson-type integral formula (53), satisfy the stated in the theorem BVP of
thermoelasticity, described by Eqs. (6)-(10).

3. An example of application of the obtained Poisson-type integral formula

Let us solve the Egs. (6)-(9) and determine the thermoelastic displacements uy (&) in quarter-plane if on its boundary
semi-straight-lines I"p(y1 = 0; 0 <y, < o0) and I50(0 < y; < 00, y2 = 0) the following temperature is given:

Ti(y) =To =const, ye[y;=0,a=<y, <bl;ye o
Ty)=4{Ti(y) =0, ye (y37=0.0<y; <a)U(y;=0.b<y; <o0); ye€ Io: (55)
T,(y) =0, yel0<y; <00, y,=0];y € .

To solve this BVP we use the formula in Eqs. (11)-(14) for F (x) = 0 and for temperature given in Eq. (55):

b
u () = —To/ Quk(0,y2: &)dya; k=1,2, (56)
a



where Q(0, y5: &) is determined by the matrix (13). So, taking the respective integrals over the boundary segment
[vi =0, a <y, < b], we obtain the following thermoelastic displacements at an arbitrary inner point & = (&1. &):

Tos 7 (1 1 T - y2=b
u(¢) = A/ (r_2 - F) dy, = vToé1 [arctgyz & arctgy2 + Ic’zjl :
a 2

(k4 3p) (k4 31) & &1 Jyy=a
T Py +E -
uy(€) = — v Toé1 / (}'2 2_2_{_,\’2 252>dy2
ﬂ()\. —+ 3/1) a r2 r (57)
yToér [ 9 ¥ Toki =t
= —-— — Inrydy; = ———— Inmn, H
T(h+3p) J, 9ys w(h+3p1) ys=a
r=r0.y;8) =&+ (v — E)% r; =12(0,y2;8) = \/512 + (2 +6)%
The final expressions for thermoelastic displacements are written in the form:
u(€) = vTos: (arctgb —& - arctgb +6 - arctga —& + arctga +6 ) R
(4 3p) & & & &
rToés r(by §)ra(b; §)
() =— In ]
T(A+3pn)  r(asé)r(aé) (58)

r@§) =& +@-8&%  rb§) =/ +(b-&)%
r@é) =/ +@+&)2% b §) =/ + (b+8)%

To determinate the expressions for thermal stresses we need to determine preliminarily the temperature field in the quarter-
plane, created by temperature in Eq. (55), using the Poisson’s integral formula for heat conduction problems:

b To [ (1 1 T - ¥t
T(E) = —Tof - ‘ G(0,y,: &)dy, = —0/ & (—2 . —2) dy, = = (afcrgyz f2 _ al’Cfgyz +Ez> H
a Ony, T Ja r r b4 & & y2=a (59)

—& b —

Ti
T(E) = L (arctg 2 arctg f2 _ arctg 52 - arctga + -’_?2) .
T & & & &

where the expression in Eq. (16) for the Green function was used.

Itis easy to see that temperature in Eq. (59) satisfies the BVP in heat conduction, described by Poisson Eq. (9) [for F (§) = 0]
and boundary condition in Eq. (55).

Now, to determinate the expressions for thermal stresses we use the Duhamel-Neumann law in Eq. (3) ati,j = 1. 2,
rewritten in the form:

on =2pury +Aau;—yTy ij=1,27 — opn=0+2puyy +ruy, —yTs (60)
022 = 2z 3 + Aujj— yT; — 02 = (A +2p)uz 2 + Auyy — yT, o2 = (U2 + Uz ).

Finally, calculating the derivatives with respect to displacements (58) and substituting them and temperature (59) in
Eq. (60), we obtain the following thermal stresses of the stated in this section BVP in the explicit form:

a. for normal thermal stresses

on(E) = 1Ty [251(b+$2 o b-& at+§ 0—52)
' 7 (h+3p) r2(b; &) r2(b;E)  ri(wéE)  ri(wé)
+ (arctgb-'-EZ - arctga-i-é2 — arctgb_—é2 +arctga —& ):|,
&1 &1 & &1 (61)
on(E) = — v itTo I:ZEI( b+& _ b—&, _a+g 0—52)
7O+ 31) r2by &) rAb;E)  rP(@éE)  ria§)

b b— —
+3 (arctg o arctga & arctg 52 + arctga 52 )]
&1 & & &

and
b. for tangential thermal stresses

vTo 2( 1 1 1 1 ) r(b:E)rz(b;E)]
019 = —pp————— |2 + - - +In———|. 62
" HN(A+3/1)[$' r2(b; ) | r2(byg)  ria;§)  ri(a§) r(a; &)ra(a; £) (62)




The investigations have shown that the obtained solutions in elementary functions in Eq. (58) — for thermal
displacements and in Egs. (61) and (62) — for thermal stresses, satisfy the BVP in Eqs. (6)-(9) at the boundary conditions
(55). All solutions vanish at infinity.

4. Conclusions

1. The Poisson-type integral formula, obtained in this paper, is new, useful and completely ready to be efficiently applied
for computing of the thermoelastic displacements u(£) and thermal stresses oj(&) in quarter-planes (see example of
its application given in Section 3). The main advantage of the obtained integral formula is that the searches in quarter-
plane thermoelastic displacements and thermal stresses are expressed directly via given inside heat source, boundary
temperature and known kernels.

2. The expressions for thermoelastic influence functions Uy (x, &), given in Egs. (19) and (49), the functions Uy (y. §)/dny,
and dUg(y, &)/dny,, given in Egs. (13) and (14) or (51) and (52), as well as the Poisson-type integral formula, presented
in Egs. (11)-(14) or (53), play a very important role in the development and examination of accuracy of the numerical
methods employed to obtain solution to the respective BVP for thermoelastic quarter-planes. Furthermore, on the basis
of the above-mentioned results for quarter-planes, a special boundary element for obtaining a solution to the BVP of
thermoelasticity using BEM [ 14] can be elaborated;

3. The most difficult problems in the proposed method here are the problems of deriving the Green's functions G(x, &)
in heat conduction and the functions of influence for volume dilatation ®® (x, &) in the elasticity theory. Note, that
for canonical Cartesian domains these problems were solved successfully in the handbook [8]. The computing of the
integral over volume in Eq. (5) of the product of functions G(x, &) and @® (x, &) is also solved successfully [see the
recommendations of the Appendix]. So, for canonical Cartesian domains, the proposed method works successfully. This
means that the presented paper has opened great possibilities for researchers to derive many new Poisson-type integral
formulae, not only for quarter-planes, but also for many other canonical Cartesian domains.

4. The approach presented in this paper in thermoelasticity for Cartesian canonical domains can be extended to domains of
many orthogonal systems of coordinates [15-18]. This extension will be done when the lists of the respective functions
G(x, &) and @™ (x, £) are completed. Also, this approach is valid for other physical phenomena such as electroelasticity,
magnetoelasticity and poroelasticity, described by the same BVP as thermoelasticity.
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Appendix

The improper integral in Eq. (34) was taken using the relations

1 1
V}Z[rz(x.z)(ln r(x,z) — )] = Inr(x, z); V}Z[rf(x. z)(Inry(x,z) — )] = Inry(x,2);

(A1)
1 1
szz[rg(x.z)(ln ra(x,z) — )] = Inr(x, z2); szz[rlzz(x.z)(ln r2x,z) — D] =Inrpa(x, 2),
the property of Dirac’s function
/ F 05 — )V () = (&) (A2)
v
and the Green's formula inside the quarter-plane
[wvs =120y = [ 1oar jam — pagsmar. (A3)
v r
where the functions f and ¢ are determined as follows:
11 (9, X )
f=—-— 11— 2)(Inri(x,2) = 1) + r5(x, 2)(Inry(x,2) — 1) = r“(x,2)(Inr(x,2) — 1)
421 (’&’k
0
—r5(x.2)(Inrp(x,2) — 1] +2L}_’,"¥[rf(x, 2)(Inry(x,2) — 1) — rh(x, 2)(Inrpp(x, 2) — 1)]} (A4)
1
and
1 s )
¢ = — | A D2*2) (AS5)

27 r(x.z)r;p(x, z)



As on the boundary semi-straight-lines I'yg, I for the functions ¢ and f we have the values:

J r(z1 =0,23; &)
c21=0,2) = 9(x; 2132 =0) = 0; =0.2; _——2L"‘" n——— 5
@(x; 71 22) = @x: 21322 ) f(z 75 &) 38 "1 = 0.2 £) (A6)
fz1325=0; &) =0
the formula (A.3) can be rewritten as follows:
f @V — V%)V = — [ f(ag/amydrio. (A7)
1% I'o

So, using in full the recommended Eqs. (A.1)-(A.7), we obtain:

400  p4oo
Ue(x, &) = / / G(x,2)OW (2, £)dzydzy = —(h +2p) 7! / / 2] nx2)rx.2)

T r(x Z)ri2(x, z)
i} J
I:,(—lnr](z E)ry(z,8) +2L§’," 9 n ri(z, g)]dzldzz
A& r(z,8)r(z.8) a1z, §)

+o0 +00
=-0+ 2u)“y/ / ¢(x.2)Vf (2, £)dz1dz,
0 0

+o00 +00
—(A+2;1)")// f(z,6)V2(x,2)dz;dz; + 1(x, &)
0 0

+00 oo
= —(}»+2/1)_'V/ / —0(x —2)f (z,&)dzydzy +1(x, §). (A8)
0 0
Calculating the integral I in Eq. (A.8)

I(x, &)

_ . 41 d
—4207 'y [ f@e/on)dlo = =0 4 2p) ‘—y/ 2y — 9 124, E)anry, &) — 1)
Io 87 0 ’E

1 ri(x.y)ra(x,y)
—r2y. E)(Inr(y. &) — 1)]_2_1,1&
ny, 2m rX,y)rppx,y)

r420)7! ]
=4+ v ‘“'.‘—[r, (nry— 1) = rdy(nriz = D] + 418 In r—’l (A9)
8 ( 12
and taking into account the property (A.2) of Dirac’s function, we obtain the following final expression for searched

thermoelastic influence functions

4 0
Up(x, &) = m @[rf(lnrl—1)+r§(lnr2—1)—r2(lnr—1)
—13,(Inryy — 1)] + 4Ly ln—} (A.10)

which coincide with the final expressions in Eq. (49).
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