
HAL Id: hal-00688069
https://hal.science/hal-00688069v1

Submitted on 16 May 2012 (v1), last revised 14 Jun 2012 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real-Time Scheduling of Energy Harvesting Embedded
Systems with Timed Automata

Yasmina Abdeddaïm, Damien Masson

To cite this version:
Yasmina Abdeddaïm, Damien Masson. Real-Time Scheduling of Energy Harvesting Embedded Sys-
tems with Timed Automata. RTCSA, Aug 2012, South Korea. �hal-00688069v1�

https://hal.science/hal-00688069v1
https://hal.archives-ouvertes.fr

Real-Time Scheduling of Energy Harvesting
Embedded Systems with Timed Automata

Yasmina Abdeddaı̈m and Damien Masson
Université Paris-Est, LIGM UMR CNRS 8049, ESIEE Paris,

2 bld Blaise Pascal, BP 99, 93162 Noisy-le-Grand CEDEX, France
Email: {y.abdeddaim/d.masson}@esiee.fr

Abstract—In this paper, we propose feasibility and schedu-
lability tests for a real-time scheduling problem under energy
constraints. We first introduce the problem and show how to
model it using timed automata. We propose then a feasibility
test based on CTL model checking and schedulability tests for
EDF and fixed priority algorithms. Our approach also permits
to generate a feasible schedule if one exists and otherwise to
find the good characteristics of a battery to make the problem
feasible. It is finally possible to generate schedules that optimize
some criteria, such as the number of mode switching (battery
charge or discharge), the minimal and the maximal energy level,
or the number of preemptions. The approach is illustrated by
some experiments using the model checking tool UPPAAL [1].

Index Terms—power aware real time scheduling ; energy
harvesting systems ; timed automata ;

I. INTRODUCTION

In this work, we investigate a real-time system model
for embedded systems that collect and store energy from
their environment. Such systems are composed, in addition
to traditional embedded system components, by an energy
collector unit (eg a solar panel) and by an energy storage unit
(a battery or a capacitor).

One common hypothesis in real-time system theory is to
consider that the CPU is always available to execute real-
time tasks, whereas in the studied systems, known as energy
harvesting systems, the CPU has to be switched off at some
points in time in order to permit to replenish the energy storage
unit. These harvesting embedded systems are more and more
present in our lives: sensor networks in structures such as
bridges which collect energy from pulses, medical implants
which collect energy from the human body, mobile or fix
devices with solar panel or windmill etc. Despite their energy
supply particularity, some of these systems need to satisfy
strict timing constraints.

Their particularity is that the energy resource is not limited,
but the energy available at a given instant is. The energy
harvesting and storage process takes time. This is so of
importance to consider both the time and energy needs of
a task to schedule it, since both the energy and CPU time
resources of the system have to be shared amongst the tasks.

From the task schedule point of view, the time intervals
needed for the energy scavenging will result in inserting gaps
in the schedule. An energy-aware scheduler will so not be
a work-conserving one. Assuming this, traditional feasibility
analysis algorithms are no longer relevant. Moreover, we

can easily show that commonly known optimal scheduling
policies1, such as EDF, RM or DM are no more optimal with
these systems.

Another particularity of the studied embedded systems is
that they often need to be as cheap as possible (eg for
networked sensors widely dispersed in an area, some of them
will stay unused), as tiny as possible, and as light as possible.
The size of the energy storage unit must so be minimized. The
goals of a real time scheduler for energy harvesting systems
will so not be only to warranty timing constraints, but also
to take account of these systems specificities to minimize the
energy gesture overheads. For example, it is known that energy
storage processes have not linear rates. For certain devices,
the less energy it remains, the faster the charging process will
be. It so can be important to try to not let the energy level
be too high if it is not needed to respect timing constraints.
On the contrary, a too low energy level can damage some
devices, trying to not let the energy level be too low when it
is not needed can also be important. Another example is that
depending of the battery technology, it can be of importance to
let the battery having complete cycles as long as it is possible
regarding the timing constraints.

This work investigates several open problems related to the
scheduling of such harvesting systems:
• providing a feasibility test,
• providing a schedulability test under preemptive fixed

priority (PFP) and Earlier Deadline First (EDF),
• find the minimal energy collector size that permits the

system to be feasible,
• find a schedule that optimize the energy consumption

profile on several criteria, such as the minimal and
maximal authorized energy levels, or the number of
context switches between the battery recharging mode
and discharging one.

Doing so, three hypotheses are made. First, the tasks’
energy consumption is not related to their execution time
[2]. Second, the energy consumption profile of the tasks are
not known and the worst case is so assumed: all the energy
budget of a task is considered used as soon as the task has
begun its execution. Third, it is assumed that the energy is
collected and stored linearly. Moreover, the set of solutions

1in the sense that they produce a non feasible schedule iff it does not exist
any algorithm in the same class that can correctly schedule the system.

ha
l-0

06
88

06
9,

 v
er

si
on

 1
 -

16
 A

pr
 2

01
2

http://hal-univ-mlv.archives-ouvertes.fr/hal-00688069
http://hal.archives-ouvertes.fr

for the feasibility problem is restricted to fixed priority at job
level schedules where no idle times are allowed when a task
is under preemption, except if these idle times correspond to
a battery replenishment. Even in this cas, the replenishment
is only possible at the begining of a preempting task. A
fixed priority at job level schedule is a schedule where when
the relative priority assigment between two jobs has been
decided, it cannot change. EDF is an example of fixed priority
at job level scheduling algorithm. Least Laxity First (LLF) is
a well known counter example.

We review the related works in Section II. Then Section III
formalyzes the problem, Section IV introduces the timed au-
tomaton model, Section V exposes how to check the feasibility
and the schedulability with PFP and EDF and how to generate
a scheduler, Section VI presents experiments and finally we
conclude in Section VII.

II. RELATED WORK

Even if energy issues are more and more popular in real
time systems theory, most of the research to date has concen-
trated on reducing the power consumption. Mainly previous
efforts have focused on predictive shutdown techniques [3]
and varying speeds of processors [4], [5], [6], [7].

To our knowledge, the first paper to address the problem of
harvesting systems, is [8]. However, the task model considered
in this paper is the frame-based model: all tasks have the same
release and the same period and deadlines.

In [9], the LSA algorithm is proposed. The context of this
algorithm is a little bit different that the one we address. Au-
thors consider tasks for which the execution time will depend
on the energy given to them. Then they propose algorithms that
optimally assign power to arriving tasks in order to minimize
the battery size while guaranteeing temporal constraints. In
that work, a task energy consumption is directly connected to
its execution time, which is not a realistic hypothesis. Indeed,
in practice, the total energy which can be consumed by a task
is not related to its worst case execution time, as stated in [2].

The first work considering task models where energy con-
sumptions are not linked to CPU demand are the ones of
Chetto [10], [11], for dynamic priority systems. Finally in [12]
some heuristics for fixed priority systems are considered.

In this paper, we present a timed automata approach to
address the problem of scheduling tasks under the constraint of
energy consumption. The timed automata approach has been
already used in the literature to model and solve scheduling
problems. In [13], [14], the approach has been used to solve
the job shop scheduling problem. The goal was to find optimal
schedules in the sense of minimal execution time. Then in
[15], the authors present a model based on timed automata
to solve real-time scheduling problems. However, this model
does not consider the tasks’ energy consumption. The principal
benefits of the timed automata approach is first that it proposes
a model for both the scheduling and the formal verification
of the system, and second that it manages to handle open
problems, where no results are currently known. For example

6

4

8

2

80

0

0 10 20 30 40 50 60 70

τ1

τ2

τ3

10

Figure 1. EDFasap: Battery B(10, 2) and e1 = e2 = e3 = 1

we addressed the scheduling problem of self-suspending tasks
in [16].

III. THE PROBLEM STATEMENT

We define our real time problem as a pair P = (Σ,B) where
Σ = {τ1, . . . , τn} is a set of real time tasks and B a battery.

A real time task is a tuple τi = (ri, Ci, Ti, Di, ei) where
ri is the release time of the task, Ci the execution time, Ti
the period, Di the relative deadline (Di ≤ Ti) and ei ≥ 0
the energy consumption rate of the task per time unit. An
active task can be started iff there is enough energy in the
battery to execute it completely. We suppose that the energy
consumption profile of the task is unknown. We so assume
the most unfavorable case and consider that the whole energy
budget of a task is consumed as soon as the task has begun
its execution.

A battery is defined as a tuple B(Emax, ebat) where Emax

is its maximal capacity and ebat its rate load, i.e. the number
of energy unit it collects per time unit. For the sake of clarity,
we consider in the examples the scenario where the battery
is full before the first task release. However our model works
whatever the energy initial state level is. If a task is executing,
the battery is in a consuming mode, i.e. a mode where the
battery is not charged. A task τi can be executed completely
if the battery energy level is greater than ei × Ci, the total
consumption of the task. If the processor is idle, the battery
is in the loading mode s.t: if the level of energy is less than
its maximal capacity Emax for a duration t, the energy is
augmented by ebat×t and the level of energy does not increase
otherwise.

A schedule for P = (Σ,B) is a sequence of tasks produced
by an algorithm that at each time:

1) assigns the processor to an instance of a pending task,
or

2) lets the processor idle and does not charge the battery,
or

3) lets the processor idle and charges the battery.

The real time problem P = (Σ,B) is schedulable iff there
exits a feasible schedule: a schedule where no task misses its
deadline and where the battery energy level is always included
in [0, Emax].

ha
l-0

06
88

06
9,

 v
er

si
on

 1
 -

16
 A

pr
 2

01
2

Illustrative example

Let P1 be a real time problem defined by a battery
B1(10, 2) and a set Σ1 = {τ1, τ2, τ3} of real time tasks
where, τ1 = (0, 4, 10, 10, 1), τ2 = (0, 4, 20, 20, 1) and
τ3 = (0, 6, 40, 40, 1). Note that if we relax the constraints
on energy consumption of the tasks (∀i, ei = 0), this prob-
lem is schedulable using both EDF and RM priority driven
scheduling algorithms.

We first apply a naive non work conserving algorithm to
this problem. In this algorithm, if no more energy is available
to execute new instances of tasks, the battery is charged until
there is enough energy to execute the next highest priority
task according to EDF. Thus, the tasks are executed as soon
as possible according to the EDF policy. We call this algorithm
“as soon as possible EDF” and note it EDFasap.

The EDFasap schedule of the illustrative example is rep-
resented in Figure 1 for the interval [0, 80]. At the beginning
of the execution, the battery is completely charged and the
tasks τ1 and τ2 can be executed. At t = 8, the battery energy
level is equal to 2, then the task τ3 which consumes 6 unit of
energy cannot be executed. Thus, the processor is idle and the
battery is in the charging mode until t = 10. Then at t = 10
there is enough energy to execute a new instance of task τ1
and so on. Note that at t = 36 and t = 38, the tasks τ2 and
τ3 are executed even if the battery is empty. Indeed, they have
already consumed the necessary energy at the beginning of
their execution. At t = 40, all the tasks are active and none of
them has missed any deadline. However, at t = 80, the task
τ3 misses its deadline. Thus, this problem is not schedulable
using EDFasap.

IV. THE MODELING STEP

A. Timed Automata

A Timed automaton [17] is a model extending the classical
automaton model with a set of variables, called clocks. Clocks
are real variables evolving continuously and synchronously
with time. Thanks to these variables, it is possible to ex-
press constraints over delays between transitions. Indeed, each
transition of a timed automaton can be labeled by a clock
constraint called guard which controls the firing of a transition.
Clocks can be reset to zero in a transition and each location
is constrained by a staying condition called invariant.

Formally, let X be a set of real variables called clocks and
C(X) the set of clock constraints φ over X generated by φ ::=
x]c | x− y]c | φ ∧ φ where c ∈ IN , x, y ∈ X , and] ∈ {<,≤
,≥, >}. A clock valuation is a function v : X → R+ ∪ {0}
which associates to every clock x its value v(x).

Definition 1 (Timed Automaton): A timed automaton (TA)
is a tuple A = (Q, q0,X , I,∆,Σ) where Q is a finite set of
states, q0 is the initial state, X is a finite set of clocks, I : Q→
C(X) is the invariant function, ∆ ⊆ Q×C(X)×Σ× 2X ×Q
is a finite set of transitions and Σ is an alphabet of actions
augmented with the action ⊥ that represents the empty action.

A configuration of a timed automaton is a pair (q, v) where
q is a state and v a vector of clock valuations. The semantic

acti

exei

stopi

releasei?

exec?

starti?

prei

prsi := new, prtprsi := i

wi := wi + wprsi

prsi := 0, proc := 1

proc := 0

startprti !

inii
ci = wi

wi := Ci,di := 0

di = Di

di = Di

di = Di

di ≤ Didi ≤ Di

ci ≤ wi

di ≤ Di

pi ≤ ri

pi := 0

pi = Ti

pi := 0
proc = 0

proc = 0
exec?

exec?

releasei!

ci := 0
new := i
proc := 1

exec!

pi = rireleasei!

pi ≤ Ti

Figure 2. Timed Automaton Model for a Task τi

of a timed automaton is given as a timed transition system
with two kinds of transition: timed transitions representing the
elapse of time in a state, and discrete transitions representing
the ones between states. A timed transition is enabled if clocks
valuations satisfy the invariant of the state and a discrete
one is enabled if clocks valuations respect the guard on the
transition. Then, we define a run in a timed automaton as a
sequence of timed and discrete transitions. Given a network of
timed automata, synchronous communication between timed
automata can be done using input actions denoted a? and
output actions denoted a!.

B. Modeling the Task

For the sake of clarity, we start by showing how to model
a real time task without taking into account the energy
consumption.

Let τi(ri, Ci, Ti, Di) be a real time task. We model this
task using a timed automaton Taski with a set Q =
{inii, acti, exei, prei, stopi} of states and two clocks ci
and di. This automaton is synchronized with an automaton
Periodi using the action releasei. This action is launched
by the automaton Periodi every period Ti (see Figure 2).
The automaton Taski starts its execution at state inii, where
no instance of task τi is active. When an action releasei is
captured, the automaton moves to state acti and the clock di is
reset to zero. The clock di is used to measure the elapsed time
since the activation of the task. When the clock di reaches the
deadline Di the automaton moves to state stopi.

In state acti, the task is active but not yet executed. If the
task starts its execution, the automaton moves to state exei
and a global variable proc is reset to one indicating that the
processor is not idle. When a task τi starts, the clock ci is reset

ha
l-0

06
88

06
9,

 v
er

si
on

 1
 -

16
 A

pr
 2

01
2

exei

starti?

starti!startj?prsj := k
prtk := j

new := k startj !

prsi := j
prtj := i

new := j

wk

t1 t2 t3 t4

exei

prej

exek

τi

τj

τk

prei

exejexej

wj

wi

Figure 3. Restrictions on Preemption

to zero, this clock is used to measure wi the response time of
task τi. The response time wi of a task is settled initially to
Ci, the execution time of the task. The automaton stays in
state exei exactly wi time unit, which is modeled using an
invariant ci ≤ wi on state exei and a guard ci = wi from
state exei to state inii.

To handle preemptions using timed automata, we restrict
ourselves to a class of schedules that meet the two restrictions
cited bellow. Indeed, modeling a task where preemptions can
occur at every instant is not possible using timed automata.
Preemption could however be modeled using stopwatch au-
tomata, a model where clocks can be stopped. Unfortunately,
model checking is known to be undecidable on this model [18],
[19] in the general case. That is why we have the following
restrictions:

1) Restriction 1: we restrict ourself to fixed priority at
job level schedules. As a consequence, if a task τi is
preempted by a task τj , τi cannot be resumed until τj
has finished. As mentioned before, note that EDF is part
of this class of scheduling algorithms.

2) Restriction 2: the processor can be idle only if no task
is under preemption.

Under these restrictions, it is possible to handle preemp-
tions, using the following property:

Proposition 1: Let τi and τj be two real time tasks of a
schedule respecting Restriction 1 and Restriction 2. If τi is
preempted by τj then, the preemption duration of task τi is
equal to wj the response time of τj .

An illustration of Proposition 1 is given in Figure 6. This
figure shows an example of three tasks τi, τj , τk that respect
the two restrictions. Task τj preempts task τi, and task τk
preempts task τj . We can see in the figure that the time of
preemption of each task is equal to the response time of its
preempting task. This example is easily transposable to the
case where a task job is preempted several times.

Using this proposition, it is possible to model preemptions
with a timed automata as follow. In our model, when a task
is preempted, the automaton moves to state prei. To respect
Restrictions 1 and 2, a task can be preempted only if a new task

init loadU

E := Emax, tcharge := tcharge+ 1

E := Emax+ ebat, tcharge := tcharge+ 1ch := 0, tcharge := 0

charge!

proc = 0

scharge!

b := 0, ch := 1, tcharge := 0

b ≤ 1

b = 1, E ≤ Emax− ebat

b := 0, ch := 1, tcharge := 0

ch := 0, tcharge := 0
b > 0 b = 1, E > Emax− ebat

Figure 4. The Automaton for a Battery B(Emax, ebat)

is executed. Indeed, a global action exec? synchronizes every
preemption with the beginning of a new task. The variable
prsi records the identifier of the preempting task and prti the
identifier of the task preempted by τi. In Figure 6, at t = t1
the task τi is preempted by τj . Then, in our automaton model,
the global variable new recording the identifier of the new
task is equal to j, the variable prsi is equal to j and prtj is
equal to i.

When the preempting task τprsi resumes, the automaton of
the preempted task τi moves to state exei synchronizing with
an action starti. Then, the response time wi of the task τi
is augmented with the response time of the preempting task
τprsi .

The first restriction does not limit the generality of our work
so much. Indeed, mostly all the commonly known scheduling
algorithms respect Restriction 1. Restriction 2 can seems more
strong in a first step. However, this is not true in the general
context, without considering energy related issues, because
most commonly studied schedulers are work-conserving, and
are so de facto respecting the restriction.

However, when idle times have to be inserted in order to
permit to replenish the battery, it can appears as a strong
restriction. That is why we explain in Section IV-C how to
overcome this restriction, by letting the model checker insert
idle times at the beginning of a preempting task.

C. Task and Energy

Let B(Emax, ebat) be a battery as defined in Section III.
The battery is modeled using a timed automaton AB with one
clock b and three states. The variable E is used to store the
level of energy in the battery.

The states init and load represent the consuming mode and
the loading mode respectively. The third state is an urgent state
(no timed transition in this state) and is used only to separate
the two modes. When the battery moves from consuming to
loading mode, the clock b is reset to zero and a variable ch
is settled to 1, indicating that the battery is in the loading
mode. The loading of the battery is discretized. Indeed, the
automaton stays in the loading mode exactly one time unit
using the invariant b ≤ 1 in state load and the guard b = 1
from load to the urgent state. Then, after each time unit in

ha
l-0

06
88

06
9,

 v
er

si
on

 1
 -

16
 A

pr
 2

01
2

exei prei

ci ≤ wi

actinacti

wi := wi + tcharge

proc := 1, ci := 0

di := 0

scharge?

charge?, exec!

E := E − (ei × Ci)

inii

ch = 0, exec!
E := E − (ei × Ci)
ci := 0, proc := 1

exec?

Figure 5. Adding Energy Consumption to the Timed Automaton Taski

tcharge

exei

wk

exei

prej

exek

τi

τj

τk

prei

exej

wj

wi

nactj exej

Figure 6. Charging During Preemption

the loading mode, the battery level increases by ebat. When
the battery reaches its maximal capacity Emax, the battery
level does not increase even if the battery is in the loading
mode. The variable tcharge represents the total time spent
in the loading mode. Figure 4 represents the corresponding
automaton.

To take into account the energy consumption of a task, we
need to add some modifications to the task automaton. Figure
5 represents the timed automaton modeling a task τi where
we omit some informations already given by Figure 2. Since
a task consumes all the energy required for its execution at its
beginning, when a task starts its execution, the energy available
E is reduced by ei × Ci.

According to Restriction 2, the processor can not be idle if a
task is preempted. This restriction does not allow us to model
a behavior where the battery is in a loading mode if a task
is preempted. To overcome this restriction in the particular
case where the inserted idle time is a battery replenishment,
we add a new state nacti s.t: if the automaton is in state
nacti, the processor is considered to be busy and is dedicated
to the task τi. When the automaton moves to state nacti,
the battery automaton moves, synchronizing with the action
charge!, to the loading mode. When the automaton moves
from state nacti to the execution state, the battery moves to
the idle mode and tcharge, the total time spend in the loading
mode, is added to wi, the response time of the task τi, as shown
in Figure 6.

V. SCHEDULING USING CTL MODEL CHECKING

Model checking is a method for automatic verification
where the system is modeled using a formal model M and
the correctness property is stated with a formal specification
language φ. Given a model M and a property φ, model
checkers tools are used to automatically decide whether M
satisfied φ or not.

In this section, we present how we use CTL [20] model
checking to test the feasibility of a task set and its schedula-
bility with PFP and EDF.

CTL properties are generated using the following grammar:

φ ::= p|(¬φ)|(φ ∧ φ)|(φ ∨ φ)|
AXφ|EXφ|AGφ|EGφ|A[φUφ]|E[φUφ]

where p is a set of atomic formulas. CTL formulas are
interpreted on a transition system s.t. the initial state s0
satisfies: AGφ iff in all the paths starting at s0 all the states
satisfy φ, EGφ iff there exists a path starting at s0 where all
the states satisfy φ, AXφ iff in all the paths starting at s0 in
the next state φ is satisfied, EXφ if there exits a path starting
at s0 where in the next state φ is satisfied, E[φ1Uφ2] iff there
exists a path starting at s0 where φ1 is satisfied until φ2 is
satisfied and A[φ1Uφ2] iff for all the paths starting at s0 φ1
is satisfied until φ2 is satisfied.

A. Feasibility

Let P = (Σ,B) be a real time problem where Σ =
{τ1, . . . , τn} and B = (Emax, ebat). We model each task
τi using a timed automaton Taski and model the bat-
tery B using a timed automaton AB as defined in Section
IV-C. We note AP the parallel composition of the automata
Task1, Task2, . . . Taskn and AB . A configuration of AP
is a tuple (q, v, E) where q = (s1, . . . sn, sb) and v =
(v(c1), v(d1), . . . v(cn), v(dn), v(b)) s.t:

1) ∀i ∈ [1, n], si is a state of the automaton Taski
and v(ci), v(di) are the clocks valuations of ci and di
respectively,

2) sb is a state of the automaton AB and v(b) is a clock
valuation of clock b,

3) E is the global variable storing the level of energy in
the system.

The configurations of the timed transition systems of AP rep-
resent the possible configurations of a task (active, executing,
preempted, . . .) plus the possible battery configurations (mode
and level).

The following proposition provides a feasibility test for the
scheduling problem P = (Σ,B):

Proposition 2 (feasibility): Let P = (Σ,B) be a real time
problem where Σ = {τ1 . . . τn}. P is feasible iff the network
AP modeling P satisfies the CTL Formula 1

φSched1 : EG¬
(∨
i∈[1,n]

stopi ∨ E < 0
)

(1)

Proposition 2 states that the problem is feasible iff there
exists an infinite run ξ in AP where all the configurations

ha
l-0

06
88

06
9,

 v
er

si
on

 1
 -

16
 A

pr
 2

01
2

(q, v, E) satisfy the property ϕ : ¬(
∨

i∈[1,n] stopi ∨ E < 0).
We call this run a feasible run. In other words, a run ξ is
feasible iff none of its configurations contains a state stopi
or a negative battery level. If such a run exits, it corresponds
to a schedule where there is enough energy to execute all the
active tasks and none of the tasks misses its deadline. Indeed,
an automaton Taski reaches the state stopi iff the clock di
reaches the deadline Di of the task τi (see Figure 2). Since
the clock di is reset to zero at each activation of a task τi, a
clock greater than the deadlines implies that a deadline miss
has occurred.

Given a real time problem P = (Σ,B), one can check
the optimal characteristics of a battery to make the problem
feasible. For example, find the minimal value for Emax to
make the problem feasible. But also find a maximal value for a
lower bound Emin under which it is not permit for the battery
to lower down. Given a minimal value Emin and a maximal
value Emax, Formula 2 check if the problem is feasible.

φSched2 : EG¬
(∨
i∈[1,n]

stopi ∨E > Emax ∨E < Emin

)
(2)

Another application is to find a schedule that minimize the
number of state change between the battery loading mode
and the task execution mode. We add to the model a global
variable NbC counting the number of battery mode change.
The variable is initially set to zero, and is incremented when
the battery moves from consuming to idle mode. Then, when
all the tasks are in there initial state, the variable is reset to
zero.

Using Formula 3, we can find the feasible schedule mini-
mizing the number of mode change. Indeed, by changing the
value of NbCmin, we can find the minimal value of mode
change for which the problem remains feasible.

φSched3
: EG¬

(∨
i∈[1,n]

stopi ∨ E < 0 ∨NbC >NbCmin

)
(3)

The same idea can be used to minimize the number of
preemptions.

B. Schedulability

To test schedulability according to a given scheduling pol-
icy2, one can model the scheduling policy in the CTL checked
formula.

To test PFP schedulability, we have to test if there exists
a feasible run where some configurations are forbidden: the
ones where a task is executing while a greater priority task is
not.

Proposition 3 (PFP Schedulability): Let P = (Σ,B) be a
real time problem where Σ = {τ1 . . . τn} is sorted according
to the priorities of the tasks. P is schedulable according to PFP
iff the network AP modeling P satisfies the CTL Formula 4.

2note that the scheduling policy has to be a fixed priority at job level one,
according to Restriction 1.

φfp : EG¬
(∨
i∈[1,n−1]

(acti ∧ di > 0
∧

j∈[i+1,n]

exej)
∨

i∈[1,n−1]

(prei
∧

j∈[i+1,n]

exej)
∨

i∈[1,n]

stopi ∨ E < 0
) (4)

Formula 4 states that the problem is schedulable according
to PFP iff there exists a feasible run where, in all the
configurations, a task τj cannot be in its execution state exej
if a highest priority task τi is in state acti or prei.

Using this approach, we can also test the EDF schedulabil-
ity.

Proposition 4 (EDF Schedulability): Let P = (Σ,B) be a
real time problem where Σ = {τ1 . . . τn}. P is schedulable
according to EDF iff the network AP modeling P satisfies
the CTL Formula 5.

φedf :EG¬
(∨
i∈[1,n]

∨
j 6=i∈[1,n]

(acti ∧ di > 0 ∧ exej ∧ pij)∨
i∈[1,n]

∨
j 6=i∈[1,n]

(prei ∧ exej ∧ pij)
∨

i∈[1,n]

stopi ∨ E < 0
) (5)

pij is a state of an observer automaton reachable when di−
dj > Di −Dj with di and dj the deadline clocks of tasks τi
and τj respectively.

Under the EDF scheduling policy, the processor is assigned
to a task if it is the closest to its deadline. Formula 5 states that
the problem is schedulable according to EDF iff there exists a
feasible run where, in all the configurations, a task cannot be
in its execution state if a task with a closer deadline is active
or preempted.

To solve the real time problem P = (Σ,B), a scheduling
algorithm has to be non-work-conserving in the sense that
the processor can be idle if a task is not executing. Idle
times are times where the battery is in a charging mode. A
classical scheduling policy (PFP, EDF . . .) is not sufficient
to solve our real time problem, because it does not provide
the idles times where the battery has to load energy. If the
schedulability tests given in Formulas 4 and 5 are satisfied,
we only know that there exists a feasible schedule where the
order of execution of tasks respects the priority assignment of
PFP or EDF algorithms. For example, if a real time problem
is not EDFasap schedulable, Formula 5 is not sufficient to
prove it.

We qualify an algorithm to be as soon as possible if the
processor is idle iff the highest active priority task can not be
executed.

According to the restriction of our model, idle times can be
inserted in a schedule only at the beginning of the execution of
a task. Thus, to compute an as soon as possible schedule, we
forbid in our model configurations staying more than necessary
in a state acti or a state nacti.

Proposition 5 provides a schedulability test for PFP as soon
as possible.

Proposition 5 (PFP As Soon As Possible Schedulability):
Let P = (Σ,B) be a real time problem where Σ = {τ1 . . . τn}

ha
l-0

06
88

06
9,

 v
er

si
on

 1
 -

16
 A

pr
 2

01
2

is sorted according to the priorities of the tasks. P is
schedulable according to PFPasap iff the network AP
modeling P satisfies the CTL Formula 6

φfpS
: φfp ∧ EG¬

(∨
i∈[1,n]

(
((acti ∧ di > 0)∨

(nacti ∧ ci > 0))
∧

j∈[1,i−1]

inij ∧ (ei × Ci) ≥ E
)) (6)

Formula 6 sates that the problem is schedulable according to
an as soon as possible PFP scheduling algorithm iff there exists
a feasible run where:

1) all the configurations satisfy formula 4, and
2) there is no configuration where the highest priority active

task has enough energy to be executed (Ci × ei ≥ E)
and is not scheduled.

An active task τi has the highest priority in a configuration
((s0, . . . sn, sb), v, E) if all the tasks τj with j < i are not
active.

The same principle can be used for EDFasap schedulability.
In this case, a task has the highest priority in a configuration
if it has the closest deadline among all the active tasks.

Proposition 6 (EDF As Soon As Schedulability): Let P =
(Σ,B) be a real time problem where Σ = {τ1 . . . τn}. P
is schedulable according to EDFasap iff the network AP
modeling P satisfies the CTL Formula 7.

φedfS : φedf ∧ EG¬
(∨
i∈[1,n]

∨
A⊆[1,n]−{i}

(
((acti ∧ di > 0)

∨(nacti ∧ ci > 0))
∧
j∈A
¬inij

∧
k/∈A,k 6=i

inik
∧
j∈A

pij

∧(Ci × ei) ≥ E
))

(7)

pij is a state of an observer automaton reachable when di−
dj > Di −Dj with di and dj the deadline clocks of tasks τi
and τj respectively.

Formula 7 states that if an active task τi has the highest
priority among the subset A of all other active tasks, then the
task has to be executed if there is enough energy to do it.

C. Scheduling Algorithm

To compute a scheduling algorithm for a feasible real time
problem P = (Σ,B), we first check the appropriate formula to
generate a feasible infinite run if one exists. Model checking
for timed automata is decidable but PSPACE-complete [21],
however, in our approach, the feasible run is computed off
line.

Given a run of the network AP , a schedule can be derived.
This schedule defines the rules controlling when and how
transitions between different configurations of the tasks and
the battery occurs.

Let ξ be a feasible infinite run satisfying one of the
formulas of the previous subsections. This run can be written
as: ξ = (q0, v0, E0) → (q1, v1, E1) → . . . (qk, vk, Ek) . . .
where (q0, v0, E0) is the initial configuration with q0 =
(ini0, . . . , inin, ini), v0 is an n + 1 dim valuation vector
where all the valuations are equal to 0 and E0 = Emax.

Since the run ξ is infinite, it contains at least one cycle. We
note (q∗, v∗, E∗) . . . (q∗, v∗, E∗) the first cycle of ξ and we
call the run ξsched = (q0, v0, E0) → . . . (q∗, v∗, E∗) . . . →
. . . (q∗, v∗, E∗) a scheduling run.

An on-line scheduling algorithm can be obtained by simply
reading sequentially the configurations of the pre-computed
scheduling run. Indeed, using this trace, we can compute a
scheduling function FSched : {0 . . . t∗} → {1 . . . n} ∪ {ε1, ε2}
where t∗ is the total length of the run ξsched s.t. if:

1) FSched(t) = i ∈ {0 . . . n} task τi is executing at time t,
2) FSched(t) = ε1 the processor is idle at time t and the

battery is not charging,
3) FSched(t) = ε2 the processor is idle at time t and the

battery is charging.
Note that if a scheduling problem is proven to be EDFasap

or PFPasap schedulable, there is no use to compute a schedul-
ing function.

The computed scheduling algorithms are sustainable ac-
cording to the duration of a task. In other word, if a task
terminates before its worst case execution time, the schedule
remains feasible. Indeed, in our model, a task consumes all
its necessary energy at the beginning of its execution. So, if
it terminates before its WCET, it simply consumes less than
accounted during the verification process, and the new idle
times are times where the battery can charge more than proven
sufficient for the system to be feasible.

VI. EXPERIMENTS

To validate our approach, we use the timed model checker
UPPAAL [1] to implement our model and test it on some
examples presented in this section. Materials are available on
line at [22].

We consider for all the examples the same set of tasks
Σ = {τ1, τ2, τ3} where, τ1 = (0, 4, 10, 10, e1), τ2 =
(0, 4, 20, 20, e2) and τ3 = (0, 6, 40, 40, e3).

A. P1 = (Σ,B1(10, 2)) with: e1 = e2 = e3 = 1

We first test our approach on the illustrative example P1

with B1(10, 2), τ1 = (0, 4, 10, 10, 1), τ2 = (0, 4, 20, 20, 1)
and τ3 = (0, 6, 40, 40, 1). The model checker UPPAAL states
that Formula 1 is not satisfied, we conclude that the problem
P1 is not feasible.

B. P2 = (Σ,B2(10, 3)) with: e1 = e2 = e3 = 1

We augment the battery loading rate to ebat = 3 and prove
using Formula 1 that the problem is feasible for a battery
B1(10, 3).

We prove also, using Formulas 7 and 6, that the problem
is schedulable for EDFasap, RMasap and PFP2,1,3 a fixed
priority as soon as possible algorithm where τ2 has the highest
priority, and τ3 the lowest one.

We show that the minimal value of the maximal capacity
for which the problem remains schedulable for EDFasap and
RMasap is Emax = 6. And for PFP2,1,3 the minimal capacity
for schedulability is Emax = 8.

ha
l-0

06
88

06
9,

 v
er

si
on

 1
 -

16
 A

pr
 2

01
2

0 10 20 30 40

0

4

8

12

τ1

τ2

τ3

E

Figure 7. PFP2,1,3 Schedule: Battery B(13, 7) and e1 = 3, e2 = e3 = 1

80

0

0 10 20 30 40 50 60 70

4

8

12

E

τ1

τ2

τ3

Figure 8.Not Schedulable for EDFasap: Battery B(12, 7) and e1 = 3, e2 =
e3 = 1

C. P3 = (Σ,B3(14, 7)) with: e1 = 3, e2 = e3 = 1

Then, we increase the rate of consumption of τ1 to 3 and
use a battery B3(14, 7).

We prove that this problem is schedulable for EDFasap,
RMasap and PFP2,1,3.

D. P4 = (Σ,B4(13, 7)) with: e1 = 3, e2 = e3 = 1

We decrease the maximal capacity of the battery to Emax =
13 and prove that the problem is no more schedulable using
any EDF or RM algorithm, but is schedulable for PFP2,1,3.

Figure 7 represents the schedule using PFP2,1,3 in the
interval [0, 40]. We can see that in [0, 40] no task misses its
deadline and the energy of the system E is always greater
than 0. At t = 40, all the tasks are active and the level of the
battery is E = Emax = 13 as in the initial configuration. That
confirms the result obtained with the model checking tool.

E. P5 = (Σ,B5(12, 7)) with: e1 = 3, e2 = e3 = 1

We then decrease again the maximal capacity of the battery
to Emax = 12. Using our approach, we prove that the problem
is no more schedulable using any fixed priority algorithm and
of course is still not schedulable using any EDF algorithm.

In Figure 8, an EDFasap schedule for the problem P5 with
B5(12, 7) is represented in the interval [0, 80]. We can see that
at t = 40 all the tasks are active but the available energy is
equal to 7, then at t = 80 there is no more energy in the

0 10 20 30 40

0

4

8

12

τ1

τ2

τ3

E

Figure 9. UPPAAL Feasible Schedule: Battery B(12, 7) and e1 = 3, e2 =
e3 = 1

80

0

0 10 20 30 40 50 60 70

4

8

12

E

τ1

τ2

τ3

Figure 10. UPPAAL Feasible Schedule With Minimal Change Mode of the
Battery: Battery B(12, 7) and e1 = 3, e2 = e3 = 1

battery. Thus, at t = 80 we have to charge the battery to
continue the execution, and task τ3 will miss its deadline at
t = 120.

However, using Formula 1, we prove that the problem is
feasible. Thus there exits a feasible schedule for this problem.
Using the feasible trace generate by the tool UPPAAL, we
compute the schedule represented in Figure 9. In this schedule,
at t = 6, the first instance of task τ2 has a lower priority than
task τ2, while it is the contrary at t = 11. At t = 40, all the
tasks are active and the battery level is equal to Emax = 12,
thus this schedule can be repeated infinitely with no deadline
miss and an energy level always positive.

F. Minimize the Number of Battery Mode Change

Using Formula 3, we built the schedule that minimizes the
number of battery change modes for the problem P5. Figure
10 represents the schedule produced by the tool UPPAAL. In
this schedule, the battery moves from the consuming to the
loading mode 6 times, while it was 7 times in the schedule
of Figure 9. To execute the system, one has first to follow the
schedule of the interval [0, 40], and then to repeat infinitely
the schedule of the interval [40, 80].

ha
l-0

06
88

06
9,

 v
er

si
on

 1
 -

16
 A

pr
 2

01
2

G. P6 = (Σ,B6(14, 7)) with: e1 = 3, e2 = e3 = 1 and
emin = 2

Finally, we prove that neither EDF nor PFP algorithms
can schedule the problem P6 where Emax = 14 and the
minimal tolerate level of battery is emin = 2. However,
using Formula 2, we prove that the problem is feasible
and a scheduling algorithm can be computed. The schedule
computed using the feasible trace produced by UPPAAL is
similar to the schedule of Figure 9.

VII. CONCLUSION

In this paper, we have presented how to use model checking
to solve a scheduling problem under energy constraints. We
first formalized the problem and then provided a feasibility
test and schedulability tests for PFP and EDF. We then showed
how to compute a feasible schedule if one exits. Our approach
also permits to derive the optimal characteristics of a battery
to make a given real time problem feasible. The studied
characteristics are the minimal and maximal reached energy
levels, the number of battery mode switches between charging
and discharging, and finally the number of preemptions. One
can extends this study to other criteria by proposing an appro-
priate CTL formula. Using some experiments, we validated our
model and CTL formulas and shown that it better scheduled
the proposed examples than the classical optimal scheduling
algorithms.

To be able to model preemptions using timed automata, we
had to restrict the authorized schedules to fixed priority at job
level ones and to allow replenishments of the battery only at
the beginning of a task if this task is preempting another one.

As future work, we have to formalize the memory com-
plexity of generated on-line schedulers. For that, we first have
to characterize the length of the worst execution case of this
scheduling problem.

How to model more realistic replenishment behaviors must
also be studied. Both in terms of energy availability from the
environment (e.g. sunshine previsions), and concerning the
physical capabilities of the storage unit used: at equivalent
power supply, a chemical battery will no store energy at the
same rate and following the same function than a capacitor,
for example.

REFERENCES

[1] K. G. Larsen, P. Pettersson, and W. Yi, “Uppaal in a nutshell,” Int.
Journal on Software Tools for Technology Transfer, vol. 1, pp. 134–
152, 1997.

[2] R. Jayaseelan, T. Mitra, and X. Li, “Estimating the worst-case energy
consumption of embedded software,” in IEEE Real Time Technology and
Applications Symposium. IEEE Computer Society, 2006, pp. 81–90.

[3] M. B. Srivastava, A. P. Chandrakasan, and R. W. Brodersen, “Predictive
system shutdown and other architectural techniques for energy efficient
programmable computation,” IEEE Trans. Very Large Scale Integr. Syst.,
vol. 4, no. 1, pp. 42–55, Mar. 1996.

[4] A. D. F. Yao and S. Shankar., “A scheduling model for reduced cpu
energy,” IEEE Annual Foundations of Computer Science, pp. 374 – 382,
1995.

[5] I. Hong, G. Qu, M. Potkonjak, and M. B. Srivastava, “Synthesis
techniques for low-power hard real-time systems on variable voltage
processors,” in Proceedings of the IEEE Real-Time Systems Symposium,
ser. RTSS ’98. IEEE Computer Society, 1998, pp. 178–.

[6] Y. Shin and K. Choi, “Power conscious fixed priority scheduling for
hard real-time systems,” in Proceedings of the 36th annual ACM/IEEE
Design Automation Conference, ser. DAC ’99. New York, NY, USA:
ACM, 1999, pp. 134–139.

[7] C. M. Krishna and Y. H. Lee., “Voltage clock scaling adaptive scheduling
techniques for low power in hard real-time systems,” in Proceedings of
the 6th IEEE Real-Time Technology and Applications Symposium, ser.
RTAS00, 2000.

[8] A. Allavena and D. Mossé, “Scheduling of frame-based embedded
systems with rechargeable,” in Proceeding of Workshop on Power
Management for Real-Time and Embedded Systems (in conjunction with
RTAS), 2001.

[9] C. Moser, D. Brunelli, L. Thiele, and L. Benini, “Real-time
scheduling for energy harvesting sensor nodes,” Real-Time Systems,
vol. 37, no. 3, pp. 233–260, Dec. 2007. [Online]. Available:
http://dx.doi.org/10.1007/s11241-007-9027-0

[10] M. Chetto and H. El Ghor, “Real-time Scheduling of periodic tasks in
a monoprocessor system with a rechargeable battery,” in WIP Session
Proceedings of The 30th IEEE Real-Time Systems Symposium, IEEE,
Ed., Washington, États-Unis, Dec. 2009, p. 45. [Online]. Available:
http://hal.archives-ouvertes.fr/hal-00542182

[11] H. EL Ghor, M. Chetto, and R. H. Chehade, “A real-time
scheduling framework for embedded systems with environmental
energy harvesting,” Computers and Electrical Engineering, vol. 37,
pp. 498–510, July 2011. [Online]. Available: http://dx.doi.org/10.1016/
j.compeleceng.2011.05.003

[12] M. Chetto, D. Masson, and S. Midonnet, “Fixed priority scheduling
strategies for ambient energy-harvesting embedded systems,” in Green-
Com 2011. IEEE/ACM International Conference on Green Computing
and Communications, Chengdu, Sichuan, China, du 4 au 5 Aot 2011,
pp. 50–55.

[13] Y. Abdeddaı̈m, E. Asarin, and O. Maler, “Scheduling with timed
automata,” Theoretical Computer Sciences, vol. 354, no. 2, 2006.

[14] A. Fehnker, “Scheduling a steel plant with timed automata,” in RTCSA,
1999, pp. 280–286.

[15] E. Fersman, P. Krcál, P. Pettersson, and W. Yi, “Task automata: Schedu-
lability, decidability and undecidability,” Inf. Comput., vol. 205, no. 8,
pp. 1149–1172, 2007.

[16] Y. Abdeddaı̈m and D. Masson, “Self-suspending periodic real-time tasks
using model checking,” in Work-in-Progress Session of 32nd IEEE Real-
Time Systems Symposium, ser. WIP-RTSS’11, 2011.

[17] R. Alur and D. Dill, “Automata for modeling real-time systems.” in
International Colloquium on Automata, Languages and Programming
(ICALP), Warwick, England, 1990.

[18] K.Cerans, “Algorithmic problems in analysis of real time system spec-
ifications,” Ph.D. dissertation, University of Latvia, 1992.

[19] Y. Kesten, A. Pnueli, J. Sifakis, and S. Yovine, “Decidable integration
graphs,” Inf. Comput., vol. 150, no. 2, pp. 209–243, 1999.

[20] D. Kozen, Ed., Logics of Programs, Workshop, ser. Lecture Notes in
Computer Science, vol. 131. Springer, 1982.

[21] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical
Computer Science, vol. 126, pp. 183–235, 1994.

[22] Y. Abdeddaı̈m and D. Masson, “Uppaal implementations.” [Online].
Available: http://igm.univ-mlv.fr/∼masson/Softwares/EnergyAutomata/

ha
l-0

06
88

06
9,

 v
er

si
on

 1
 -

16
 A

pr
 2

01
2

