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Abstract

This paper deals with the construction of a non Gaussian positive-definite matrix-valued random field whose

mathematical properties allow elliptic stochastic partial differential operators to be modeled. Such a matrix-

valued random field can directly be used for modeling random uncertainties in computational sciences with

a stochastic model having a small number of parameters. For instance, in three-dimensional linear elasticity,

the fourth-order elasticity tensor of a random non homogeneous anisotropic elastic material is constituted of

21 dependent random fields which have to be such that the positive-definiteness property of this fourth-order

tensor be verified in a given probabilistic sense. If the usual parametric probabilistic approach is used, then the

identification of such a probabilistic model by using experimental data seems to be difficult. The non Gaussian

positive-definite matrix-valued random field presented in this paper allows such a probabilistic model of the

fourth-order tensor-valued random field to be constructed and depends only of 4 scalar parameters: three spatial

correlation lengths and one parameter allowing the level of the random fluctuations to be controlled. Such a

model can directly be used in the stochastic finite element method.

1. Introduction

A great challenge is the construction of construct stochastic representations for uncer-

tain parameters for which probabilistic data are known and can be identified by using

experimental data. Such a probabilistic model is useful in computational sciences and in

particular for stochastic finite elements (Kleiber et al., 1992; Ghanem and Spanos, 2003).

For instance, consider the following deterministic elliptic partial differential operator A
on a bounded open domain Ω of  3, related to the three-dimensional linear elasticity for

a non homogeneous anisotropic elastic material,

A u = −
3

∑

i=1

ei
3

∑

j=1

∂

∂xj

{

3
∑

k,h=1

cijkh(x) εkh(u)
}

, (1)

in which x = (x1, x2, x3) ∈ Ω ⊂  3, where e1 = (1, 0, 0), e2 = (0, 1, 0) and

e3 = (0, 0, 1) are the vectors of the canonical basis of  3 and where x 7→ u(x) =
(u1(x), u2(x), u3(x)) is a twice differentiable function from Ω into  3. The second-

order strain tensor is such that εkh(u) = (1/2) (∂uk/∂xh + ∂uh/∂xk). The fourth-order
elasticity tensor cijkh(x) has to verify the symmetry property cijkh(x) = cjikh(x) =
cijhk(x) = ckhij(x) and, for all symmetric second-order real tensors {zij}ij , has to

verify the positive-definiteness property,
∑3

i,j,k,h=1 cijkh(x)zkhzij ≥ c0

∑3
i,j=1 z2

ij , in

which c0 is a positive constant independent of x. For a random medium, for all x fixed

in Ω, tensor {cijkh(x)}ijkh is replaced by a fourth-order tensor-valued random variable

{Cijkh(x)}ijkh whose mean value is {cijkh(x)}ijkh and which has to verify the sym-

metry and the positive-definiteness properties in a probabilistic sense which has to be

defined. Nevertheless, for the random case, the deterministic constant c0 (introduced

above) cannot generally be justified from a probabilistic modeling point of view. Fi-

nally, x 7→ {Cijkh(x)}ijkh is a fourth-order tensor-valued random field indexed by Ω,
constituted of 21 mutually dependent random fields and the stochastic partial differential

operator A associated with operator A written as
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AU = −
3

∑

i

ei
3

∑

j=1

∂

∂xj
{

3
∑

k,h=1

Cijkh(x) εkh(U)} . (2)

It should be noted that the probability distribution of this fourth-order tensor-valued

random field (that is to say the system of the marginal distributions) is required because

the unknown solution of the stochastic boundary value problem is a nonlinear mapping

of random field x 7→ {Cijkh(x)}ijkh. If the usual parametric probabilistic approach is

used, then the identification of this probability model by using experimental data seems

to be difficult. This paper deals with a nonparametric construction of a random field such

as x 7→ {Cijkh(x)}ijkh. For that, an ensemble of non Gaussian positive-definite matrix-

valued randomfields is constructed and studiedwhich allows, for instance, the fourth-order

tensor-valued random field x 7→ {Cijkh(x)}ijkh to be modeled. Then, such a tensor-

valued random field will depend only on 4 scalar parameters: three spatial correlation

lengths and one parameter allowing the level of the random fluctuations to be controlled.

With such a model, the inverse problem related to the experimental identification seems

to be more feasible.

The following algebraic notations are used. Let x = (x1, . . . , xn) be a vector in  n.

The Euclidean space  n is equipped with the usual inner product (x, y) 7→< x , y >=
∑n

j=1 xjyj and the associated norm ‖x‖ =< x , x >1/2. Let !n,m( ) be the set of

all the (n × m) real matrices, !n( ) = !n,n( ) be the set of all the square (n × n)
real matrices, !S

n( ) be the set of all the (n × n) real symmetric matrices and !+
n ( )

be the set of all the (n × n) real symmetric positive-definite matrices. We then have!+
n ( ) ⊂ !S

n( ) ⊂ !n( ). We denote (i) the trace of the matrix [A ] ∈ !n( ) as
tr[A ] =

∑n
j=1[A ]jj; (ii) the transpose of [A ] ∈ !n,m( ) as [A ]T ∈ !m,n( ); (iii)

the operator norm of the matrix [A ] ∈ !n,m( ) as ‖A‖ = sup‖x‖≤1‖[A ] x‖, x ∈  m,

which is such that ‖[A ] x‖ ≤ ‖A‖ ‖x‖ , ∀x ∈  m, and if m = n, then ‖A‖ = |λn|, in
which |λn| is the largest modulus of the eigenvalues of [A ]; (iv) for [A ] ∈ !n,m( ),
we note ‖A‖2

F = tr{[A ]T [A ]} =
∑n

j=1

∑m
k=1[A ]2jk and for [A ] in !n( ), we have

‖A‖ ≤ ‖A‖F ≤ √
n‖A‖.

2. Construction and properties of the ensemble SFG+ of homogeneous and normal-

ized non Gaussian positive-definite matrix-valued random fields

2.1. Random field U as the germ of ensemble SFG+

Definition. Let d ≥ 1 be an integer. Let x 7→ U(x) be a second-order centered ho-

mogeneous Gaussian random field, defined on probability space (Θ, T , P ), indexed by d, with values in  . Let L1, . . . , Ld be positive real numbers. Its autocorrelation func-

tion RU ( ) = E{U(x +  ) U(x)}, defined for all  = (η1, . . . , ηd) in  d, is written as

RU ( ) = ρ1(η1) × . . . × ρd(ηd) in which, for all j = 1, . . . , d, we have ρj(0) = 1 and

ρj(ηj) = 4L2
j/(π2η2

j ) sin2(πηj/(2Lj)) for ηj 6= 0.

Properties. For all x in  d, E{U(x)} = 0 and E{U(x)2} = 1. The random field U
is mean-square continuous on  d. Let k = (k1, . . . , kd) be a point in  d and let dk =
dk1 . . . dkd be the Lebesguemeasure. Then, there is a power spectral density function k 7→
SU (k) from  d into  +, integrable, such that ∀ ∈  d, RU ( ) =

∫ d ei< ,k> SU (k) dk
which can be written as SU (k) = s1(k1) × . . . × sd(kd) in which, for all j = 1, . . . , d,
the function kj 7→ sj(kj) from  into  + is defined by sj(kj) = (Lj/π) q(kjLj/π). The
function τ 7→ q(τ) is continuous from  into  +, has a compact support [−1 , 1] and is
such that q(0) = 1, q(−τ) = q(τ) and q(τ) = 1 − τ for τ ∈ [0 , 1]. This means that
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SU has a compact support. Introducing LU
j as the spatial correlation length relative to

coordinate xj and defined by LU
j =

∫ +∞

0
|RU (0, . . . , 0, ηj, 0, . . . , 0)| dηj , it can easily

be deduced that LU
j = Lj . Consequently, parameters L1, . . . , Ld represent the spatial

correlation lengths of random field U .

Representation of the random field U adapted to its numerical simulation. The spatial

discretization of this random field will directly be related to the spatial discretization of

the elliptic stochastic partial differential operator for which germ U will be used. In

general, the problem is setted on an arbitrary bounded domain Ω of  d and the finite

element method is utilized. Consequently, U has to be simulated in N given points

x1, . . . , xN inΩ ⊂  d (for instance, located in the integrating points of the finite elements

of the finite element mesh of domain Ω). We then have to simulate realizations of the

random vector U = (U(x1), . . . , U(xN)). A first representation adapted to a large value

of N is based on the usual numerical simulation of homogeneous Gaussian vector-valued

random field U constructed with the stochastic integral representation of homogeneous

stochastic fields. A second representation adapted to a small or moderate value of N
consists in writing U = [LU]TV in which V = (V1, . . . , VN ) is an  N -valued random

variable whose components V1, . . . , VN are N independent normalized Gaussian random

variables (E{Vj} = 0 and E{V 2
j } = 1 for j = 1, . . . , N ) and where [LU] is the upper

real triangular matrix corresponding to the Chowlesky factorization [CU] = [LU]T [LU] of
the covariance matrix [CU] in !+

N ( ) such that [CU]ij = RU (xi − xj).

2.2. Ensemble SFG+

Defining the family of functions {u 7→ h(α, u)}α>0. Let α be a positive real number. The

function u 7→ h(α, u) from  into ]0 , +∞[ is such that Γα = h(α, U) is a gamma random
variable with parameter α while U is a normalized Gaussian random variable (E{U} = 0
and E{U2} = 1). Consequently, for all u in  , we have h(α, u) = F−1

Γα
(FU (u)) in

which u 7→ FU (u) = P (U ≤ u) is the cumulative distribution function of the normalized
Gaussian random variable U . The function p 7→ F−1

Γα
(p) from ]0 , 1[ into ]0 , +∞[ is the

reciprocical function of the cumulative distribution function γ 7→ FΓα
(γ) from ]0 , +∞[

into ]0 , 1[ of the gamma random variable Γα with parameter α, which is such that, for all
γ in  +, FΓα

(γ) =
∫ γ

0
1

Γ(α) tα−1 e−t dt in which Γ(α) is the gamma function.

Defining the ensemble SFG+ of the random field x 7→ [Gn(x)]. The ensemble SFG+ is

defined as the set of all the random fields x 7→ [Gn(x)], defined on the probability space
(Θ, T , P ), indexed by  d where d ≥ 1 is a fixed integer, with values in !+

n ( ) where
n ≥ 2 is another fixed integer, and defined as follows: (i) Let {Ujj′(x), x ∈  d}1≤j≤j′≤n

be n(n+1)/2 independent copies of the random field {U(x), x ∈  d}. Consequently, for
1 ≤ j ≤ j′ ≤ n, we have E{Ujj′(x)} = 0 and E{Ujj′(x)2} = 1 and the random field

x 7→ Ujj′(x) is completely defined. (ii) Let δ be the real number, independent of x and n,

such that 0 < δ <
√

(n + 1)(n + 5)−1 < 1. This parameter will allow the dispersion

of the random field to be controlled. (iii) For all x in  d, [Gn(x)] = [Ln(x)]T [Ln(x)]
in which [Ln(x)] is the upper (n × n) real triangular random matrix defined as follows.

The n(n + 1)/2 random fields x 7→ [Ln(x)]jj′ for 1 ≤ j ≤ j′ ≤ n, are independent.
For j < j′, the real-valued random field x 7→ [Ln(x)]jj′ , indexed by  d, is defined by

[Ln(x)]jj′ = σnUjj′(x) in which σn is such that σn = δ (n + 1)−1/2. For j = j′, the
positive-valued random field x 7→ [Ln(x)]jj , indexed by  d, is defined by [Ln(x)]jj =

σn

√

2 h(αj, Ujj(x)) in which, for j = 1, . . . , n, αj = (n + 1)/(2δ2) + (1 − j)/2.

Basic properties. x 7→ [Gn(x)] is a homogeneous second-order mean-square continuous
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random field indexed by  d with values in !+
n ( ). In addition, the trajectories of random

field x 7→ [Gn(x)] are continuous from  d into !+
n ( ) almost surely. For all x ∈  d,

we have E{‖[Gn(x)]‖2
F} < +∞ and E{[Gn(x)]} = [In]. The parameter δ is such that

δ =
{

1
n
E{‖ [Gn(x)] − [In] ‖2

F }
}1/2

which shows that E{‖ [Gn(x)] ‖2
F} = n (δ2 + 1).

For all x fixed in  d, the probability distribution on !+
n ( ) of random matrix [Gn(x)]

is explicitly calculated in (Soize, 2001) and shows that, for all x in  d, the random

variables {[Gn(x)]ij, 1 ≤ i ≤ j ≤ n} are mutually dependent. The system of the

marginal probability distributions of random field x 7→ [Gn(x)] is well defined but cannot
be explicitly calculated. Random field x 7→ [Gn(x)] is non Gaussian. There exists a

positive constant c0 independent of n and independent of x, but depending on δ, such
that E{‖[Gn(x)]−1‖2} ≤ c0 < +∞ for all n ≥ 2 and for all x ∈  d. We then have

E{‖[Gn(x)]−1‖2
F } ≤ cn < +∞ for all n ≥ 2 and for all x ∈  d in which cn = n c0.

It should be noted that, since [Gn(x)] belongs to !+
n ( ) almost surely, then [Gn(x)]−1

exists almost surely. However, since almost sure convergence does not yield mean-square

convergence, the previous result cannot simply be deduced (see Soize, 2001).

Fundamental property. Let Ω be a bounded open domain of  d and let Ω = Ω ∪ ∂Ω be

its closure in which ∂Ω is the boundary of Ω. We then have

E
{

(sup
x∈Ω ‖ [Gn(x)]−1‖)2

}

= c2
G < +∞ , (3)

in which sup is the supremum and where 0 < cG < +∞ is a finite positive constant.

Remark concerning the proof of Eq. (3). Let us consider the case d = 1 with Ω be a

compact interval of  . Since the stochastic process {‖Gn(x)−1‖ , x ∈ Ω ⊂  } is not a
continuous local martingal with respect to an increasing family of σ-fields, the follow-
ing fundamental Doob maximal inequality (Doob, 1953) E

{

sup
x∈Ω ‖ [Gn(x)]−1‖2

}

≤
4 E

{

‖ [Gn(x)]−1‖2
}

cannot be used. In addition, we have to consider the non Gaussian

random field case d ≥ 2. Consequently, there is no known result allowing a direct proof
of Eq. (3) to be obtained and a complete proof of this fundamental result is given in (Soize,

2004).

3. Construction and properties of the ensemble SFE+ of non Gaussian positive-

definite matrix-valued random fields

3.1. Definition of the ensemble SFE+

Let d ≥ 1 and n ≥ 2 be two fixed integers. Let Ω be an open (or closed) bounded (or

not) domain of  d (we can have Ω =  d). Let x 7→ [an(x)] be a matrix-valued field
from Ω into !+

n ( ). Then, for all x fixed in Ω, there is an upper triangular invertible

matrix [Ln(x)] in !n( ) such that [an(x)] = [Ln(x)]T [Ln(x)]. It is assumed that: (i)
there is a real positive constant 0 < c0 < +∞ independent of x such that, for all x in

Ω and for all y ∈  n, < [an(x)] y , y> ≥ c0 ‖y‖2; (ii) there is a real positive constant

0 < c1 < +∞ independent of x such that, for all x inΩ, we have ‖[Ln(x)]‖ ≤ √
c1 which

yields < [an(x)] y , y> ≤ c1 ‖y‖2, for all y in  n and for all x in Ω. Consequently, for
all x in Ω, we have ‖[an(x)]‖ ≤ c1 and ‖[an(x)]‖F ≤ √

n c1. The ensemble SFE+ is

then defined as the set of all the random fields x 7→ [An(x)], defined on probability space
(Θ, T , P ), indexed by Ω, with values in !+

n ( ), such that

∀ x ∈ Ω , [An(x)] = [Ln(x)]T [Gn(x)] [Ln(x)] , (4)

in which x 7→ [Gn(x)] is the random field in SFG+, defined on (Θ, T , P ), indexed by  d

and with values in !+
n ( ) (see Section 2.2).
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3.2. Properties of the random field x 7→ [An(x)]

Basic properties. For all x in Ω, [An(x)] is a random matrix with values in  +
n (!), the

mean function is such that x 7→ E{[An(x)]} = [an(x)] ∈  +
n (!) and E{‖[An(x)]‖2} ≤

E{‖[An(x)]‖2
F} ≤ n c2

1 E{‖[Gn(x)]‖2} ≤ n c2
1 E{‖[Gn(x)]‖2

F} < +∞ which proves

that x 7→ [An(x)] is a second-order randomfield onΩ. In general, since [an(x)] depends on
x, then the randomfield {[An(x)] , x ∈ Ω} is non homogeneous. Nevertheless, if [an(x)] =
[an] is independent of x, then the random field {[An(x)] = [Ln]T [Gn(x)] [Ln] , x ∈ Ω}
can be viewed as the restriction to Ω of a homogeneous random field indexed by !d.

We have E{‖[An(x)] − [an(x)]‖2
F} = {δ2/(n+1)}{‖[an(x)]‖2

F + (tr [an(x)])2}. The
dispersion parameter, defined by δAn

(x) = {E{‖[An(x)] − [an(x)]‖2
F}/‖[an(x)]‖2

F}1/2,

is such that δAn
(x) = (δ/

√
n+1){1 + (tr [an(x)])2/tr{[an(x)]2}}1/2.

Spatial correlation lengths for the homogeneous case. Then (see above), δAn
(x) = δAn

is

independent of x. Let  = (η1, . . . , ηd) 7→ rAn( ) be the function defined from !d into !
by rAn( ) = trE{([An(x +  )] − [an]) ([An(x)] − [an])}/E{‖[An(x)] − [an]‖2

F }. We

have rAn(0) = 1 and rAn(− ) = rAn( ). For all j = 1, . . . , d, the spatial correlation
length LAn

j of the homogeneous random field x 7→ [An(x)] indexed by !d, relative to

coordinate xj , can then be defined by LAn

j =
∫ +∞

0
|rAn(0, . . . , 0, ηj, 0, . . . , 0)| dηj .

4. Elliptic stochastic partial differential operator

The presentation is limited to the second-order stochastic differential operator defined by

Eq. (2) on an open bounded domain Ω of !3 whose boundary ∂Ω is written as Γ0 ∪ Γ.
On Γ0, there is a zero Dirichlet boundary condition. We introduce the real Hilbert spaces

H = (L2(Ω))3 and V = {u ∈ (H1(Ω))3, u = 0 on Γ0} whose inner products are

denoted by < u,w>H and < u,w>V respectively, and where the associated norms are

denoted by ‖u‖H and ‖u‖V respectively. Let " = L2(Θ, H) and # = L2(Θ, V )) be
the real Hilbert spaces of all the second-order random variables θ 7→ {x 7→ U(x, θ)}
defined on probability space (Θ, T , P ), with values in H and V respectively, equipped

with the inner products≪U,W≫ = E{<U,W>H} and≪U,W≫!= E{<U,W>V }
respectively, and where the associated norms are denoted by ‖U‖ and ‖U‖! respectively.
4.1. Weak formulation of the elliptic stochastic partial differential operator.

Let n = 6 and let us introduce the new indices I and J belonging to {1, . . . , 6} such that
I = (i, j) and J = (k, h) with the following correspondence: 1 = (1, 1), 2 = (2, 2), 3 =
(3, 3), 4 = (1, 2), 5 = (2, 3) and 6 = (3, 1). Thus, for all x in Ω, we introduce the
matrix [an(x)] in  +

n (!) such that [an(x)]IJ = cijkh(x) and the random (n × n) real
matrix [An(x)] such that [An(x)]IJ = Cijkh(x). A nonparametric probabilistic model of

the random fourth-order elasticity tensor Cijkh(x) consists in choosing the random field

x 7→ [An(x)] in SFE+ with the mean value [an(x)] = E{[An(x)]}. The weak formulation
of the stochastic partial differential operator defined by Eq. (2) leads the random bilinear

form (U,W) 7→ K(U,W) on #× # to be introduced, such that
K(U,W) =

∫

Ω

< [An(x)] e(U(x)) , e(W(x))> dx , (5)

in which e(u) = (ε11(u), ε22(u), ε33(u), 2 ε12(u), 2 ε23(u), 2 ε31(u)).

4.2. Ellipticity of the random bilinear form

Let (U,W) 7→ K(U,W) be the bilinear form on#×# defined byK(U,W) = E{K(U,W)}.
If the following property was introduced: for all x ∈ Ω and for all !n-valued random
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variable Y defined on (Θ, T , P ), < [An(x)]Y ,Y> ≥ c ‖Y‖2 a.s in which 0 < c < +∞
is independent of x, then the bilinear form (U,W) 7→ K(U,W) on × would be coercive
in  (i.e.  -elliptic) because, we would have K(U,U) ≥ cE

{∫

Ω
‖e(U(x))‖2 dx

}

≥
cK‖U‖2 with 0 < cK < +∞. This property, which is generally not coherent with

the available information which can be deduced from objective data, does not hold for

the random field x 7→ [An(x)] belonging to SFE+ and consequently, the usual analysis

given above cannot presently be used. Another analysis has to be developed using the

fundamental property defined by Eq. (3): it is proved (Soize, 2004) that, for all random

field {x 7→ U(x)} in  , we have
√

E{K(U,U)2} ≥ cK ‖U‖2 , (6)

in which cK is a positive finite real constant. It should be noted that Eq. (6) differs from

equation E{K(U,U)} ≥ cK ‖U‖2 due to the fact that the two positive-valued random

variables sup
x∈Ω ‖ [Gn(x)]−1‖ and K(U,U) are dependent.

4.3. Existence and uniqueness of a weak second-order stochastic solution for a stochastic

BVP

Let w 7→ f(w) be a given continuous linear form on V , that is to say such that |f(w)| ≤
cf ‖w‖V with 0 < cf < +∞. Then, the following random problem: find a random field

{x 7→ U(x)} in  such that, for allW ∈  ,K(U,W) = f(W) a.s , has a unique stochastic
solution {x 7→ U(x)} in  .
The proof can easily be constructed. From equations K(U,W) = f(W) and |f(w)| ≤
cf ‖w‖V , we deduce that K(U,U) ≤ cf ‖U‖V and consequently, E{K(U,U)2} ≤
c2
f E{‖U‖2

V }. Using Eq. (6) yields c2
K ‖U‖4 ≤ c2

f ‖U‖2 which can be rewritten as

‖U‖ ≤ cU < +∞ with cU = cf/cK and yields the existence. Finally, the proof of the

uniqueness is straightforward because, if U and U′ are two solutions in  , for allW in  ,
we have K(U− U′,W) = 0 a.s and thus E{K(U− U′,W)2} = 0. TakingW = U − U′

and from Eq. (6) yield ‖U− U′‖2 = 0, i.e., U = U′ in  .
5. Conclusions

We have presented the mathematical construction of a non Gaussian positive-definite

(n×n) real matrix-valued random field, indexed by any domain of !d, depending only on

its mean function and on a smaller number of scalar parameters constituted of a dispersion

parameter and d spatial correlation lengths. Such a random field is adapted to the inverse

problem relative to the experimental identification. A fundamental mathematical property

is proved and allows the ellipticity of stochastic partial differential operators to be obtained.
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