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Abstract

A method is developed in this paper to accelerate the convergence in computing the solution of stochastic
algebraic systems of equations. The method is based on computing, via statistical sampling, a polynomial
chaos decomposition of a stochastic preconditioner to the system of equations. This preconditioner can
subsequently be used in conjunction with either Chaos representations of the solution or with approaches
based on Monte Carlo sampling. In addition to presenting the supporting theory, the paper also presents a
convergence analysis and an example to demonstrate the significance of the proposed algorithm.

Introduction

In many problems of science and engineering the quest for accuracy in predicting the be-

havior of the associated physical systems has motivated the adoption of stochastic equa-

tions as viable representative models (Ghanem and Spanos, 1991; Soize, 2001; Soize,

2003). In many of these models, the governing equations take the form of partial differ-

ential equations with coefficients represented as stochastic processes or variables (Ghanem

and Spanos, 1991). In discretizing these equations, linear algebraic systems ensue with

entries that consist of generally correlated random variables (Ghanem and Spanos, 1991;

Soize and Ghanem, 2003). A general and standard approach for estimating the solution of

these stochastic equations is obtained through a Monte Carlo simulation logic that involves

solving the full equations once for each realization in a statistical sample associated with

the random system, and thus synthesizing a corresponding sample of the random solution

(Schueller, 2001). The iterative solution of these equations would normally involve de-

veloping a different conditioner for each of the samples. Consequently, if the number of

samples is large and/or there are additional computational loops such as a frequency loop,

a time loop, an equilibrium iteration loop for non linear problems, then the numerical effort

associated with the construction of the conditioners can become prohibitive. The main idea

of this paper is to propose, as an initial step (outside the principal loops), the construction

of an algebraic representation of a random conditioner, called the stochastic conditioner.

Since the conditioner is a random matrix which depends on the random parameters in the

original matrix of the problem, this algebraic representation is chosen as the chaos de-

composition of the random conditioner. Once constructed, this conditioner can then be
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used either in accelerating the convergence of Monte Carlo sampling of in producing com-

putationally efficient estimates of the Chaos decomposition of the solution (Ghanem and

Spanos, 1991). The present paper deals with problem where the linear algebraic system to

be solved is frequency-dependent as would be the case in many dynamics problems. After

describing the mathematical setting for the discretized problem in the next next section, the

stochastic conditioners are introduced and a construction algorithm is described for their

computation. An algorithm for estimating a solution of the stochastic equations is then pre-

sented followed by a convergence analysis. A numerical example is then used to expand

on and demonstrate the various steps in building the conditioner.

Discretized equations in the frequency domain

Consider the algebraic problem associated with solving the following linear system of

equations,  !"#$%&'()*+,-"#$.*/0123"#$%&'()*4& $56789&
(1)

in which
$
is a real parameter such as frequency,

(
is an :/; -valued second-order ran-

dom variable whose components are independent normalized Gaussian random variables, !"#$<&=(>*
is a random symmetric

"#?@AB?C*
complex matrix,

23"#$%&'()*
is a DEF -valued second-

order random variable and
,G"#$%*

is a D F -valued random variable. The objective is to

develop an acceleration procedure for the solution of Eq. (1) when either chaos develop-

ments or Monte Carlo Simulation (MCS) method is used in its resolution (Ghanem and

Spanos, 1991; Ghanem and Red-Horse, 1999). In the case of the MCS method, a chaos

decomposition is used. The proposed acceleration procedure relies on the development of

stochastic conditioners.

Introducing stochastic conditioners

For a given stochastic conditioner D "#$<&=(>* , introduce the conditioned stochastic matrix of
the system

 
cond
"#$%&'()*H0I !"#$%&'()* D "#$<&=(>* . The stochastic solution to problem (1) is then

obtained as ,G"#$%*40 D "#$%&=(>*JKL"#$%*M&N cond
"#$%&=(>*JKL"#$%*40123"#$<&=(>*O&P$56Q81R

(2)

Certain properties are imposed on matrix D "#$%&'()* in order to maintain some desirable prop-
erties of the solution process: (1)

,G"#$%*.6QSTU>"VW/& : F *J&XYZ$[678 , (2) D "#$%&=(>* is a.s. invert-
ible for every

$\6-8
, (3) in general D "#$<&=(>* is a full matrix. Consequently,  cond

"#$%&=(>*
is

also full and such an approach would lead us to a prohibitive numerical effort for solving

the resulting algebraic problem. A constraint on D "#$%&=(>* should therefore be introduced to
reduce this cost by maintaining a sparse representation of

 
cond
"#$%&=(>*

.

Construction of stochastic conditioner

Any approximation of
 !"#$%&'()*]^Z_

satisfying the above properties is an acceptable condi-

tioner. From a design perspective, a compromise must be made between proximity to !"#$<&=(>*]^`_
and the numerical effort associated with constructing the approximation. We

present a conditioner based on the stochastic incomplete LU factorization of the stochas-

tic system matrix. The construction of the stochastic incomplete LU factorization (Golub
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and Loan, 1991) of stochastic system matrix
 !"#$%&'()*

is an independent initial step in the

construction of the stochastic solution of equation Eq. (1). Since for each
$+,-.

, matrix !"#$%&'()*
is invertible a.s., for each

$/,0.
, it admits an incomplete factorization

1
inc
"#$2&3(4*56

inc
"#$2&'()*7891

inc
"#$%&'()*5:

inc
"#$%&'()*51

inc
"#$2&'()*;< &

a.s. (3)

In this factorization,
1
inc
"#$2&'()*

is a random sparse triangular complex matrix having = on its
diagonal and

:
inc
"#$2&'()*

is a random diagonal complex matrix. Stochastic representations

of
1
inc
"#$2&3(4*

and
:

inc
"#$2&3(4*

in terms of their respective chaos decompositions are given as

1
inc
"#$%&'()*28 >)?

@ AB@CDEF
1
incA "#$2*3G A "#()*H& :

inc
"#$2&3(4*28 >)?

@ AB@ DIF
:

incA "#$J*3G A "#()*K& (4)

in which
1
incA "#$J* and : incA "#$2* are complex matrices with the same sparsity structure as1

inc
"#$%&'()*

and
:

inc
"#$%&'()*

respectively, and are explicitly given by

1
incA "#$J*78LM 1 inc

"#$%&'()*3G A "#(4*5N
M G A "#()* O N

& :
incA "#$J*78PM : inc

"#$2&3(4*3G A "#()*5N
M G A "#()* O N

Q
(5)

Throughout this paper, for a multi-index R 8S" R T &UQUQUQV& R W
*
of length XCRJX 8 R TYZ Q[QUQ Z R W ,

each term in the sum > @ AB@ DIF is itself the summation over all multi-indices of a given length.
Once the incomplete factorization of

 !"#$%&'()*
has been computed as described above, the

stochastic conditioner can then be explicitly written as

\ "#$2&3(4*78 1
inc
"#$%&'()*5:

inc
"#$%&'()*51

inc
"#$%&'()* < ]^T &

(6)

in which
1
inc and

:
inc are given by Eq. (4). It should be noted that the stochastic condi-

tioner \ "#$%&'()* is never constructed explicitly using Eq. (6) because the inversion of sparse
matrices in that equation leads to a full matrix for \ "#$%&'()* . An implicit procedure for

implementing the conditioning is next described.

Solution of the stochastic system

The intermediate solution
_`"#$2&3(4*

is first obtained as the solution to a conditioned system

by using an iterative algorithm, followed by the evaluation of
ab"#$%&'()*

using Eq. (2).

Constructing the solution of the conditioned system. For each sample
(cdefgh

of
(
and using an

iterative algorithm, the solution
_!defgh3"#$2*

of the conditioned deterministic matrix equation_!defgh3"#$2*i8jkl"#$2&3(mdnf5ho*
, must be computed. As previously explained, sample \ "#$%&'(cdefghp* of

stochastic conditioner \ "#$2&3(4* is not explicitly computed. Rather, an iterative procedure

involving \ ]qT["#$2&3(mdnf5h;* is utilized for solving the previous equation. In such a procedure,
expressions of the form r 8s 

cond
"#$2&3(mdnf5ho*5t

, have to be calculated. Using Eqs. (2) and (6),

complex vector r is given by r 8s !"#$%&'(cdefghu* v in which v is the solution of the linear sys-

tem \ "#$%&'(cdefghp*g]qT v 8st
which can be rewritten as

1
inc
"#$%&'(cdefghu*5:

inc
"#$%&'(cdefghu*51

inc
"#$2&3(mdnf5h;* < v 8t

. The chaos decompositions of
1
inc
"#$2&'()*

and
:

inc
"#$2&3(4*

, given by Eq. (4) are utilized in

this equation. Given the lower triangular structure of
1
inc
"#$2&'(cdnf5h;*

, the solution is readily

obtained using two back-substitutions. This process is very efficient due to the very sparse

nature of
1
inc
"#$%&'()*

.
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Constructing a representation of stochastic solution
 !"#$%&'()*

. A truncated decomposition of

stochastic solution
 !"#$%&'()*

is written as
 
+,-
"#$%&'()*./ +,-0 1,02345  1 "#$6*78 1 "#()* , in which  1 "#$.*

is given by
 1 "#$.*9/ :  !"#$%&'()*78 1 "#(;*<=>? : 8 @ 1 "#(;*<= . Moreover, the first of Eq. (2) is rewritten

as A BCDE"#$%&'()*F !"#$6&7(G*H/IJK"#$%&'()*
or, using Eq. (6),

L
inc
"#$%&'()*<M

inc
"#$%&'()*<L

inc
"#$6&'()* N  O"#$6&'()*P/JQ"#$6&'()*

. The solution
 !"#$%&'()*

is then obtained mainly using two very sparse back-substi-

tutions.

Numerical example

Definition of the mechanical system with random uncertainties. Below, we consider a static

problem which is then independent of the frequency parameter
$
. The stochastic system

is a fixed structure constituted of an isotropic non homogeneous linear elastic medium

occupying a three-dimensional bounded domain
R
with boundary S R , defined in Fig. 1.

F
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Figure 1. Geometrical definition and finite element mesh of the structural domain T and of
the three subdomains T U (gray), T - (dark gray) and TVW (white). The external applied forces
are indicated with arrows. Boundary X4Y is indicated by the thick dark solid line.
The structure is fixed on the part Z 5 for which the displacement field is zero (see Fig.

1). Domain
R
is the union of the three subdomains,

R D , R @ and R[\ , as indicated in the

figure. For ] / ^ &E_`&Ea , subdomain Rbc is occupied by a homogeneous mediumwhose Young

modulus is d c and Poisson coefficient is e c such that e cf/gh`ija
. The uncertainties concern

only the Young moduli which are modeled by independent second-order random variables

whose mean values kd cl/ : d cm= are such that kd D /n_,i ^ o ^ h,D 5 , kd @ /n_ kd D and kd \p/ kd D ?q_ .
For fixed ] , random variable d c is written as d cr/ ^bstu7vw @ kd c x u'vyz{ vw @ (m@c . In this equation,(|c

is a normalized Gaussian random variable (centered with variance equal to 1) and } c~�� h,&|� _ �
, which is defined by } cf/��`cm? kd c & � @c / : d @c = s kd @c , permits the control of the

dispersion of random variable d c . It should be noted that the above construction results
in d c���h

almost surely. For the numerical calculations, the values of the dispersions

parameters are } D /�h
, } @ /�h,i��

and } \�/�h,i��
which means that subdomain

R D has no
uncertainties (deterministic medium). The externally applied forces are constituted of 6

point forces denoted as � D &|i|i|i�& ��� , defined in Fig. 1, the magnitudes of which are such
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that  !" #  $  !"%&' $  !"%() and  !" *  $  !" +  $  !"%,- $./  !" #  . The finite element mesh of the
mechanical system is defined in Fig. 1 and is constituted of 8-nodes isoparametric 3D solid

finite elements. The number of DOFs is
01$ 234 565 .

Efficiency of the stochastic conditioner. In this section, we compare the numerical costs

of the stochastic solution construction of Eq. (1) using the stochastic conditioner and us-

ing the usual conditioner for the following conditions: the number 7 * of realizations used
for calculating Eq. (5) is 894 595 , the number 7 # of realizations used for calculating : ; <=>?@
is 2 A9565 , B * $./

and B # $ 8 . The numerical cost for the construction of the stochastic

conditioner is denoted by C * <=DE@ and depends on its bandwidth D . The numerical cost for
the construction of the stochastic solution using the stochastic conditioner without includ-

ing C * <=DE@ is denoted by C # <=DE@ . Finally, the numerical cost for constructing the stochastic
solution using the usual conditioner is denoted by C +F<=DG@ . It should be noted that the con-
struction of the stochastic conditioner is presented separately because its construction can

generally be performed in an initial step. In addition, we present normalized numerical

costs with respect to the total cost for the construction of the stochastic solution, that is to

say, (1) the normalized numerical cost eff * <=DG@H$ C * <=DG@IJ C +F<=DE@ for the construction of the
stochastic conditioner, and (2) the normalized numerical cost eff# <=DE@K$ C # <=DE@IJ C +F<=DG@ for the
construction of the stochastic solution using the stochastic conditioner. Figure 2 displays

the graph of function
DLMN

eff * <=DE@ .
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Figure 2. Normalized numerical cost for the construction of the stochastic conditioner as a

function of its bandwith O : graph of OPQR eff S T O U ; 7 * $ 894 565 , 7 # $ 2 A9595 ; B * $V/
, B # $ 8 .

It can be seen that, as expected, this normalized cost increases with the bandwidth. Figure

3 displays the graph of function
DWMN

eff# <=DG@ which shows that the gain increases with

the bandwidth (that is also understandable). Comparing Figs. 2 and 3, it can be seen

that the gain corresponds to the cost of the usual conditioner which is, with the stochastic

conditioner, constructed in an initial step, outside the loops related to the samples. It is clear

from this argument that the proposed stochastic conditioning is particularly suitable for

problems in which the construction of the stochastic conditioner can be performed outside

the main loops of the problem under consideration such as the time loop for an evolution

problem, the equilibrium iterative loop for a nonlinear problem, etc. Moreover, it should be

noted that, the greater the number of samples in the MCS method, the greater the efficiency.
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Figure 3. Efficiency analysis for the construction of the stochastic solution using the

stochastic conditioner as a function of its bandwidth  : graph of  !"# eff $ %  & (solid line). The

dashed line represents the normalized reference numerical cost corresponding to '() %  & .
Conclusions

The construction of a stochastic conditioner using the chaos decomposition is proposed.

The convergence properties of this stochastic conditioner are studied through a numeri-

cal example which shows that a significant gain is obtained. In addition, for the treated

example, it has been seen that, the convergence of the chaos decompositions of the diago-

nal and triangular parts of the stochastic conditioner is reached for different values of the

decomposition chaos order. This property allows the numerical effort associated with the

construction of the stochastic conditioner to be further decreased. The persistence of this

very useful property merits further investigation in connection with a broader classes of

random matrices.
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